1
|
Styczinski MJ, Cooper ZS, Glaser DM, Lehmer O, Mierzejewski V, Tarnas J. Chapter 7: Assessing Habitability Beyond Earth. ASTROBIOLOGY 2024; 24:S143-S163. [PMID: 38498826 DOI: 10.1089/ast.2021.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.
Collapse
Affiliation(s)
- M J Styczinski
- University of Washington, Seattle, Washington, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Z S Cooper
- University of Washington, Seattle, Washington, USA
| | - D M Glaser
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - O Lehmer
- NASA Ames Research Center, Moffett Field, California, USA
| | - V Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | - J Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
2
|
Roberts JH, McKinnon WB, Elder CM, Tobie G, Biersteker JB, Young D, Park RS, Steinbrügge G, Nimmo F, Howell SM, Castillo-Rogez JC, Cable ML, Abrahams JN, Bland MT, Chivers C, Cochrane CJ, Dombard AJ, Ernst C, Genova A, Gerekos C, Glein C, Harris CD, Hay HCFC, Hayne PO, Hedman M, Hussmann H, Jia X, Khurana K, Kiefer WS, Kirk R, Kivelson M, Lawrence J, Leonard EJ, Lunine JI, Mazarico E, McCord TB, McEwen A, Paty C, Quick LC, Raymond CA, Retherford KD, Roth L, Rymer A, Saur J, Scanlan K, Schroeder DM, Senske DA, Shao W, Soderlund K, Spiers E, Styczinski MJ, Tortora P, Vance SD, Villarreal MN, Weiss BP, Westlake JH, Withers P, Wolfenbarger N, Buratti B, Korth H, Pappalardo RT. Exploring the Interior of Europa with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:46. [PMID: 37636325 PMCID: PMC10457249 DOI: 10.1007/s11214-023-00990-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation. The science objectives of the Europa Clipper mission include the characterization of Europa's interior; confirmation of the presence of a subsurface ocean; identification of constraints on the depth to this ocean, and on its salinity and thickness; and determination of processes of material exchange between the surface, ice shell, and ocean. Three broad categories of investigation are planned to interrogate different aspects of the subsurface structure and properties of the ice shell and ocean: magnetic induction, subsurface radar sounding, and tidal deformation. These investigations are supplemented by several auxiliary measurements. Alone, each of these investigations will reveal unique information. Together, the synergy between these investigations will expose the secrets of the Europan interior in unprecedented detail, an essential step in evaluating the habitability of this ocean world.
Collapse
Affiliation(s)
| | | | - Catherine M Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Ryan S Park
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Francis Nimmo
- University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Samuel M Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Morgan L Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Corey J Cochrane
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Carolyn Ernst
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | | | | | | | | | - Hamish C F C Hay
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Paul O Hayne
- University of Colorado Boulder, Boulder, CO, USA
| | | | - Hauke Hussmann
- German Aerospace Center Institute of Planetary Research, Berlin, Germany
| | | | | | - Walter S Kiefer
- Lunar and Planetary Institute, University Space Research Association, Houston, TX, USA
| | | | | | | | - Erin J Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | - Carol A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Retherford
- Sapienza University of Rome, Rome, Italy
- University of Texas at San Antonio, San Antonio, TX, USA
| | - Lorenz Roth
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Abigail Rymer
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | | | | | | | - David A Senske
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Wencheng Shao
- University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Marshall J Styczinski
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- University of Washington, Seattle, WA, USA
| | - Paolo Tortora
- Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Steven D Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | - Bonnie Buratti
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Haje Korth
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Robert T Pappalardo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
3
|
Styczinski MJ, Vance SD, Harnett EM, Cochrane CJ. A perturbation method for evaluating the magnetic field induced from an arbitrary, asymmetric ocean world analytically. ICARUS 2022; 376:114840. [PMID: 35140451 PMCID: PMC8819682 DOI: 10.1016/j.icarus.2021.114840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Magnetic investigations of icy moons have provided some of the most compelling evidence available confirming the presence of subsurface, liquid water oceans. In the exploration of ocean moons, especially Europa, there is a need for mathematical models capable of predicting the magnetic fields induced under a variety of conditions, including in the case of asymmetric oceans. Existing models are limited to either spherical symmetry or assume an ocean with infinite conductivity. In this work, we use a perturbation method to derive a semi-analytic result capable of determining the induced magnetic moments for an arbitrary layered body, provided each layer is nearly spherical. Crucially, we find that degree-2 tidal deformation results in changes to the induced dipole moments. We demonstrate application of our results to models of plausible asymmetry from the literature within the oceans of Europa and Miranda and the ionospheres of Callisto and Triton. For the models we consider, we find that in the asymmetric case, the induced magnetic field differs by more than 2 nT near the surface of Europa, 0.25-0.5 nT at 1 R above Miranda and Triton, and is essentially unchanged for Callisto. For Miranda and Triton, this difference is as much as 20%-30% of the induced field magnitude. If measurements near the moons can be made precisely to better than a few tenths of a nT, these values may be used by future spacecraft investigations to characterize asymmetry within the interior of icy moons.
Collapse
Affiliation(s)
- Marshall J. Styczinski
- Department of Physics, University of Washington, Box 351560, 3910 15th Ave NE, Seattle, WA 98195-1560, USA
- UW Astrobiology Program, University of Washington, Box 351580, 3910 15th Ave NE, Seattle, WA 98195-1580, USA
| | - Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109-8001, USA
| | - Erika M. Harnett
- UW Astrobiology Program, University of Washington, Box 351580, 3910 15th Ave NE, Seattle, WA 98195-1580, USA
- Department of Earth and Space Sciences, University of Washington, Box 351310, 4000 15th Ave NE, Seattle, WA 98195-1310, USA
| | - Corey J. Cochrane
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109-8001, USA
| |
Collapse
|