1
|
Cinicola BL, Uva A, Duse M, Zicari AM, Buonsenso D. Mucocutaneous Candidiasis: Insights Into the Diagnosis and Treatment. Pediatr Infect Dis J 2024; 43:694-703. [PMID: 38502882 PMCID: PMC11191067 DOI: 10.1097/inf.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Recent progress in the methods of genetic diagnosis of inborn errors of immunity has contributed to a better understanding of the pathogenesis of chronic mucocutaneous candidiasis (CMC) and potential therapeutic options. This review describes the latest advances in the understanding of the pathophysiology, diagnostic strategies, and management of chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Marzia Duse
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
2
|
Maternal Mycobiome, but Not Antibiotics, Alters Fungal Community Structure in Neonatal Piglets. Appl Environ Microbiol 2022; 88:e0159322. [PMID: 36448784 PMCID: PMC9765005 DOI: 10.1128/aem.01593-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Early-life antibiotic exposure is associated with diverse long-term adverse health outcomes. Despite the immunomodulatory effects of gastrointestinal fungi, the impact of antibiotics on the fungal community (mycobiome) has received little attention. The objectives of this study were to determine the impact of commonly prescribed infant antibiotic treatments on the microbial loads and structures of bacterial and fungal communities in the gastrointestinal tract. Thirty-two piglets were divided into four treatment groups: amoxicillin (A), amoxicillin-clavulanic acid (AC), gentamicin-ampicillin (GA), and flavored placebo (P). Antibiotics were administered orally starting on postnatal day (PND) 1 until PND 8, except for GA, which was given on PNDs 5 and 6 intramuscularly. Fecal swabs were collected from piglets on PNDs 3 and 8, and sow feces were collected 1 day after farrowing. The impacts of antibiotics on bacterial and fungal communities were assessed by sequencing the 16S rRNA and the internal transcribed spacer 2 (ITS2) rRNA genes, respectively, and quantitative PCR was performed to determine total bacterial and fungal loads. Antibiotics did not alter the α-diversity (P = 0.834) or β-diversity (P = 0.565) of fungal communities on PND 8. AC increased the ratio of total fungal/total bacterial loads on PND 8 (P = 0.027). There was strong clustering of piglets by litter on PND 8 (P < 0.001), which corresponded to significant differences in the sow mycobiome, especially the presence of Kazachstania slooffiae. In summary, we observed a strong litter effect and showed that the maternal mycobiome is essential for shaping the piglet mycobiome in early life. IMPORTANCE This work provides evidence that although the fungal community composition is not altered by antibiotics, the overall fungal load increases with the administration of amoxicillin-clavulanic acid. Additionally, we show that the maternal fungal community is important in establishing the fungal community in piglets.
Collapse
|
3
|
Cruz ASDC, Fidelis YP, de Mendonça Guimarães D, Muller HS, Martins VDP, Lia EN. Oral health and the presence of infectious microorganisms in hospitalized patients: a preliminary observational study. Ann Med 2022; 54:1908-1917. [PMID: 36073637 PMCID: PMC9467618 DOI: 10.1080/07853890.2022.2092895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE Characterise oral health, and the presence in the oral cavity of pathogenic non-oral microorganisms potentially associated with nosocomial infections and antimicrobial resistance in non-intubated patients admitted to a Brazilian university hospital. MATERIALS AND METHODS An intraoral examination and oral swab were performed on hospitalized individuals at three different times, T1 (within 48 h of hospitalization), T2 (48 h after T1) and T3 (7 days after hospitalization). The oral health status was defined by the Oral Health Assessment Tool (OHAT) and Tongue Coating Status (TCS). The swabs were processed and microorganisms potentially related to nosocomial infections were phenotypically identified through colony morphology, staining and microscopy. RESULTS The most prevalent microorganisms were Escherichia coli, Enterococcus spp., Enterobacter spp., Pseudomonas spp., Candida albicans and Staphylococcus aureus. The oral health status was considered median, and the tongue coating index was considered high throughout the study period. The prevalence of potentially pathogenic non-oral microorganisms was high and constant from the first 48 h to the seventh day of hospitalization. CONCLUSIONS The results point out that the mouth can act as a reservoir of epidemiologically important pathogens within hospital settings, even in patients without mechanical ventilation, thus increasing the risk of nosocomial infections in susceptible individuals. KEY MESSAGESThe present study investigated the oral health status and the presence of pathogenic non-oral microorganisms in the oral cavity of patients hospitalized in the ward, non-intubated and mostly independent of self-care.The presence in the mouth of microorganisms related to the epidemiology of nosocomial infections and resistance to antimicrobials was high and constant from the first 48 h to the 7th day of hospitalization.The results of this study point out that the mouth can act as a reservoir of epidemiologically important pathogens within hospital settings even in patients without mechanical ventilation, increasing the risk of nosocomial infections in susceptible individuals.
Collapse
Affiliation(s)
| | - Yara Peixoto Fidelis
- Faculty of Health Sciences, Dentistry Department, University of Brasília, Brasília, Brazil
| | | | - Herick Sampaio Muller
- Laboratory of Molecular Analysis of Pathogens, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Vicente de Paulo Martins
- Laboratory of Molecular Analysis of Pathogens, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Erica Negrini Lia
- Postgraduate Program in Dentistry, University of Brasília, Brasília, Brazil.,Faculty of Health Sciences, Dentistry Department, University of Brasília, Brasília, Brazil
| |
Collapse
|
4
|
Ma Y, Wang X, Li R. Cutaneous and subcutaneous fungal infections: recent developments on host-fungus interactions. Curr Opin Microbiol 2021; 62:93-102. [PMID: 34098513 DOI: 10.1016/j.mib.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The incidence of skin fungal infections is increasing at an alarming rate worldwide, presenting a major challenge to health professionals. Cutaneous and subcutaneous fungal infections are caused by pathogenic or opportunistic organisms varying from mold, yeasts, to dimorphic fungi. Recently, skin fungal have been increasingly reported and studied, giving rise to crucial breakthroughs in etiology and pathogenesis. This review aims to summarize recent insights into the clinical and etiological characteristics of common skin fungal infections according to different fungal species, as well as remarkable advances in the immune mechanisms. We hope it will be helpful to understand these diverse skin fungal infections, and bring about the latest developments that may facilitate novel diagnostic and therapeutic approaches to improve the outcomes in these patients.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Dermatology and Venerology, Peking University First Hospital, China; Research Center for Medical Mycology, Peking University, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, China; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, China; Research Center for Medical Mycology, Peking University, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, China; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China.
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, China; Research Center for Medical Mycology, Peking University, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, China; National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China.
| |
Collapse
|
5
|
Baghad B, Bousfiha AA, Chiheb S, Ailal F. [Genetic predisposition to mucocutaneous fungal infections]. Rev Med Interne 2021; 42:566-570. [PMID: 34052048 DOI: 10.1016/j.revmed.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/29/2021] [Accepted: 05/09/2021] [Indexed: 11/15/2022]
Abstract
Mucocutaneous fungal infections are common and usually occur in the presence of certain risk factors. However, these infections can occur in patients with no known risk factors. This indicates the presence of an underlying genetic susceptibility to fungi reflecting an innate or adaptive immune deficiency. In this review, we highlight genetic factors that predispose to mucocutaneous fungal infections specially candidiasis and dermatophytosis.
Collapse
Affiliation(s)
- B Baghad
- Service de dermatologie vénéréologie, CHU de Casablanca, Hassan II University of Casablanca, Maroc; Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc.
| | - A A Bousfiha
- Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc; Unité d'immunologie clinique, service de pédiatrie infectieuse, CHU Harrouchi, Hassan II University of Casablanca, Maroc
| | - S Chiheb
- Service de dermatologie vénéréologie, CHU de Casablanca, Hassan II University of Casablanca, Maroc
| | - F Ailal
- Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc; Unité d'immunologie clinique, service de pédiatrie infectieuse, CHU Harrouchi, Hassan II University of Casablanca, Maroc
| |
Collapse
|
6
|
Zhang Y, Li R, Wang X. Monogenetic causes of fungal disease: recent developments. Curr Opin Microbiol 2020; 58:75-86. [DOI: 10.1016/j.mib.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023]
|
7
|
Abdel-Salam M, Omran B, Whitehead K, Baek KH. Superior Properties and Biomedical Applications of Microorganism-Derived Fluorescent Quantum Dots. Molecules 2020; 25:E4486. [PMID: 33007905 PMCID: PMC7582318 DOI: 10.3390/molecules25194486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022] Open
Abstract
Quantum dots (QDs) are fluorescent nanocrystals with superb photo-physical properties. Applications of QDs have been exponentially increased during the past decade. They can be employed in several disciplines, including biological, optical, biomedical, engineering, and energy applications. This review highlights the structural composition and distinctive features of QDs, such as resistance to photo-bleaching, wide range of excitations, and size-dependent light emission features. Physical and chemical preparation of QDs have prominent downsides, including high costs, regeneration of hazardous byproducts, and use of external noxious chemicals for capping and stabilization purposes. To eliminate the demerits of these methods, an emphasis on the latest progress of microbial synthesis of QDs by bacteria, yeast, and fungi is introduced. Some of the biomedical applications of QDs are overviewed as well, such as tumor and microRNA detection, drug delivery, photodynamic therapy, and microbial labeling. Challenges facing the microbial fabrication of QDs are discussed with the future prospects to fully maximize the yield of QDs by elucidating the key enzymes intermediating the nucleation and growth of QDs. Exploration of the distribution and mode of action of QDs is required to promote their biomedical applications.
Collapse
Affiliation(s)
- Mohamed Abdel-Salam
- Analysis and Evaluation Department, Nanotechnology Research Center, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Egypt;
| | - Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Egypt
| | - Kathryn Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Korea;
| |
Collapse
|
8
|
Alvarez-Rueda N, Rouges C, Touahri A, Misme-Aucouturier B, Albassier M, Pape PL. In vitro immune responses of human PBMCs against Candida albicans reveals fungal and leucocyte phenotypes associated with fungal persistence. Sci Rep 2020; 10:6211. [PMID: 32277137 PMCID: PMC7148345 DOI: 10.1038/s41598-020-63344-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/30/2020] [Indexed: 11/09/2022] Open
Abstract
Although there is a growing understanding of immunity against Candida albicans, efforts need to be pursued in order to decipher the cellular mechanisms leading to an uncontrolled immune response that eventually oppose disease eradication. We describe here significant intra- and inter-subject variations in immune response patterns of major human leucocyte subsets following an in vitro challenge with C. albicans clinical isolates. We also observed that there are Candida isolate-dependent changes in leucocyte phenotypes. Through a combination of multiple fungal growth and flow cytometric measurements, coupled to the tSNE algorithm, we showed that significant proliferation differences exist among C. albicans isolates, leading to the calculation of a strain specific persistent index. Despite substantial inter-subject differences in T cells and stability of myeloid cells at baseline, our experimental approach highlights substantial immune cell composition changes and cytokine secretion profiles after C. albicans challenge. The significant secretion of IL-17 by CD66+ cells, IFN-γ and IL-10 by CD4+ T cells 2 days after C. albicans challenge was associated with fungal control. Fungal persistence was associated with delayed secretion of IFN-γ, IL-17, IL-4, TNF-α and IL-10 by myeloid cells and IL-4 and TNF-α secretion by CD4+ and CD8+ T cells. Overall, this experimental and analytical approach is available for the monitoring of such fungal and human immune responses.
Collapse
Affiliation(s)
- Nidia Alvarez-Rueda
- Nantes Université, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, F-44000, Nantes, France.
| | - Célia Rouges
- Nantes Université, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Adel Touahri
- Nantes Université, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Barbara Misme-Aucouturier
- Nantes Université, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Marjorie Albassier
- Nantes Université, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Patrice Le Pape
- Nantes Université, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, F-44000, Nantes, France.
| |
Collapse
|
9
|
Zhang MR, Zhao F, Wang S, Lv S, Mou Y, Yao CL, Zhou Y, Li FQ. Molecular mechanism of azoles resistant Candida albicans in a patient with chronic mucocutaneous candidiasis. BMC Infect Dis 2020; 20:126. [PMID: 32046674 PMCID: PMC7014776 DOI: 10.1186/s12879-020-4856-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/06/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND More and more azole-resistant strains emerged through the development of acquired resistance and an epidemiological shift towards inherently less susceptible species. The mechanisms of azoles resistance of Candida albicans is very complicated. In this study, we aim to investigate the mechanism of azole-resistant C. albicans isolated from the oral cavity of a patient with chronic mucocutaneous candidiasis (CMC). CASE PRESENTATION CMC diagnosis was given based on clinical manifestations, laboratory test findings and gene sequencing technique. Minimum inhibitory concentration (MIC) of the fungal isolate, obtained from oral cavity termed as CA-R, was obtained by in vitro anti-fungal drugs susceptibility test. To further investigate the resistant mechanisms, we verified the mutations of drug target genes (i.e. ERG11 and ERG3) by Sanger sequencing, and verified the over-expression of ERG11 and drug efflux genes (i.e. CDR1 and CDR2) by RT-PCR. A heterozygous mutation of c.1162A > G resulting in p.K388E was detected in STAT1 of the patient. The expression of CDR1 and CDR2 in CA-R was 4.28-fold and 5.25-fold higher than that of type strain SC5314, respectively. CONCLUSIONS Up-regulation of CDR1 and CDR2 was mainly responsible for the resistance of CA-R. For CMC or other immunodeficiency patients, drug resistance monitoring is necessary.
Collapse
Affiliation(s)
- Ming-Rui Zhang
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Shuang Wang
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Sha Lv
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Yan Mou
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Chun-Li Yao
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Ying Zhou
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China
| | - Fu-Qiu Li
- Department of Dermatology, the Second Hospital of Jilin University, No. 218, Ziqiang street, Nanguan district, Changchun, 130000, China.
| |
Collapse
|
10
|
Das S, Czuni L, Báló V, Papp G, Gazdag Z, Papp N, Kőszegi T. Cytotoxic Action of Artemisinin and Scopoletin on Planktonic Forms and on Biofilms of Candida Species. Molecules 2020; 25:E476. [PMID: 31979177 PMCID: PMC7038054 DOI: 10.3390/molecules25030476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
We investigated the antifungal activities of purified plant metabolites artemisinin (Ar) and scopoletin (Sc) including inhibition, effects on metabolic activities, viability, and oxidative stress on planktonic forms and on preformed biofilms of seven Candida species. The characteristic minimum inhibitory concentration (MIC90) of Ar and Sc against Candida species ranged from 21.83-142.1 µg/mL and 67.22-119.4 µg/mL, respectively. Drug concentrations causing ≈10% CFU decrease within 60 minutes of treatments were also determined (minimum effective concentration, MEC10) using 100-fold higher CFUs than in the case of MIC90 studies. Cytotoxic effects on planktonic and on mature biofilms of Candida species at MEC10 concentrations were further evaluated with fluorescent live/dead discrimination techniques. Candida glabrata, Candida guilliermondii, and Candida parapsilosis were the species most sensitive to Ar and Sc. Ar and Sc were also found to promote the accumulation of intracellular reactive oxygen species (ROS) by increasing oxidative stress at their respective MEC10 concentrations against the tested planktonic Candida species. Ar and Sc possess dose-dependent antifungal action but the underlying mechanism type (fungistatic and fungicidal) is not clear yet. Our data suggest that Ar and Sc found in herbal plants might have potential usage in the fight against Candida biofilms.
Collapse
Affiliation(s)
- Sourav Das
- Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Ifjúság u. 13., Hungary;
- János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Lilla Czuni
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
- Microbial Biotechnology Research Group, János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Viktória Báló
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
| | - Gábor Papp
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
- Microbial Biotechnology Research Group, János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Zoltán Gazdag
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
- Microbial Biotechnology Research Group, János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Nóra Papp
- Department of Pharmacognosy, University of Pécs, Faculty of Pharmacy, 7624 Pécs, Rókus u. 2, Hungary
| | - Tamás Kőszegi
- Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Ifjúság u. 13., Hungary;
- János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| |
Collapse
|
11
|
Honey as a Strategy to Fight Candida tropicalis in Mixed-Biofilms with Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9020043. [PMID: 31973242 PMCID: PMC7168267 DOI: 10.3390/antibiotics9020043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/04/2023] Open
Abstract
Fungal contaminations with Candida species are commonly responsible for several infections, especially when associated to bacteria. The therapeutic approach commonly used is being compromised due to microbial resistances of these microorganisms to antimicrobial agents, especially in biofilm. The use of honey as an antimicrobial agent has been emerging as a valuable solution and proving its potential in planktonic and in biofilm cells. This work aims to assess the effect of different honeys on biofilms of Candida tropicalis and Pseudomonas aeruginosa. The effect of Portuguese heather (PH) and manuka honeys on planktonic growth of Candida was initially evaluated by determination of the minimum inhibitory concentrations (MIC). Then, the same effect was evaluated in mixed biofilms, by colony-forming units numeration and fluorescence microscopy. The combinations of honey plus fluconazole and gentamicin were also tested. The results showed that the honeys tested enabled a great reduction of C. tropicalis, both in planktonic (12.5% and 25% of MIC for PH and manuka) and in biofilm. In polymicrobial biofilms, the use of PH and manuka honeys was revealed to be a promising choice and an alternative treatment, since they were able to reduce cells from both species. No synergistic effect was observed in antimicrobial combinations assays against polymicrobial biofilms.
Collapse
|
12
|
Double positive CD4+CD8+ T cells are part of the adaptive immune response against Candida albicans. Hum Immunol 2019; 80:999-1005. [PMID: 31561914 DOI: 10.1016/j.humimm.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 11/21/2022]
Abstract
Although multiple immune cells participate in the innate and adaptive immune response against Candida albicans, the elucidation of cellular and inflammation kinetics may be a promising strategy to decipher events propitious to infection eradication. We used an in vitro Candida-human leucocyte coculture approach to study the dynamics of rare CD4+CD8+ double positive T lymphocytes (DP T) produced in response to this fungus. Our results highlight the presence of two phenotypically distinct subsets of DP T cells: CD4hiCD8lo and CD4loCD8hi, and that the different ratio of these cells correlates with infection outcome. The ratio of CD4hiCD8lo over CD4loCD8hi by day 6 was significantly higher in controlled infections and decreased when infection persisted due to a significant increase in the proportion of CD4loCD8hi. When infection was controlled, CD4hiCD8lo T cells secreted IFNγ, TNFα, IL-4 and IL-10 cytokines two days after challenge. By day 2, under conditions of persistent infection, CD4hiCD8lo and CD4loCD8hi T cells secreted significant levels of IL-4 and IL-10, respectively, compared to uninfected cultures. Frequency kinetics and original cytokine profiles detailed in this work indicate that DP T cells could participate in the adaptive immune response to C. albicans.
Collapse
|
13
|
Oliveira WF, Cabrera MP, Santos NRM, Napoleão TH, Paiva PMG, Neves RP, Silva MV, Santos BS, Coelho LCBB, Cabral Filho PE, Fontes A, Correia MTS. Evaluating glucose and mannose profiles in Candida species using quantum dots conjugated with Cramoll lectin as fluorescent nanoprobes. Microbiol Res 2019; 230:126330. [PMID: 31541842 DOI: 10.1016/j.micres.2019.126330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Glycoconjugates found on cell walls of Candida species are fundamental for their pathogenicity. Laborious techniques have been employed to investigate the sugar composition of these microorganisms. Herein, we prepared a nanotool, based on the fluorescence of quantum dots (QDs) combined with the specificity of Cramoll lectin, to evaluate glucose/mannose profiles on three Candida species. The QDs-Cramoll conjugates presented specificity and bright fluorescence emission. The lectin preserved its biological activity after the conjugation process mediated by adsorption interactions. The labeling of Candida species was analyzed by fluorescence microscopy and quantified by flow cytometry. Morphological analyses of yeasts labeled with QDs-Cramoll conjugates indicated that C. glabrata (2.7 μm) was smaller when compared to C. albicans (4.0 μm) and C. parapsilosis sensu stricto (3.8 μm). Also, C. parapsilosis population was heterogeneous, presenting rod-shaped blastoconidia. More than 90% of cells of the three species were labeled by conjugates. Inhibition and saturation assays indicated that C. parapsilosis had a higher content of exposed glucose/mannose than the other two species. Therefore, QDs-Cramoll conjugates demonstrated to be effective fluorescent nanoprobes for evaluation of glucose/mannose constitution on the cell walls of fungal species frequently involved in candidiasis.
Collapse
Affiliation(s)
- Weslley F Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mariana P Cabrera
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Natália R M Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rejane P Neves
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Márcia V Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Maria T S Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
14
|
Is multiple-site colonization with Candida spp. related to inadequate response to individualized fluconazole maintenance therapy in women with recurrent Candida vulvovaginitis? Diagn Microbiol Infect Dis 2018; 92:226-229. [PMID: 30293562 DOI: 10.1016/j.diagmicrobio.2018.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Although most women on fluconazole maintenance therapy for recurrent vulvovaginal candidosis experience a substantial improvement in quality of life, some do not respond to therapy. Is candidal colonization of extragenital sites related to suboptimal response to maintenance therapy? PATIENTS AND METHODS Women included in a multicenter follow-up study (ReCiDiF) were evaluated for clinical signs and presence of yeasts in nose, mouth, anus, perineum, and urine. Candida was diagnosed by positive microscopy, confirmed by positive culture or polymerase chain reaction. After treatment, women were divided into groups according to their response to a fluconazole maintenance regimen (optimal, suboptimal, and nonresponders). RESULTS The most frequent extravaginal Candida spp. were detected in urine (79.5%), perineum (78.6%), and anus (56.4%). Carriers of Candida in the mouth were more likely to have it in the anus (OR 3.2; 95% CI 1.4-7.7). Colonization in anus (OR 3.3; 95% CI 1.3-8.1) or in multiple extravaginal sites (OR 3.0; CI95% 1.2-7.4) was related to nonresponse to therapy. Candidal carriage in the anus did not increase anal and perianal symptoms. CONCLUSION Women with anal carriage and multiple-site candidal colonization are less likely to respond to individualized decreasing dose fluconazole therapy.
Collapse
|
15
|
Metin A, Dilek N, Bilgili SG. Recurrent candidal intertrigo: challenges and solutions. Clin Cosmet Investig Dermatol 2018; 11:175-185. [PMID: 29713190 PMCID: PMC5909782 DOI: 10.2147/ccid.s127841] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intertrigo is a common inflammatory dermatosis of opposing skin surfaces that can be caused by a variety of infectious agents, most notably candida, under the effect of mechanical and environmental factors. Symptoms such as pain and itching significantly decrease quality of life, leading to high morbidity. A multitude of predisposing factors, particularly obesity, diabetes mellitus, and immunosuppressive conditions facilitate both the occurrence and recurrence of the disease. The diagnosis of candidal intertrigo is usually based on clinical appearance. However, a range of laboratory studies from simple tests to advanced methods can be carried out to confirm the diagnosis. Such tests are especially useful in treatment-resistant or recurrent cases for establishing a differential diagnosis. The first and key step of management is identification and correction of predisposing factors. Patients should be encouraged to lose weight, followed up properly after endocrinologic treatment and intestinal colonization or periorificial infections should be medically managed, especially in recurrent and resistant cases. Medical treatment of candidal intertrigo usually requires topical administration of nystatin and azole group antifungals. In this context, it is also possible to use magistral remedies safely and effectively. In case of predisposing immunosuppressive conditions or generalized infections, novel systemic agents with higher potency may be required.
Collapse
Affiliation(s)
- Ahmet Metin
- Department of Dermatology and Venereology, Medical School of Ankara, Yildirim Beyazit University, Ankara, Turkey
| | - Nursel Dilek
- Department of Dermatology and Venereology, Medical School of Recep, Tayyip Erdoğan University, Rize, Turkey
| | - Serap Gunes Bilgili
- Department of Dermatology and Venereology, Medical School of Yuzuncu, Yil University, Van, Turkey
| |
Collapse
|
16
|
Carpino N, Naseem S, Frank DM, Konopka JB. Modulating Host Signaling Pathways to Promote Resistance to Infection by Candida albicans. Front Cell Infect Microbiol 2017; 7:481. [PMID: 29201860 PMCID: PMC5696602 DOI: 10.3389/fcimb.2017.00481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a common human fungal pathogen capable of causing serious systemic infections that can progress to become lethal. Current therapeutic approaches have limited effectiveness, especially once a systemic infection is established, in part due to the lack of an effective immune response. Boosting the immune response to C. albicans has been the goal of immunotherapy, but it has to be done selectively to prevent deleterious hyperinflammation (sepsis). Although an efficient inflammatory response is necessary to fight infection, the typical response to C. albicans results in collateral damage to tissues thereby exacerbating the pathological effects of infection. For this reason, identifying specific ways of modulating the immune system holds promise for development of new improved therapeutic approaches. This review will focus on recent studies that provide insight using mutant strains of mice that are more resistant to bloodstream infection by C. albicans. These mice are deficient in signal transduction proteins including the Jnk1 MAP kinase, the Cbl-b E3 ubiquitin ligase, or the Sts phosphatases. Interestingly, the mutant mice display a different response to C. albicans that results in faster clearance of infection without hyper-inflammation and collateral damage. A common underlying theme between the resistant mouse strains is loss of negative regulatory proteins that are known to restrain activation of cell surface receptor-initiated signaling cascades. Understanding the cellular and molecular mechanisms that promote resistance to C. albicans in mice will help to identify new approaches for improving antifungal therapy.
Collapse
Affiliation(s)
- Nick Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - David M Frank
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
17
|
Park CO, Fu X, Jiang X, Pan Y, Teague JE, Collins N, Tian T, O'Malley JT, Emerson RO, Kim JH, Jung Y, Watanabe R, Fuhlbrigge RC, Carbone FR, Gebhardt T, Clark RA, Lin CP, Kupper TS. Staged development of long-lived T-cell receptor αβ T H17 resident memory T-cell population to Candida albicans after skin infection. J Allergy Clin Immunol 2017; 142:647-662. [PMID: 29128674 DOI: 10.1016/j.jaci.2017.09.042] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/26/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Candida albicans is a dimorphic fungus to which human subjects are exposed early in life, and by adulthood, it is part of the mycobiome of skin and other tissues. Neonatal skin lacks resident memory T (TRM) cells, but in adults the C albicans skin test is a surrogate for immunocompetence. Young adult mice raised under specific pathogen-free conditions are naive to C albicans and have been shown recently to have an immune system resembling that of neonatal human subjects. OBJECTIVE We studied the evolution of the adaptive cutaneous immune response to Candida species. METHODS We examined both human skin T cells and the de novo and memory immune responses in a mouse model of C albicans skin infection. RESULTS In mice the initial IL-17-producing cells after C albicans infection were dermal γδ T cells, but by day 7, αβ TH17 effector T cells were predominant. By day 30, the majority of C albicans-reactive IL-17-producing T cells were CD4 TRM cells. Intravital microscopy showed that CD4 effector T cells were recruited to the site of primary infection and were highly motile 10 days after infection. Between 30 and 90 days after infection, these CD4 T cells became increasingly sessile, acquired expression of CD69 and CD103, and localized to the papillary dermis. These established TRM cells produced IL-17 on challenge, whereas motile migratory memory T cells did not. TRM cells rapidly clear an infectious challenge with C albicans more effectively than recirculating T cells, although both populations participate. We found that in normal human skin IL-17-producing CD4+ TRM cells that responded to C albicans in an MHC class II-restricted fashion could be identified readily. CONCLUSIONS These studies demonstrate that C albicans infection of skin preferentially generates CD4+ IL-17-producing TRM cells, which mediate durable protective immunity.
Collapse
Affiliation(s)
- Chang Ook Park
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Xiujun Fu
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Xiaodong Jiang
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Youdong Pan
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Nicholas Collins
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Tian Tian
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - John T O'Malley
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | | | - Ji Hye Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yookyung Jung
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Rei Watanabe
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Robert C Fuhlbrigge
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Francis R Carbone
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
18
|
Panackal AA, Rosen LB, Uzel G, Davis MJ, Hu G, Adeyemo A, Tekola-Ayele F, Lisco A, Diachok C, Kim JD, Shaw D, Sereti I, Stoddard J, Niemela J, Rosenzweig SD, Bennett JE, Williamson PR. Susceptibility to Cryptococcal Meningoencephalitis Associated With Idiopathic CD4 + Lymphopenia and Secondary Germline or Acquired Defects. Open Forum Infect Dis 2017. [PMID: 28638843 DOI: 10.1093/ofid/ofx082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Idiopathic CD4+ lymphopenia (ICL) predisposes to opportunistic infections (OIs) but can often remain asymptomatic and does not have a strong association with monogenic mutations. Likewise, cryptococcal meningoencephalitis, the most common OI in ICL, is not strongly associated with monogenic mutations. In this study, we describe 2 patients with ICL plus an additional immune defect: one from an E57K genetic mutation in the nuclear factor-κβ essential modulator, and the other with acquired autoantibodies to granulocyte-macrophage colony-stimulating factor. Thus, these cases may exemplify a "multi-hit model" in patients with ICL who acquire OIs.
Collapse
Affiliation(s)
- Anil A Panackal
- Laboratory of Clinical Infectious Diseases, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH).,Division of Infectious Diseases, Department of Medicine, F. Hebert School of Medicine, Uniformed Services University of the Health Sciences
| | - Lindsey B Rosen
- Laboratory of Clinical Infectious Diseases, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - Michael J Davis
- Laboratory of Clinical Infectious Diseases, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - Guowu Hu
- Laboratory of Clinical Infectious Diseases, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | | | - Christopher Diachok
- Laboratory of Clinical Infectious Diseases, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - Jonathan D Kim
- Laboratory of Clinical Infectious Diseases, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - Dawn Shaw
- Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - John E Bennett
- Laboratory of Clinical Infectious Diseases, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH).,Division of Infectious Diseases, Department of Medicine, F. Hebert School of Medicine, Uniformed Services University of the Health Sciences
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| |
Collapse
|
19
|
Kobayashi SD, Malachowa N, DeLeo FR. Influence of Microbes on Neutrophil Life and Death. Front Cell Infect Microbiol 2017; 7:159. [PMID: 28507953 PMCID: PMC5410578 DOI: 10.3389/fcimb.2017.00159] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in humans and they are among the first white cells recruited to infected tissues. These leukocytes are essential for the innate immune response to bacteria and fungi. Inasmuch as neutrophils produce or contain potent microbicides that can be toxic to the host, neutrophil turnover and homeostasis is a highly regulated process that prevents unintended host tissue damage. Indeed, constitutive neutrophil apoptosis and subsequent removal of these cells by mononuclear phagocytes is a primary means by which neutrophil homeostasis is maintained in healthy individuals. Processes that alter normal neutrophil turnover and removal of effete cells can lead to host tissue damage and disease. The interaction of neutrophils with microbes and molecules produced by microbes often alters neutrophil turnover. The ability of microbes to alter the fate of neutrophils is highly varied, can be microbe-specific, and ranges from prolonging the neutrophil lifespan to causing rapid neutrophil lysis after phagocytosis. Here we provide a brief overview of these processes and their associated impact on innate host defense.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| |
Collapse
|
20
|
Michalski C, Kan B, Lavoie PM. Antifungal Immunological Defenses in Newborns. Front Immunol 2017; 8:281. [PMID: 28360910 PMCID: PMC5350100 DOI: 10.3389/fimmu.2017.00281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Newborns are prone to fungal infections, largely due to Candida species. The immunological basis for this vulnerability is not yet fully understood. However, useful insights can be gained from the knowledge of the maturation of immune pathways during ontogeny, particularly when placed in context with how rare genetic mutations in humans predispose to fungal diseases. In this article, we review these most current data on immune functions in human newborns, highlighting pathways most relevant to the response to Candida. While discussing these data, we propose a framework of why deficiencies in these pathways make newborns particularly vulnerable to this opportunistic pathogen.
Collapse
Affiliation(s)
- Christina Michalski
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bernard Kan
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pascal M Lavoie
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
O'Brien XM, Reichner JS. Neutrophil Integrins and Matrix Ligands and NET Release. Front Immunol 2016; 7:363. [PMID: 27698655 PMCID: PMC5027203 DOI: 10.3389/fimmu.2016.00363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are motile and responsive to tissue injury and infection. As neutrophils emigrate from the bloodstream and migrate toward a site of affliction, they encounter the tissue extracellular matrix (ECM) and thereby engage integrins. Our laboratory studies the neutrophilic response to the fungal pathogen Candida albicans either in the filamentous state of the microbe or to the purified pathogen-associated molecular pattern, β-glucan. We have gained an appreciation for the role of integrins in regulating the neutrophil anti-Candida response and how the presence or absence of ECM can drive experimental outcome. The β2 integrin CR3 (complement receptor 3; αMβ2; Mac-1; CD11b/CD18) plays an important role in fungal recognition by its ability to bind β-glucan at a unique lectin-like domain. The presence of ECM differentially regulates essential neutrophil anti-fungal functions, including chemotaxis, respiratory burst, homotypic aggregation, and the release of neutrophil extracellular traps (NETs). We have shown that NET release to C. albicans hyphae or immobilized β-glucan occurs rapidly and without the requirement for respiratory burst on ECM. This is in contrast to the more frequently reported mechanisms of NETosis to other pathogens without the context of ECM, which occur after a prolonged lag period and require respiratory burst. As expected for an ECM-dependent phenotype, NETosis and other neutrophil functions are dependent on specific integrins. The focus of this review is the role of ECM ligation by neutrophil integrins as it pertains to host defense functions with an emphasis on lessons we have learned studying the anti-Candida response of human neutrophils.
Collapse
Affiliation(s)
- Xian M O'Brien
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, USA; Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jonathan S Reichner
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, USA; Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
22
|
Mukkada S, Kirby J, Apiwattanakul N, Hayden RT, Caniza MA. Use of Fungal Diagnostics and Therapy in Pediatric Cancer Patients in Resource-Limited Settings. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:120-131. [PMID: 27672551 PMCID: PMC5034939 DOI: 10.1007/s40588-016-0038-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fungal diseases are an important cause of mortality in immunocompromised hosts, and their incidence in pediatric cancer patients in low- to middle-income countries is underestimated. In this review, we present relevant, up-to-date information about the most common opportunistic and endemic fungal diseases among children with cancer, their geographic distribution, and recommended diagnostics and treatment. Efforts to improve the care of children with cancer and fungal disease must address the urgent need for sustainable and cost-effective solutions that improve training, fungal disease testing capability, and the use of available resources. We hope that the collective information presented here will be used to advise healthcare providers, regional and country health leaders, and policymakers of the current challenges in diagnosing and treating fungal infections in children with cancer in low- to middle-income countries.
Collapse
Affiliation(s)
- Sheena Mukkada
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- Division of Infectious Diseases, Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Jeannette Kirby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Randall T. Hayden
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Miguela A. Caniza
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Global Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, TN, USA
- International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
23
|
Maskarinec SA, Johnson MD, Perfect JR. Genetic Susceptibility to Fungal Infections: What is in the Genes? CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:81-91. [PMID: 27547700 DOI: 10.1007/s40588-016-0037-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of severe fungal infections has long been associated with traditional risk factors such as profound immunosuppression, yet it remains challenging to understand why under similar conditions only some patients will develop these infections while others will not. Recent studies have demonstrated the importance of host genetic variation in influencing the severity and susceptibility to invasive fungal infections (IFIs). In this review, we examine selected primary immunodeficiencies characterized by their vulnerability to a narrow range of fungal pathogens, and then focus on recently identified genetic polymorphisms associated with an increased susceptibility to IFIs.
Collapse
Affiliation(s)
- Stacey A Maskarinec
- Division of Infectious Diseases and International Health, Department of Medicine Duke University Medical Center Durham, NC, USA; Hanes House Box 102359, Durham, NC 27710
| | - Melissa D Johnson
- Division of Infectious Diseases and International Health, Department of Medicine Duke University Medical Center Durham, NC, USA; Department of Clinical Research Campbell University College of Pharmacy & Health Sciences Buies Creek, NC, USA; Duke University Medical Center Box 102359, Durham, NC 27710
| | - John R Perfect
- Division of Infectious Diseases and International Health, Department of Medicine Duke University Medical Center Durham, NC, USA; Hanes House Box 102359, Durham, NC 27710
| |
Collapse
|