1
|
Sarkar A. Oral Astringency in Plant Proteins: An Underestimated Issue in Formulating Next-Generation Plant-Based Foods. Annu Rev Food Sci Technol 2024; 15:103-123. [PMID: 38316152 DOI: 10.1146/annurev-food-072023-034510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ensuring the supply of affordable, palatable, healthy, and sustainable nutrients to feed the growing population without transgressing the planetary boundaries remains a key challenge in the food science community. A dietary transition toward low-emission, plant-based foods, with less reliance on animal agriculture, is advocated for sustainability, health, and ethical reasons. A major hurdle for mainstream adoption of plant-based foods is their poor sensorial performance, such as nonjuicy and astringent textures as well as various off-flavors. This review presents the current understanding of astringency and oral friction of plant-based foods. It focuses on plant proteins and their application in plant-based meat and dairy analogs. In addition, the latest advances in the quantitative characterization of astringency using tribology, electrochemistry, and cellular tools are covered. Finally, we examine factors influencing astringency and propose easy-to-implement colloidal strategies that may mitigate astringency issues, thereby underpinning the design of the next generation of sustainable and pleasurable plant-based foods.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
2
|
Wang X, Zhang L, Chen L, Wang Y, Okonkwo CE, Yagoub AEGA, Wahia H, Zhou C. Application of ultrasound and its real-time monitoring of the acoustic field during processing of tofu: Parameter optimization, protein modification, and potential mechanism. Compr Rev Food Sci Food Saf 2023; 22:2747-2772. [PMID: 37161497 DOI: 10.1111/1541-4337.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Tofu is nutritious, easy to make, and popular among consumers. At present, traditional tofu production has gradually become perfect, but there are still shortcomings, such as long soaking time, serious waste of water resources, and the inability to realize orders for production at any time. Moreover, tofu production standards have not yet been clearly defined, with large differences in quality between them, which is not conducive to industrialized and large-scale production. Ultrasound has become a promising green processing technology with advantages, such as high extraction rate, short processing time, and ease of operation. This review focused on the challenges associated with traditional tofu production during soaking, grinding, and boiling soybeans. Moreover, the advantages of ultrasonic processing over traditional processing like increasing nutrient content, improving gel properties, and inhibiting the activity of microorganisms were explained. Furthermore, the quantification of acoustic fields by real-time monitoring technology was introduced to construct the theoretical correlation between ultrasonic treatments and tofu processing. It was concluded that ultrasonic treatment improved the functional properties of soybean protein, such as solubility, emulsifying properties, foamability, rheological properties, gel strength, and thermal stability. Therefore, the application of ultrasonic technology to traditional tofu processing to optimize industrial parameters is promising.
Collapse
Affiliation(s)
- Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abu El-Gasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Validation of High-Pressure Homogenization Process to Pasteurize Brazil Nut (Bertholletia excelsa) Beverages: Sensorial and Quality Characteristics during Cold Storage. BEVERAGES 2023. [DOI: 10.3390/beverages9010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The effect of high-pressure homogenization (HPH) on the inactivation of Escherichia coli and the stability of the quality properties of Brazil nut beverages were studied. E. coli was used as target microorganism to validate the HPH process (pressures from 50 to 180 MPa and inlet temperatures (Ti) from 25 to 75 °C). Cold storage (5 °C) for 21 days was conducted to establish the shelf-life of BN beverages, in terms of their microbiological, physical, physicochemical, and sensorial stability. HPH-treated samples were compared to pasteurized BN beverages (63 °C for 20 min). The combination of Ti and the pressure of the HPH process (50 to 150 MPa/75 °C and 180 MPa/25 °C) had a significant effect on E. coli inactivation (8.2 log CFU/mL). During storage at 5 °C, the growth of mesophilic aerobes in processed BN beverages was controlled by the HPH process. Oxidative stability (TBAR assay) and physicochemical properties (pH, acidity, and °Brix) were evaluated during cold storage, showing good stability. Additionally, HPH-treated beverages showed a reduction in their particle size and the formation of more stable protein aggregates, which favored the beverages’ whiteness (color). The HPH process could be an alternative to pasteurization to obtain Brazil nut beverages with an acceptable microbiological shelf life (≥21 days at 5 °C) and high-quality characteristics without the use of any additives.
Collapse
|
4
|
Ji G, Li X, Dong Y, Shi Y. Composition, formation mechanism, and removal method of off‐odor in soymilk products. J Food Sci 2022; 87:5175-5190. [DOI: 10.1111/1750-3841.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Guo‐Zhi Ji
- R&D Innovation DepartmentInner Mongolia Mengniu Dairy (Group) CO. ,LTD HohhotChina
| | - Xiao‐Min Li
- R&D Innovation DepartmentInner Mongolia Mengniu Dairy (Group) CO. ,LTD HohhotChina
| | - Yang Dong
- R&D Innovation DepartmentInner Mongolia Mengniu Dairy (Group) CO. ,LTD HohhotChina
| | - Yu‐Dong Shi
- R&D Innovation DepartmentInner Mongolia Mengniu Dairy (Group) CO. ,LTD HohhotChina
| |
Collapse
|
5
|
Kumar R, Kumar A, Jayachandran LE, Rao PS. Sequential Microwave – Ultrasound assisted extraction of soymilk and optimization of extraction process. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Cai JS, Feng JY, Ni ZJ, Ma RH, Thakur K, Wang S, Hu F, Zhang JG, Wei ZJ. An update on the nutritional, functional, sensory characteristics of soy products, and applications of new processing strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Levy R, Okun Z, Davidovich-Pinhas M, Shpigelman A. Utilization of high-pressure homogenization of potato protein isolate for the production of dairy-free yogurt-like fermented product. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106442] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Cavender G, Jiang N, Singh RK, Chen J, Mis Solval K. Improving the survival of Lactobacillus plantarum NRRL B-1927 during microencapsulation with ultra-high-pressure-homogenized soymilk as a wall material. Food Res Int 2021; 139:109831. [PMID: 33509456 DOI: 10.1016/j.foodres.2020.109831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 11/30/2022]
Abstract
Probiotic foods and supplements have been shown to offer multiple potential health benefits to consumers. Dried probiotic cultures are increasingly used by the food industry because they are easily handled, transported, stored, and used in different applications. However, drying technologies often expose probiotic cells to extreme environmental conditions that reduces cell viability. Hence, this study aimed to evaluate the effect of using ultra high-pressure homogenization (UHPH) on soymilk's microencapsulating ability, and the resultant effect on the survivability of probiotic Lactobacillus plantarum NRRL B-1927 (LP) during drying. Liquid suspensions containing LP (~109 CFU/g of solids) were prepared by suspending LP cultures in soymilk which had been either treated with UHPH at 150 MPa or 300 MPa or left untreated. LP suspensions were then dried by concurrent spray drying (CCSD), mixed-flow spray drying (MXSD) or freeze-drying (FD). Cell counts of LP were determined before and after microencapsulation. Moisture, water activity, particle size and morphology of LP powders were also characterized. LP powders produced with 300 MPa treated soymilk had 8.7, 6.4, and 2 times more cell counts than those produced with non-UHPH treated soymilk during CCSD, MXSD, and FD, respectively. In the 300 MPa treated samples, cell survival (%) of LP during drying was the highest in MXSD (83.72) followed by FD (76.31) and CCSD (34.01). Using soymilk treated at higher UHPH pressures resulted in LP powders with lower moisture content, smaller particle sizes and higher agglomeration. LP powders produced via MXSD showed higher agglomeration and fewer signs of thermal damage than powders produced via CCSD. This study demonstrates that UHPH improves the effectiveness of soymilk as a microencapsulant for probiotics, creating probiotic powders that could be used in plant-based and non-dairy foods.
Collapse
Affiliation(s)
- George Cavender
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA; Currently at Cooperative Research and Extension Division, Lincoln University, Jefferson City, MO 65101, USA
| | - Nan Jiang
- Department of Food Science and Technology, The University of Georgia, Griffin, GA 30223, USA
| | - Rakesh K Singh
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Jinru Chen
- Department of Food Science and Technology, The University of Georgia, Griffin, GA 30223, USA
| | - Kevin Mis Solval
- Department of Food Science and Technology, The University of Georgia, Griffin, GA 30223, USA.
| |
Collapse
|
9
|
Gao W, Chen F, Wang X, Meng Q. Recent advances in processing food powders by using superfine grinding techniques: A review. Compr Rev Food Sci Food Saf 2020; 19:2222-2255. [DOI: 10.1111/1541-4337.12580] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Wenjie Gao
- School of Ecological Technology and EngineeringShanghai Institute of Technology Shanghai China
| | - Feng Chen
- Department of Food, Nutrition and Packaging SciencesClemson University Clemson South Carolina
| | - Xi Wang
- Department of Food, Nutrition and Packaging SciencesClemson University Clemson South Carolina
- Nutra Manufacturing Greenville South Carolina
| | - Qingran Meng
- Engineering Research Center of Perfume & Aroma and Cosmetics of Ministry of Education, School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| |
Collapse
|
10
|
Shimoyamada M. Current Status of Soymilk Processing and Structural Elucidation of Soymilk Components. J JPN SOC FOOD SCI 2020. [DOI: 10.3136/nskkk.67.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Bevilacqua A, Campaniello D, Speranza B, Altieri C, Sinigaglia M, Corbo MR. Two Nonthermal Technologies for Food Safety and Quality-Ultrasound and High Pressure Homogenization: Effects on Microorganisms, Advances, and Possibilities: A Review. J Food Prot 2019; 82:2049-2064. [PMID: 31702965 DOI: 10.4315/0362-028x.jfp-19-059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Some nonthermal technologies have gained special interest as alternative approaches to thermal treatments. High pressure homogenization (HPH) and ultrasound (US) are two of the most promising approaches. They rely upon two different modes of action, although they share some mechanisms or ways of actions (mechanic burden against cells, cavitation and micronization, primary targets being the cell wall and the membrane, temperature and pressure playing important roles for their antimicrobial potential, and their effect on cells can be either positive or negative). HPH is generally used in milk and dairy products to break lipid micelles, whereas US is used for mixing and/or to obtain active compounds of food. HPH and US have been tested on pathogens and spoilers with different effects; thus, the main goal of this article is to describe how US and HPH act on biological systems, with a focus on antimicrobial activity, mode of action, positive effects, and equipment. The article is composed of three main parts: (i) an overview of US and HPH, with a focus on some results covered by other reviews (mode of action toward microorganisms and effect on enzymes) and some new data (positive effect and modulation of metabolism); (ii) a tentative approach for a comparative resistance of microorganisms; and (iii) future perspectives.
Collapse
Affiliation(s)
- Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Daniela Campaniello
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Barbara Speranza
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Clelia Altieri
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| |
Collapse
|
12
|
Ni Y, Zhang Z, Fan L, Li J. Evaluation of physical stability of high pressure homogenization treatment cloudy ginkgo beverages. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Xia X, Dai Y, Wu H, Liu X, Wang Y, Cao J, Zhou J. Effects of pressure and multiple passes on the physicochemical and microbial characteristics of lupin‐based beverage treated with high‐pressure homogenization. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xiudong Xia
- Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Yiqiang Dai
- College of Food Science and Technology Nanjing Agriculture University Nanjing PR China
| | - Han Wu
- Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Xiaoli Liu
- Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Ying Wang
- Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| | - Jianping Cao
- College of Food Science and Technology Nanjing Agriculture University Nanjing PR China
| | - Jianzhong Zhou
- Institute of Agricultural Product Processing Jiangsu Academy of Agricultural Sciences Nanjing PR China
| |
Collapse
|
14
|
Rodarte D, Zamora A, Trujillo AJ, Juan B. Effect of ultra-high pressure homogenization on cream: Shelf life and physicochemical characteristics. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Lopes RP, Mota MJ, Gomes AM, Delgadillo I, Saraiva JA. Application of High Pressure with Homogenization, Temperature, Carbon Dioxide, and Cold Plasma for the Inactivation of Bacterial Spores: A Review. Compr Rev Food Sci Food Saf 2018; 17:532-555. [PMID: 33350128 DOI: 10.1111/1541-4337.12311] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Abstract
Formation of highly resistant spores is a concern for the safety of low-acid foods as they are a perfect vehicle for food spoilage and/or human infection. For spore inactivation, the strategy usually applied in the food industry is the intensification of traditional preservation methods to sterilization levels, which is often accompanied by decreases of nutritional and sensory properties. In order to overcome these unwanted side effects in food products, novel and emerging sterilization technologies are being developed, such as pressure-assisted thermal sterilization, high-pressure carbon dioxide, high-pressure homogenization, and cold plasma. In this review, the application of these emergent technologies is discussed, in order to understand the effects on bacterial spores and their inactivation and thus ensure food safety of low-acid foods. In general, the application of these novel technologies for inactivating spores is showing promising results. However, it is important to note that each technique has specific features that can be more suitable for a particular type of product. Thus, the most appropriate sterilization method for each product (and target microorganisms) should be assessed and carefully selected.
Collapse
Affiliation(s)
- Rita P Lopes
- QOPNA, Chemistry Dept., Univ. of Aveiro, Campus Univ. de Santiago, 3810-193 Aveiro, Portugal
| | - Maria J Mota
- QOPNA, Chemistry Dept., Univ. of Aveiro, Campus Univ. de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M Gomes
- Escola Superior de Biotecnologia, Univ. Católica Portuguesa, 4200-072 Porto, Portugal
| | - Ivonne Delgadillo
- QOPNA, Chemistry Dept., Univ. of Aveiro, Campus Univ. de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- QOPNA, Chemistry Dept., Univ. of Aveiro, Campus Univ. de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Codina-Torrella I, Guamis B, Zamora A, Quevedo J, Trujillo A. Microbiological stabilization of tiger nuts’ milk beverage using ultra-high pressure homogenization. A preliminary study on microbial shelf-life extension. Food Microbiol 2018; 69:143-150. [DOI: 10.1016/j.fm.2017.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/20/2017] [Accepted: 08/11/2017] [Indexed: 11/25/2022]
|
17
|
Xia Q, Li Y. Ultra-high pressure effects on color, volatile organic compounds and antioxidants of wholegrain brown rice (Oryza sativa L.) during storage: A comparative study with high-intensity ultrasound and germination pretreatments. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Ultra High Pressure Homogenization of Soy Milk: Effect on Quality Attributes during Storage. BEVERAGES 2016. [DOI: 10.3390/beverages2020015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Andrés V, Mateo-Vivaracho L, Guillamón E, Villanueva M, Tenorio M. High hydrostatic pressure treatment and storage of soy-smoothies: Colour, bioactive compounds and antioxidant capacity. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Manassero CA, Vaudagna SR, Sancho AM, Añón MC, Speroni F. Combined high hydrostatic pressure and thermal treatments fully inactivate trypsin inhibitors and lipoxygenase and improve protein solubility and physical stability of calcium-added soymilk. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Park SH, Min SG, Jo YJ, Chun JY. Effect of High Pressure Homogenization on the Physicochemical Properties of Natural Plant-based Model Emulsion Applicable for Dairy Products. Korean J Food Sci Anim Resour 2016; 35:630-7. [PMID: 26761891 PMCID: PMC4670892 DOI: 10.5851/kosfa.2015.35.5.630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/11/2015] [Accepted: 08/16/2015] [Indexed: 11/06/2022] Open
Abstract
In the dairy industry, natural plant-based powders are widely used to develop flavor and functionality. However, most of these ingredients are water-insoluble; therefore, emulsification is essential. In this study, the efficacy of high pressure homogenization (HPH) on natural plant (chocolate or vanilla)-based model emulsions was investigated. The particle size, electrical conductivity, Brix, pH, and color were analyzed after HPH. HPH significantly decreased the particle size of chocolate-based emulsions as a function of elevated pressures (20-100 MPa). HPH decreased the mean particle size of chocolate-based emulsions from 29.01 μm to 5.12 μm, and that of vanilla-based emulsions from 4.18 μm to 2.44 μm. Electrical conductivity increased as a function of the elevated pressures after HPH, for both chocolate- and vanilla-based model emulsions. HPH at 100 MPa increased the electrical conductivity of chocolate-based model emulsions from 0.570 S/m to 0.680 S/m, and that of vanilla-based model emulsions from 0.573 S/m to 0.601 S/m. Increased electrical conductivity would be attributed to colloidal phase modification and dispersion of oil globules. Brix of both chocolate- and vanilla-based model emulsions gradually increased as a function of the HPH pressure. Thus, HPH increased the solubility of plant-based powders by decreasing the particle size. This study demonstrated the potential use of HPH for enhancing the emulsification process and stability of the natural plant powders for applications with dairy products.
Collapse
Affiliation(s)
- Sung Hee Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Sang-Gi Min
- Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Korea
| | - Yeon-Ji Jo
- Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Korea
| | - Ji-Yeon Chun
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
22
|
Quality Characteristics and Shelf-Life of Ultra-High Pressure Homogenized (UHPH) Almond Beverage. Foods 2015; 4:159-172. [PMID: 28231196 PMCID: PMC5302318 DOI: 10.3390/foods4020159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/07/2015] [Accepted: 05/09/2015] [Indexed: 11/25/2022] Open
Abstract
The effects of ultra-high-pressure homogenization (UHPH) at 200 MPa, in combination with different inlet temperatures (55 or 75 °C) during storage at 4 °C were studied and compared with pasteurized (90 °C, 90 s) almond beverage. Microbiological analysis of the physical (particle sedimentation and color) and volatile profile of the most relevant compound in almond beverages was performed at days 1, 7, 14, and 21 of cold storage. UHPH treatment 200 at 75 °C led to higher microbiological reduction after treatment and higher stability during cold storage in almond beverages than pasteurization or UHPH 200 at 55 °C. Physical characteristics of UHPH-treated samples exhibited a high stability during storage with a stable color. Volatile compounds extracted by solid-phase microextraction were identified by gas chromatography coupled with mass spectrometry. The effect of UHPH treatment significantly (p < 0.05) affected the volatile profile compared with pasteurized beverages, although UHPH conditions applied produced similar effects in almond beverages. Benzaldehyde was the most abundant compound detected in all treatments. Hexanal was more abundant in UHPH-treated samples, indicating a higher lipid oxidation compared to pasteurized almond beverages.
Collapse
|
23
|
Toro-Funes N, Bosch-Fusté J, Veciana-Nogués M, Vidal-Carou M. Changes of isoflavones and protein quality in soymilk pasteurised by ultra-high-pressure homogenisation throughout storage. Food Chem 2014; 162:47-53. [DOI: 10.1016/j.foodchem.2014.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 11/16/2022]
|
24
|
Zamora A, Guamis B. Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the Food Industry. FOOD ENGINEERING REVIEWS 2014. [DOI: 10.1007/s12393-014-9097-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Georget E, Miller B, Callanan M, Heinz V, Mathys A. (Ultra) high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review. Front Nutr 2014; 1:15. [PMID: 25988118 PMCID: PMC4428391 DOI: 10.3389/fnut.2014.00015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/01/2014] [Indexed: 11/29/2022] Open
Abstract
Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.
Collapse
Affiliation(s)
- Erika Georget
- German Institute of Food Technologies (DIL), Quakenbrueck, Germany
- Institute of Food Chemistry, Leibniz University of Hanover, Hanover, Germany
| | - Brittany Miller
- German Institute of Food Technologies (DIL), Quakenbrueck, Germany
| | | | - Volker Heinz
- German Institute of Food Technologies (DIL), Quakenbrueck, Germany
| | - Alexander Mathys
- German Institute of Food Technologies (DIL), Quakenbrueck, Germany
| |
Collapse
|
26
|
Poliseli-Scopel FH, Hernández-Herrero M, Guamis B, Ferragut V. Sterilization and aseptic packaging of soymilk treated by ultra high pressure homogenization. INNOV FOOD SCI EMERG 2014. [DOI: 10.1016/j.ifset.2014.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|