1
|
Tsouggou N, Slavko A, Tsipidou O, Georgoulis A, Dimov SG, Yin J, Vorgias CE, Kapolos J, Papadelli M, Papadimitriou K. Investigation of the Microbiome of Industrial PDO Sfela Cheese and Its Artisanal Variants Using 16S rDNA Amplicon Sequencing and Shotgun Metagenomics. Foods 2024; 13:1023. [PMID: 38611328 PMCID: PMC11011710 DOI: 10.3390/foods13071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Sfela is a white brined Greek cheese of protected designation of origin (PDO) produced in the Peloponnese region from ovine, caprine milk, or a mixture of the two. Despite the PDO status of Sfela, very few studies have addressed its properties, including its microbiology. For this reason, we decided to investigate the microbiome of two PDO industrial Sfela cheese samples along with two non-PDO variants, namely Sfela touloumotiri and Xerosfeli. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), 16S rDNA amplicon sequencing and shotgun metagenomics analysis were used to identify the microbiome of these traditional cheeses. Cultured-based analysis showed that the most frequent species that could be isolated from Sfela cheese were Enterococcus faecium, Lactiplantibacillus plantarum, Levilactobacillus brevis, Pediococcus pentosaceus and Streptococcus thermophilus. Shotgun analysis suggested that in industrial Sfela 1, Str. thermophilus dominated, while industrial Sfela 2 contained high levels of Lactococcus lactis. The two artisanal samples, Sfela touloumotiri and Xerosfeli, were dominated by Tetragenococcus halophilus and Str. thermophilus, respectively. Debaryomyces hansenii was the only yeast species with abundance > 1% present exclusively in the Sfela touloumotiri sample. Identifying additional yeast species in the shotgun data was challenging, possibly due to their low abundance. Sfela cheese appears to contain a rather complex microbial ecosystem and thus needs to be further studied and understood. This might be crucial for improving and standardizing both its production and safety measures.
Collapse
Affiliation(s)
- Natalia Tsouggou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Aleksandra Slavko
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Olympia Tsipidou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, 18855 Athens, Greece;
| | - Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis-Zographou, 15784 Athens, Greece; (A.G.); (C.E.V.)
| | - Svetoslav G. Dimov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria;
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China;
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Constantinos E. Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis-Zographou, 15784 Athens, Greece; (A.G.); (C.E.V.)
| | - John Kapolos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Marina Papadelli
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, 18855 Athens, Greece;
| |
Collapse
|
2
|
Comparison of the Microbiome of Artisanal Homemade and Industrial Feta Cheese through Amplicon Sequencing and Shotgun Metagenomics. Microorganisms 2022; 10:microorganisms10051073. [PMID: 35630516 PMCID: PMC9146562 DOI: 10.3390/microorganisms10051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/21/2023] Open
Abstract
Feta is the most renowned protected designation of origin (PDO) white brined cheese produced in Greece. The fine organoleptic characteristics and the quality of Feta rely on, among other factors, its overall microbial ecosystem. In this study, we employed 16S rDNA and internal transcribed spacer (ITS) amplicon sequencing, as well as shotgun metagenomics, to investigate the microbiome of artisanal homemade and industrial Feta cheese samples from different regions of Greece, which has very rarely been investigated. 16S rDNA data suggested the prevalence of the Lactococcus genus in the homemade samples, while Streptococcus and Lactobacillus genera prevailed in the industrial control samples. Species identification deriving from shotgun metagenomics corroborated these findings, as Lactococcus lactis dominated two homemade samples while Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus were found to be dominating one industrial sample. ITS data revealed a complex diversity of the yeast population among the samples analyzed. Debaryomyces, Kluyveromyces, Cutaneotrichosporon, Pichia, Candida, and Rhodotorula were the major genera identified, which were distributed in a rather arbitrary manner among the different samples. Furthermore, a number of potential metagenome-assembled genomes (MAGs) could be detected among assembled shotgun bins. The overall analysis of the shotgun metagenomics supported the presence of different foodborne pathogens in homemade samples (e.g., Staphylococcus aureus, Listeria monocytogenes, Enterobacter cloacae, and Streptococcus suis), but with low to very low abundances. Concluding, the combination of both amplicon sequencing and shotgun metagenomics allowed us to obtain an in-depth profile of the artisanal homemade Feta cheese microbiome.
Collapse
|
3
|
Mareze J, Ramos-Pereira J, Santos J, Beloti V, López-Díaz T. Identification and characterisation of lactobacilli isolated from an artisanal cheese with antifungal and antibacterial activity against cheese spoilage and mycotoxigenic Penicillium spp. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Isolation and Identification of Dominant Bacteria from Raw Donkey Milk Produced in a Region of Morocco by QIIME 2 and Evaluation of Their Antibacterial Activity. ScientificWorldJournal 2021; 2021:6664636. [PMID: 34421400 PMCID: PMC8371658 DOI: 10.1155/2021/6664636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, the interest in donkey milk has increased considerably because it proved high nutritive and functional values of their ingredients. Its chemical composition is widely studied, but its microbiota, especially lactic acid bacteria, remains less studied. This study focuses on analyzing, isolating, and identifying lactic acid bacteria and evaluating their capacity to produce biomolecules with antibacterial activity. Among 44 strains identified, 43 are Gram-positive, and most are catalase-negative and cocci-shaped. Five strains were selected to evaluate their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. Different induction methods allowed to amplify the antibacterial effects against these pathogenic strains.
Collapse
|
5
|
Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles. Foods 2021; 10:foods10040821. [PMID: 33920106 PMCID: PMC8070337 DOI: 10.3390/foods10040821] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
As a genus that has evolved for resistance against adverse environmental factors and that readily exchanges genetic elements, enterococci are well adapted to the cheese environment and may reach high numbers in artisanal cheeses. Their metabolites impact cheese flavor, texture, and rheological properties, thus contributing to the development of its typical sensorial properties. Due to their antimicrobial activity, enterococci modulate the cheese microbiota, stimulate autolysis of other lactic acid bacteria (LAB), control pathogens and deterioration microorganisms, and may offer beneficial effects to the health of their hosts. They could in principle be employed as adjunct/protective/probiotic cultures; however, due to their propensity to acquire genetic determinants of virulence and antibiotic resistance, together with the opportunistic character of some of its members, this genus does not possess Qualified Presumption of Safety (QPS) status. It is, however, noteworthy that some putative virulence factors described in foodborne enterococci may simply reflect adaptation to the food environment and to the human host as commensal. Further research is needed to help distinguish friend from foe among enterococci, eventually enabling exploitation of the beneficial aspects of specific cheese-associated strains. This review aims at discussing both beneficial and deleterious roles played by enterococci in artisanal cheeses, while highlighting the need for further research on such a remarkably hardy genus.
Collapse
|
6
|
Influence of Environmental and Productive Factors on the Biodiversity of Lactic Acid Bacteria Population from Sheep Milk. Animals (Basel) 2020; 10:ani10112180. [PMID: 33266372 PMCID: PMC7700509 DOI: 10.3390/ani10112180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The dairy sheep sector in Spain is of great importance in the socioeconomic field. For this reason, obtaining quality milk has become a priority objective in the sector. In this context, the environment of dairy farms could affect the microbial communities present in milk, and therefore, the study of lactic acid bacteria (LAB) in this environment could be fundamental for the quality of milk and its dairy products. The objective of this study was to investigate the LAB population present in dairy sheep milk and the possible routes of contamination between the livestock environment and the milk on 12 sheep farms with different livestock practices in Castilla-La Mancha. The results showed that certain agricultural practices favour the presence of LAB in milk in addition to the fact that a significant transference between the livestock environment and bulk tank milk could exist. Abstract Milk is a typical and satisfactory medium for the growth of lactic acid bacteria (LAB). These microorganisms are of vital importance in the quality of the milk since they contribute to its preservation and give differential organoleptic properties to the final product. Furthermore, LABs can act as biocontrol agents in the dairy industry by inhibiting the growth of undesirable bacteria present in milk and by improving the quality of dairy products such as cheese. In this context, knowing the transfer routes used by LABs from the livestock environment to the milk is of great importance within the dairy industry. Therefore, the objectives of the present study were to expand the knowledge of the LAB population present in the milk of Manchego ewe by means of DNA sequencing techniques and to evaluate the possible transfers of LAB species based on the management of each dairy farm. Samples of bulk tank milk, air (from the milking parlour and from the livestock housing), animal feed and teat surface (taken from 10 sheep per farm) were collected in 12 traditional livestock farms in Castilla-La Mancha (Spain), where each farm presented differences regarding their farming practices. A mixed-effects model was used to evaluate the effects of livestock practices on the distribution of LAB species. Results showed that the vast majority of species identified in the milk had an isolate that was also found in other matrices, which could indicate a microbial transference via the livestock environment to the milk. In addition, the mixed model showed that the factors that positively influence the LAB count were the low-line milking system and the daily use of acid detergent in cleaning the milking machine.
Collapse
|
7
|
Dong W, Yang Q, Liao Y, Liu Y, Hu Y, Peng N, Liang Y, Zhao S. Characterisation and comparison of the microflora of traditional and pure culturexiaoquduring thebaijiuliquor brewing process. JOURNAL OF THE INSTITUTE OF BREWING 2020. [DOI: 10.1002/jib.597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Weiwei Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan Hubei 430070 China
| | - Qiang Yang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan Hubei 430070 China
- Jing Brand Co., Ltd; Daye Hubei 435100 China
| | - Yuxiang Liao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan Hubei 430070 China
| | - Yuancai Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan Hubei 430070 China
- Jing Brand Co., Ltd; Daye Hubei 435100 China
| | - Yuanliang Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan Hubei 430070 China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences; Hubei Normal University; Huangshi 435002 China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan Hubei 430070 China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan Hubei 430070 China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan Hubei 430070 China
| |
Collapse
|
8
|
Kargozari M, Emam-Djomeh Z, Gandomi H, Partovi R, Ghasemlou M, Martin IR. Identification of selected Lactobacillus strains isolated from Siahmazgi cheese and study on their behavior after inoculation in fermented-sausage model medium. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Werner B, Moroni P, Gioia G, Lavín-Alconero L, Yousaf A, Charter M, Carter B, Bennett J, Nydam D, Welcome F, Schukken Y. Short communication: Genotypic and phenotypic identification of environmental streptococci and association of Lactococcus lactis ssp. lactis with intramammary infections among different dairy farms. J Dairy Sci 2014; 97:6964-9. [DOI: 10.3168/jds.2014-8314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/12/2014] [Indexed: 11/19/2022]
|