1
|
Zhang H, Pu J, Liu H, Wang M, Du Y, Tang X, Luo X, Wang Y, Deng Q. Effects of L-Cysteine and γ-Aminobutyric Acid Treatment on Postharvest Quality and Antioxidant Activity of Loquat Fruit during Storage. Int J Mol Sci 2023; 24:10541. [PMID: 37445735 DOI: 10.3390/ijms241310541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Sichuan is the China's leading producer of loquat, with the largest cultivation area and yield ranked first in China. Loquat is a seasonal fruit highly appreciated by consumers; however, the fruit is prone to browning and lignification after harvest, affecting its storage quality. The effects of L-Cysteine (L-Cys, 0.01, 0.05, 0.1, 0.2%) and γ-aminobutyric acid (GABA, 0.025, 0.05, 0.075, 0.1%) on the sensory quality and antioxidant activity of loquat fruit during cold storage at 4 °C for 35 days and simulated shelf life for 5 days were investigated. The results showed that after 40 days of storage, compared with the control, 0.05% L-Cys and 0.05% GABA treatment of 'Zaozhong No. 6' loquat fruit effectively reduced the weight loss rate, browning index, decay index, respiratory rate, firmness, and lignin content and slowed the decreases in total soluble solids, soluble sugar, titratable acidityand vitamin C contents. The application of 0.05% L-Cys and 0.05% GABA significantly increased the contents of total phenols, total flavonoids, flavanols, and carotenoids; delayed the increase of relative electric conductivity, MDA, POD, and PPO activities; and significantly enhanced the activities of SOD and CAT, DPPH free radical scavenging ability, and FRAP, thereby improving antioxidant capacity. In summary, 0.05% L-Cys and 0.05% GABA treatment promotes the quality of loquat fruit after 40 days of storage, and significantly enhances antioxidant capacity, thus delaying senescence after harvest.
Collapse
Affiliation(s)
- Huifen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Pu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Han Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Miao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Du
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofu Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongqing Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Kumar Verma D, Thyab Gddoa Al-Sahlany S, Kareem Niamah A, Thakur M, Shah N, Singh S, Baranwal D, Patel AR, Lara Utama G, Noe Aguilar C. Recent trends in microbial flavour Compounds: A review on Chemistry, synthesis mechanism and their application in food. Saudi J Biol Sci 2022; 29:1565-1576. [PMID: 35280596 PMCID: PMC8913424 DOI: 10.1016/j.sjbs.2021.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Aroma and flavour represent the key components of food that improves the organoleptic characteristics of food and enhances the acceptability of food to consumers. Commercial manufacturing of aromatic and flavouring compounds is from the industry's microbial source, but since time immemorial, its concept has been behind human practices. The interest in microbial flavour compounds has developed in the past several decades because of its sustainable way to supply natural additives for the food processing sector. There are also numerous health benefits from microbial bioprocess products, ranging from antibiotics to fermented functional foods. This review discusses recent developments and advancements in many microbial aromatic and flavouring compounds, their biosynthesis and production by diverse types of microorganisms, their use in the food industry, and a brief overview of their health benefits for customers.
Collapse
Affiliation(s)
- Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | | | - Alaa Kareem Niamah
- Department of Food Science, College of Agriculture, University of Basrah, Basra City, Iraq
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India
| | - Nihir Shah
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana-384 002, Gujarat, India
| | - Smita Singh
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh 140413, Punjab, India
| | - Deepika Baranwal
- Department of Home Science, Arya Mahila PG College, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ami R. Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana-384 002, Gujarat, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Group, Food Research Department, School of Chemistry. Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, México
| |
Collapse
|
3
|
Gómez de Cadiñanos LP, García-Cayuela T, Martínez-Cuesta MC, Peláez C, Requena T. Expression of amino acid converting enzymes and production of volatile compounds by Lactococcus lactis IFPL953. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Botta C, Acquadro A, Greppi A, Barchi L, Bertolino M, Cocolin L, Rantsiou K. Genomic assessment in Lactobacillus plantarum links the butyrogenic pathway with glutamine metabolism. Sci Rep 2017; 7:15975. [PMID: 29162929 PMCID: PMC5698307 DOI: 10.1038/s41598-017-16186-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
The butyrogenic capability of Lactobacillus (L.) plantarum is highly dependent on the substrate type and so far not assigned to any specific metabolic pathway. Accordingly, we compared three genomes of L. plantarum that showed a strain-specific capability to produce butyric acid in human cells growth media. Based on the genomic analysis, butyric acid production was attributed to the complementary activities of a medium-chain thioesterase and the fatty acid synthase of type two (FASII). However, the genomic islands of discrepancy observed between butyrogenic L. plantarum strains (S2T10D, S11T3E) and the non-butyrogenic strain O2T60C do not encompass genes of FASII, but several cassettes of genes related to sugar metabolism, bacteriocins, prophages and surface proteins. Interestingly, single amino acid substitutions predicted from SNPs analysis have highlighted deleterious mutations in key genes of glutamine metabolism in L. plantarum O2T60C, which corroborated well with the metabolic deficiency suffered by O2T60C in high-glutamine growth media and its consequent incapability to produce butyrate. In parallel, the increase of glutamine content induced the production of butyric acid by L. plantarum S2T10D. The present study reveals a previously undescribed metabolic route for butyric acid production in L. plantarum, and a potential involvement of the glutamine uptake in its regulation.
Collapse
Affiliation(s)
- Cristian Botta
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
| | - Alberto Acquadro
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
| | - Anna Greppi
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Switzerland
| | - Lorenzo Barchi
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
| | - Marta Bertolino
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
| | - Luca Cocolin
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
5
|
Gómez de Cadiñanos LP, Peláez C, Martínez-Cuesta MC, García-Cayuela T, Requena T. Identification and characterization of glutamate dehydrogenase activity in wild Lactococcus lactis isolated from raw milk cheeses. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2988-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
De Angelis M, Calasso M, Cavallo N, Di Cagno R, Gobbetti M. Functional proteomics within the genus Lactobacillus. Proteomics 2016; 16:946-62. [PMID: 27001126 DOI: 10.1002/pmic.201500117] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Noemi Cavallo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Siragusa S, De Angelis M, Calasso M, Campanella D, Minervini F, Di Cagno R, Gobbetti M. Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. J Proteomics 2013; 96:366-80. [PMID: 24231110 DOI: 10.1016/j.jprot.2013.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED This study aimed at investigating the proteomic adaptation of Lactobacillus plantarum strains. Cultivation of L. plantarum strains under food-like conditions (wheat flour hydrolyzed, whey milk, tomato juice) affected some metabolic traits (e.g., consumption of carbohydrates and synthesis of organic acids) compared to de Man, Rogosa and Sharpe (MRS) broth. The analysis of the fermentation profile showed that the highest number of carbon sources metabolized by L. plantarum strains was found using cells cultivated in media containing low concentration of glucose or no glucose at all. The proteomic maps of the strains were comparatively determined after growth on MRS broth and under food-like conditions. The amount of proteins depended on strain and, especially, on culture conditions. Proteins showing decreased or increased amounts under food-like conditions were identified using MALDI-TOF-MS/MS or LC-nano-ESI-MS/MS. Changes of the proteome concerned proteins that are involved in carbohydrate transport and metabolism, energy metabolism, Sec-dependent secretion system, stress response, nucleotide metabolism, regulation of nitrogen metabolism, and protein biosynthesis. A catabolic repression by glucose on carbohydrate transport and metabolism was also found. The characterization of the proteomes in response to changing environmental conditions could be useful to get L. plantarum strains adapted for specific applications. BIOLOGICAL SIGNIFICANCE Microbial cell performance during food biotechnological processes has become one of the greatest concerns all over the world. L. plantarum is a lactic acid bacterium with a large industrial application for fermented foods or functional foods (e.g., probiotics). The present study compared the fermentation and proteomic profiling of L. plantarum strains during growth under food-like conditions and under optimal laboratory conditions (MRS broth). This study provides specific mechanisms of proteomic adaptation involved in the microbial performances (carbohydrates utilization, energy metabolism, stress resistance, etc.) affecting the main biotechnological tracts of L. plantarum strains. The finding of this study provides evidences that may be exploited to get strains adapted for specific applications in food biotechnology.
Collapse
Affiliation(s)
- Sonya Siragusa
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Maria Calasso
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Daniela Campanella
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
8
|
Bove CG, Angelis MD, Gatti M, Calasso M, Neviani E, Gobbetti M. Metabolic and proteomic adaptation of Lactobacillus rhamnosus
strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics 2012; 12:3206-18. [DOI: 10.1002/pmic.201200157] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 11/09/2022]
Affiliation(s)
| | - Maria De Angelis
- Department of Soil; Plant and Food Science; University of Bari Aldo Moro; Bari Italy
| | - Monica Gatti
- Department of Food Science; University of Parma; Parma Italy
| | - Maria Calasso
- Department of Soil; Plant and Food Science; University of Bari Aldo Moro; Bari Italy
| | - Erasmo Neviani
- Department of Food Science; University of Parma; Parma Italy
| | - Marco Gobbetti
- Department of Soil; Plant and Food Science; University of Bari Aldo Moro; Bari Italy
| |
Collapse
|