1
|
Cao Y, Fan R, Zhu K, Gao Y. Advances in Functionalized Hydrogels in the Treatment of Myocardial Infarction and Drug-Delivery Strategies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48880-48894. [PMID: 39227344 DOI: 10.1021/acsami.4c09623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease with high morbidity and mortality rates, posing a significant threat to patient's health and quality of life. Following a MI, the damaged myocardial tissue is typically not fully repaired, leading to permanent impairment of myocardial function. While traditional treatments can alleviate symptoms and reduce pain, their ability to repair damaged heart muscle tissue is limited. Functionalized hydrogels, a broad category of materials with diverse functionalities, can enhance the properties of hydrogels to cater to the needs of tissue engineering, drug delivery, medical dressings, and other applications. Recently, functionalized hydrogels have emerged as a promising new therapeutic approach for the treatment of MI. Functionalized hydrogels possess outstanding biocompatibility, customizable mechanical properties, and drug-release capabilities. These properties enable them to offer scaffold support, drug release, and tissue regeneration promotion, making them a promising approach for treating MI. This paper aims to evaluate the advancements and delivery methods of functionalized hydrogels for treating MI, while also discussing their potential and the challenges they may pose for future clinical use.
Collapse
Affiliation(s)
- Yuchen Cao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Rong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Kaiyi Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yuping Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan 030032, China
- Key Laboratory of Cellular Physiology, Shanxi Province, Taiyuan 030032, China
| |
Collapse
|
2
|
Cuoghi S, Caraffi R, Anderlini A, Baraldi C, Enzo E, Vandelli MA, Tosi G, Ruozi B, Duskey JT, Ottonelli I. Challenges of enzyme therapy: Why two players are better than one. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1979. [PMID: 38955512 DOI: 10.1002/wnan.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Enzyme-based therapy has garnered significant attention for its current applications in various diseases. Despite the notable advantages associated with the use of enzymes as therapeutic agents, that could have high selectivity, affinity, and specificity for the target, their application faces challenges linked to physico-chemical and pharmacological properties. These limitations can be addressed through the encapsulation of enzymes in nanoplatforms as a comprehensive solution to mitigate their degradation, loss of activity, off-target accumulation, and immunogenicity, thus enhancing bioavailability, therapeutic efficacy, and circulation time, thereby reducing the number of administrations, and ameliorating patient compliance. The exploration of novel nanomedicine-based enzyme therapeutics for the treatment of challenging diseases stands as a paramount goal in the contemporary scientific landscape, but even then it is often not enough. Combining an enzyme with another therapeutic (e.g., a small molecule, another enzyme or protein, a monoclonal antibody, or a nucleic acid) within a single nanocarrier provides innovative multidrug-integrated therapy and ensures that both the actives arrive at the target site and exert their therapeutic effect, leading to synergistic action and superior therapeutic efficacy. Moreover, this strategic approach could be extended to gene therapy, a field that nowadays has gained increasing attention, as enzymes acting at genomic level and nucleic acids may be combined for synergistic therapy. This multicomponent therapeutic approach opens opportunities for promising future developments. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Sabrina Cuoghi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Anderlini
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Custodio-Sánchez P, Miranda-Noé D, López-Rojas LM, Paredes Paucar CP, Yábar Galindo WG, Rojas De La Cuba P, Martos Salcedo JO, Chacón-Diaz M. [Proposal for initial management of uncomplicated ST elevation myocardial infarction in centers without percutaneous coronary intervention capacity in Peru]. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2023; 4:164-183. [PMID: 38298415 PMCID: PMC10824752 DOI: 10.47487/apcyccv.v4i4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
ST-segment elevation myocardial infarction (STEMI) is a clinical entity whose adequate treatment will depend on its prompt recognition, accurate diagnosis, and management in reperfusion networks. The first contact with these patients is generally done in centers without reperfusion capacity, attended by non-cardiologist doctors, and in centers far from hospitals with greater resolution capacity, something that is well known in our country. This manuscript proposes a strategy for the diagnosis and treatment of STEMI in centers without percutaneous coronary intervention capacity of the public health system in Peru, emphasizing not losing sight of electrocardiographic patterns compatible with coronary artery occlusion, adequate fibrinolysis and management of its complications, the treatment of infarction in special populations and highlighting the importance of the pharmacoinvasive strategy as the main form of reperfusion treatment in our country.
Collapse
Affiliation(s)
- Piero Custodio-Sánchez
- Unidad de Cardiología Intervencionista, Hospital Nacional Almanzor Aguinaga Asenjo, Chiclayo, Perú.Unidad de Cardiología IntervencionistaHospital Nacional Almanzor Aguinaga AsenjoChiclayoPerú
| | - David Miranda-Noé
- Servicio de Cardiología Clínica. Instituto Nacional Cardiovascular INCOR, Lima, Perú.Servicio de Cardiología ClínicaInstituto Nacional Cardiovascular INCORLimaPerú
| | - L. Marco López-Rojas
- Hospital Nacional Hipólito Unanue, Lima, Perú.Hospital Nacional Hipólito UnanueLimaPerú
| | - Cynthia Paola Paredes Paucar
- Unidad de insuficiencia cardiaca, Hospital Germans Trias i Pujol, Barcelona, España.Unidad de insuficiencia cardiacaHospital Germans Trias i PujolBarcelonaEspaña
| | - W. Germán Yábar Galindo
- Hospital Nacional Guillermo Almenara Irigoyen, Lima, Perú.Hospital Nacional Guillermo Almenara IrigoyenLimaPerú
| | - Paol Rojas De La Cuba
- Hospital Nacional Guillermo Almenara Irigoyen, Lima, Perú.Hospital Nacional Guillermo Almenara IrigoyenLimaPerú
| | - Jorge Orlando Martos Salcedo
- Servicio de Cardiología. Hospital Regional Docente de Cajamarca, Cajamarca, Perú.Servicio de CardiologíaHospital Regional Docente de CajamarcaCajamarcaPerú
| | - Manuel Chacón-Diaz
- Unidad Cardiovascular. Clínica Delgado AUNA, Lima, Perú.Unidad CardiovascularClínica Delgado AUNALimaPerú
| |
Collapse
|
4
|
Disharoon D, Trewyn BG, Herson PS, Marr DW, Neeves KB. Breaking the fibrinolytic speed limit with microwheel co-delivery of tissue plasminogen activator and plasminogen. J Thromb Haemost 2022; 20:486-497. [PMID: 34882946 PMCID: PMC8792280 DOI: 10.1111/jth.15617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND To reestablish blood flow in vessels occluded by clots, tissue plasminogen activator (tPA) can be used; however, its efficacy is limited by transport to and into a clot and by the depletion of its substrate, plasminogen. OBJECTIVES To overcome these rate limitations, a platform was designed to co-deliver tPA and plasminogen based on microwheels (µwheels), wheel-like assemblies of superparamagnetic colloidal beads that roll along surfaces at high speeds. METHODS The biochemical speed limit was determined by measuring fibrinolysis of plasma clots at varying concentrations of tPA (10-800 nM) and plasminogen (1-6 µM). Biotinylated magnetic mesoporous silica nanoparticles were synthesized and bound to streptavidin-coated superparamagnetic beads to make studded beads. Studded beads were loaded with plasminogen and tPA was immobilized on their surface. Plasminogen release and tPA activity were measured on the studded beads. Studded beads were assembled into µwheels with rotating magnetic fields and fibrinolysis of plasma clots was measured in a microfluidic device. RESULTS The biochemical speed limit for plasma clots was ~15 µm/min. Plasminogen-loaded, tPA-immobilized µwheels lyse plasma clots at rates comparableto the biochemical speed limit. With the addition of a corkscrew motion, µwheels penetrate clots, thereby exceeding the biochemical speed limit (~20 µm/min) and achieving lysis rates 40-fold higher than 50 nM tPA. CONCLUSIONS Co-delivery of an immobilized enzyme and its substrate via a microbot capable of mechanical work has the potential to target and rapidly lyse clots that are inaccessible by mechanical thrombectomy devices or recalcitrant to systemic tPA delivery.
Collapse
Affiliation(s)
- Dante Disharoon
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Brian G. Trewyn
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States
| | - Paco S. Herson
- Department of Anesthesiology, University of Colorado Denver ∣ Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver ∣ Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|