1
|
Pattanayak PD, Banerjee A, Sahu G, Das S, Lima S, Akintola O, Buchholz A, Görls H, Plass W, Reuter H, Dinda R. Insights into the Theranostic Activity of Nonoxido V IV: Lysosome-Targeted Anticancer Metallodrugs. Inorg Chem 2024; 63:19418-19438. [PMID: 39340532 DOI: 10.1021/acs.inorgchem.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Developing new anticancer agents can be useful, with the ability to diagnose and treat cancer worldwide. Previously, we focused on examining the effects of nonoxidovanadium(IV) complexes on insulin mimetic and cytotoxicity activity. In this study, in addition to the cytotoxic activity, we evaluated their bioimaging properties. This study investigates the synthesis of four stable nonoxido VIV complexes [VIV(L1-4)2] (1-4) using aroylhydrazone ligands (H2L1-4) and their full characterization in solid state and the solution phase stability using various physicochemical techniques. The biomolecular (DNA/HSA) interaction of the complexes was evaluated by using conventional methods. The in vitro cytotoxicity of 1-4 was studied against A549 and LN-229 cancer cell lines and found that drug 2 displayed the highest activity among the four. Since 1-4 are fluorescently active, live cell imaging was used to evaluate their cellular localization activity. Complexes specifically target the lysosome and damage lysosome integrity by producing an excessive amount (9.7-fold) of reactive oxygen species (ROS) compared to the control, which may cause cell apoptosis. Overall, this study indicates that 2 has the greatest potential for the development of multifunctional theranostic agents that combine imaging capabilities and anticancer properties of nonoxidovanadium(IV)-based metallodrugs.
Collapse
Affiliation(s)
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49067 Osnabrück, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| |
Collapse
|
2
|
Kazek G, Głuch-Lutwin M, Mordyl B, Menaszek E, Kubacka M, Jurowska A, Cież D, Trzewik B, Szklarzewicz J, Papież MA. Vanadium Complexes with Thioanilide Derivatives of Amino Acids: Inhibition of Human Phosphatases and Specificity in Various Cell Models of Metabolic Disturbances. Pharmaceuticals (Basel) 2024; 17:229. [PMID: 38399444 PMCID: PMC10892041 DOI: 10.3390/ph17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In the text, the synthesis and characteristics of the novel ONS-type vanadium (V) complexes with thioanilide derivatives of amino acids are described. They showed the inhibition of human protein tyrosine phosphatases (PTP1B, LAR, SHP1, and SHP2) in the submicromolar range, as well as the inhibition of non-tyrosine phosphatases (CDC25A and PPA2) similar to bis(maltolato)oxidovanadium(IV) (BMOV). The ONS complexes increased [14C]-deoxy-D-glucose transport into C2C12 myocytes, and one of them, VC070, also enhanced this transport in 3T3-L1 adipocytes. These complexes inhibited gluconeogenesis in hepatocytes HepG2, but none of them decreased lipid accumulation in the non-alcoholic fatty liver disease model using the same cells. Compared to the tested ONO-type vanadium complexes with 5-bromosalicylaldehyde and substituted benzhydrazides as Schiff base ligand components, the ONS complexes revealed stronger inhibition of protein tyrosine phosphatases, but the ONO complexes showed greater activity in the cell models in general. Moreover, the majority of the active complexes from both groups showed better effects than VOSO4 and BMOV. Complexes from both groups activated AKT and ERK signaling pathways in hepatocytes to a comparable extent. One of the ONO complexes, VC068, showed activity in all of the above models, including also glucose utilizatiand ONO Complexes are Inhibitors ofon in the myocytes and glucose transport in insulin-resistant hepatocytes. The discussion section explicates the results within the wider scope of the knowledge about vanadium complexes.
Collapse
Affiliation(s)
- Grzegorz Kazek
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Kubacka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Anna Jurowska
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Dariusz Cież
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bartosz Trzewik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Janusz Szklarzewicz
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika A Papież
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
3
|
Brenda CT, Norma RF, P BN, E CR, Nelly LV, Marcela RL, Martha UC, I FT. Ultrastructural alterations due to sodium metavanadate treatment in the blood stages of Plasmodium yoelii yoelii. J Trace Elem Med Biol 2023; 80:127314. [PMID: 37778096 DOI: 10.1016/j.jtemb.2023.127314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Malaria is a potentially mortal disease caused by parasites of the genus Plasmodium spp. It has a wide distribution in the world and unfortunately there are several factors that make its control difficult; among which the development of pharmacological resistance to the different drugs used to treat this disease stands out, which makes it necessary to design new compounds that have an antimalarial effect. Previous studies have shown that vanadium has a broad antiparasitic spectrum and is also safe for the host, so the objective of this research was to evaluate the antimalarial potential of sodium metavanadate (SM) and to analyze the ultrastructural changes in parasites exposed. The method consisted of inoculating CD-1 male mice with Plasmodium yoelii yoelii and administering a 10 mg/kg/day dose of SM orally for 4 days. On the fifth day, whole blood samples were obtained, processed for ultrastructural analysis, and the changes in the different parasite stages were compared against the control. Our results showed that SM decreased parasitemia compared to the group that did not receive treatment and modified the ultrastructure in all parasitic stages because it damaged the membranes, causing alterations mainly in the nucleus and in the mitochondria as well as the loss of cellular organization, which could affect the integrity of these parasites and decrease its viability.
Collapse
Affiliation(s)
- Casarrubias-Tabarez Brenda
- Department of Cellular and Tissular Biology, School of Medicine, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, Mexico City C.P. 04510, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Rivera-Fernández Norma
- Department of Microbiology and Parasitology. School of Medicine, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, Mexico City C.P. 04510, Mexico
| | - Bizarro-Nevares P
- Department of Cellular and Tissular Biology, School of Medicine, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, Mexico City C.P. 04510, Mexico
| | - Carrasco-Ramírez E
- Department of Microbiology and Parasitology. School of Medicine, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, Mexico City C.P. 04510, Mexico; Microscopy Unit, School of Medicine, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, Mexico City C.P. 04510, Mexico
| | - López-Valdez Nelly
- Department of Cellular and Tissular Biology, School of Medicine, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, Mexico City C.P. 04510, Mexico
| | - Rojas-Lemus Marcela
- Department of Cellular and Tissular Biology, School of Medicine, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, Mexico City C.P. 04510, Mexico
| | - Ustarroz-Cano Martha
- Department of Cellular and Tissular Biology, School of Medicine, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, Mexico City C.P. 04510, Mexico
| | - Fortoul Teresa I
- Department of Cellular and Tissular Biology, School of Medicine, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, Mexico City C.P. 04510, Mexico.
| |
Collapse
|
4
|
Choroba K, Filipe B, Świtlicka A, Penkala M, Machura B, Bieńko A, Cordeiro S, Baptista PV, Fernandes AR. In Vitro and In Vivo Biological Activities of Dipicolinate Oxovanadium(IV) Complexes. J Med Chem 2023. [PMID: 37311060 DOI: 10.1021/acs.jmedchem.3c00255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The work is focused on anticancer properties of dipicolinate (dipic)-based vanadium(IV) complexes [VO(dipic)(N∩N)] bearing different diimines (2-(1H-imidazol-2-yl)pyridine, 2-(2-pyridyl)benzimidazole, 1,10-phenanthroline-5,6-dione, 1,10-phenanthroline, and 2,2'-bipyridine), as well as differently 4,7-substituted 1,10-phenanthrolines. The antiproliferative effect of V(IV) systems was analyzed in different tumors (A2780, HCT116, and HCT116-DoxR) and normal (primary human dermal fibroblasts) cell lines, revealing a high cytotoxic effect of [VO(dipic)(N∩N)] with 4,7-dimethoxy-phen (5), 4,7-diphenyl-phen (6), and 1,10-phenanthroline (8) against HCT116-DoxR cells. The cytotoxicity differences between these complexes can be correlated with their different internalization by HCT116-DoxR cells. Worthy of note, these three complexes were found to (i) induce cell death through apoptosis and autophagy pathways, namely, through ROS production; (ii) not to be cytostatic; (iii) to interact with the BSA protein; (iv) do not promote tumor cell migration or a pro-angiogenic capability; (v) show a slight in vivo anti-angiogenic capability, and (vi) do not show in vivo toxicity in a chicken embryo.
Collapse
Affiliation(s)
- Katarzyna Choroba
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Beatriz Filipe
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Anna Świtlicka
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Mateusz Penkala
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Sandra Cordeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro V Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
5
|
Zahirović A, Hadžalić S, Višnjevac A, Fočak M, Tüzün B, Žilić D, Roca S, Jurec J, Topčagić A, Osmanković I. Vanadium(IV) complexes of salicylaldehyde-based furoic acid hydrazones: Synthesis, BSA binding and in vivo antidiabetic potential. J Inorg Biochem 2023; 244:112232. [PMID: 37084582 DOI: 10.1016/j.jinorgbio.2023.112232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Solution synthesis afforded five novel neutral heteroleptic octahedral paramagnetic mononuclear oxidovanadium(IV) complexes of general composition [VO(bpy)L], where L is a dianionic tridentate ONO-donor hydrazone ligand derived from 2-furoic acid hydrazide and salicylaldehyde and its 5-substituted derivatives. Characterization was carried out by elemental analysis, mass spectrometry, infrared, electron, NMR, and EPR spectroscopy, cyclic voltammetry and conductometry. The molecular and crystal structure of the complex with 5-chloro-salicylaldehyde 2-furoic acid hydrazone (2) was determined. The quantum chemical properties of the vanadium complexes were studied at B3LYP and M062X levels with the lanl2dz basis set using Gaussian. Additionally, Swiss-ADME analysis was performed and complex (4), featuring a 5-nitro substituent on the hydrazone ligand, was selected for further investigation. The effects of the in vivo application of the complex on selected biochemical parameters in healthy and diabetic Wistar rats were investigated. Strong antidiabetic effect associated with moderate hypoalbuminemia was observed. Furthermore, the interaction of complexes with BSA was studied by spectrofluorimetry. A significant conformational change of BSA in the presence of vanadium complexes was found. Synchronous fluorescence spectra revealed significant changes in the tyrosine microenvironment of BSA. The FRET analysis was also used and the non-radiative process of energy transfer is elucidated. Thermodynamic data suggest van der Waals forces and hydrogen bonding as predominant binding modes of complexes to BSA.
Collapse
Affiliation(s)
- Adnan Zahirović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Selma Hadžalić
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | | | | | | | - Anela Topčagić
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Irnesa Osmanković
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
6
|
Jurowska A, Szklarzewicz J, Glos I, Hodorowicz M, Zangrando E, Mahmoudi G. Effect of di- and tri-ethylammonium cations on the structure and physicochemical properties of dioxido vanadium(V) Schiff base complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Vhanale BT, Shinde AT. Synthesis, Characterization, Powder X-Ray Diffraction Analysis, ESR Study, Thermal Stability of Ni(II) and Fe(III) Schiff Base Ligand Complexes and Potency Study as Antibacterial and Antioxidant Agents. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2158886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bhagwat T. Vhanale
- P.G. Department of Chemistry, S.C.S. College, Omerga, India
- P.G. Department of Chemistry, N.E.S. Science College, Nanded, India
| | - Avinash T. Shinde
- P.G. Department of Chemistry, S.C.S. College, Omerga, India
- P.G. Department of Chemistry, N.E.S. Science College, Nanded, India
| |
Collapse
|
8
|
Li Z. Crystal structure of ( E)- N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)-4-hydroxybenzohydrazide, C 15H 13ClN 2O 3. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C15H13ClN2O3, monoclinic, P21/c (no. 14), a = 4.9709(11) Å, b = 31.691(7) Å, c = 8.512(2) Å, β = 92.376(4)°, V = 1339.8(5) Å3, Z = 4, Rgt
(F) = 0.0559, wRref
(F
2) = 0.1676, T = 296(2) K.
Collapse
Affiliation(s)
- Zhaoyan Li
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| |
Collapse
|
9
|
Ionic Dioxidovanadium(V) Complexes with Schiff-Base Ligands as Potential Insulin-Mimetic Agents-Substituent Effect on Structure and Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206942. [PMID: 36296535 PMCID: PMC9607307 DOI: 10.3390/molecules27206942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022]
Abstract
Four dioxidovanadium(V) complexes with Schiff-base ligands based on 2-hydroxybenzhydrazide with four different substituted salicylaldehydes (5-chlorosalicylaldehyde, 3,5-dichlorosalicylaldehyde, 5-nitrosalicylaldehyde, 3-bromo-5-chlorosalicylaldehyde) were synthesized and described, by using V2O5 and triethylamine. The single crystal X-ray structure measurements as well as elemental analyses and IR spectra confirmed the formulas of the ionic complexes with a protonated triethylamine acting as counterion, HTEA[VO2(L)] (HL = Schiff-base ligand). The kinetic stability of the complexes at pH = 2 and 7 was discussed with respect to the neutral vanadium(V) complexes previously studied as potential insulin-mimetic agents. A correlation between the substituents in an aromatic ring of the Schiff-base ligands with crystal packing, and also with the stability of the compounds, was presented.
Collapse
|
10
|
Synthesis, characterization, biomolecular interaction and in vitro glucose metabolism studies of dioxidovanadium(V) benzimidazole compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Jurowska A, Serafin W, Hodorowicz M, Kruczała K, Szklarzewicz J. Vanadium precursors and the type of complexes formed with Schiff base ligand composed of 5-bromosalicylaldehyde and 2-hydroxybenzhydrazide – Structure and characterization. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Jasińska A, Szklarzewicz J, Jurowska A, Hodorowicz M, Kazek G, Mordyl B, Głuch-Lutwin M. V(III) and V(IV) Schiff base complexes as potential insulin-mimetic compounds – comparison, characterization and biological activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|