1
|
Wang J, Sun M, Yu J, Wang J, Cui Q. Pomegranate seeds: a comprehensive review of traditional uses, chemical composition, and pharmacological properties. Front Pharmacol 2024; 15:1401826. [PMID: 39055489 PMCID: PMC11269133 DOI: 10.3389/fphar.2024.1401826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Pomegranate seeds (PS) are the dried seeds derived from pomegranate fruit, accounting for approximately 20% of the fruit's total weight, and are a by-product of pomegranate juice extraction. These seeds hold significance in traditional medicine among Uyghurs and Tibetan cultures, featuring diverse clinical applications within traditional Chinese medicine. These applications include management of gastric coldness and acidity, abdominal distension, liver and gallbladder fever, and pediatric enteritis. PS demonstrates properties such as stomach tonicity, qi regulation, analgesia, and anti-inflammatory effects. Extensive research underscores the richness of PS in various phytochemical compounds and metabolites, notably unsaturated fatty acids (particularly linolenic acid and linoleic acid), phenolic compounds tocopherols, proteins, and volatile oils. Notably, among these bioactive compounds, punicic acid (PA), found within PS, demonstrates potential in the prevention and treatment of cancers, diabetes, obesity, and other ailments. Despite extensive literature on pomegranate as a botanical entity, a comprehensive review focusing specifically on the chemical composition and pharmacological effects of PS remains elusive. Therefore, this review aimed to consolidate knowledge regarding the medicinal properties of PS, summarizing its chemical composition, traditional uses, and pharmacological effects in treating various diseases, thereby laying a foundation for the advancement and application of PS in the field of pharmacology.
Collapse
Affiliation(s)
- Jian Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Mengjie Sun
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Jian Yu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Jinglong Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Li G, Chen J, Yang Q, Yang X, Wang P, Lei H, Mi M, Ma Q. Identification of chemical constituents in pomegranate seeds based on ultra-high-performance supercritical fluid chromatography coupled with quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37 Suppl 1:e9482. [PMID: 36718938 DOI: 10.1002/rcm.9482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Pomegranate seeds are a potential source of bioactive compounds. Nonetheless, most pomegranate seeds are discarded in the food processing industry, likely due to the lack of convincing data on their component analysis. METHODS To reveal the main chemical constituents of pomegranate seeds, a reliable and sensitive method based on ultra-high-performance supercritical fluid chromatography coupled with electrospray ionization and quadrupole time-of-flight mass spectrometry (MS) was developed. A time-dependent MSE data acquisition mode was applied to acquire the mass spectrometric data. The chemical constituents were identified by an automatic retrieval of a traditional Chinese medicine library and relevant literature. RESULTS A total number of 59 compounds, including fatty acids, sterols, vitamins, cerebrosides, phospholipids, flavonoids, phenylpropanoids, and others, were tentatively identified. Their possible fragmentation pathways and characteristic ions were proposed and elucidated. CONCLUSIONS The findings of this study, along with the developed methodology, could provide a reference for basic research on the pharmacodynamic substances of pomegranate seeds and shed light on their potential nutritional and therapeutic applications in the future.
Collapse
Affiliation(s)
- Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- Tibetan Traditional Medical College, Lhasa, China
| | - Qing Yang
- Waters Technology Co., Ltd., Beijing, China
| | | | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ma Mi
- Tibetan Traditional Medical College, Lhasa, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
3
|
Jadhav HB, Raina I, Gogate PR, Annapure US, Casanova F. Sonication as a Promising Technology for the Extraction of Triacylglycerols from Fruit Seeds—A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Yang X, Niu Z, Wang X, Lu X, Sun J, Carpena M, Prieto M, Simal-Gandara J, Xiao J, Liu C, Li N. The Nutritional and Bioactive Components, Potential Health Function and Comprehensive Utilization of Pomegranate: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xuhan Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Zhonglu Niu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Xiaorui Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - M. Carpena
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - M.A. Prieto
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Jesus Simal-Gandara
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Jianbo Xiao
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
5
|
Campos L, Seixas L, Dias S, Peres AM, Veloso ACA, Henriques M. Effect of Extraction Method on the Bioactive Composition, Antimicrobial Activity and Phytotoxicity of Pomegranate By-Products. Foods 2022; 11:foods11070992. [PMID: 35407079 PMCID: PMC8997943 DOI: 10.3390/foods11070992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Pomegranate by-products can be an asset to the food industry due to the richness in bioactive and antimicrobial compounds. This work studied the influence of conventional solvent and sonication-assisted extraction methods on the bioactive profile, antimicrobial properties, and phytotoxicity effect of the peels and seeds extracts from Acco, Big Full, and Wonderful pomegranate cultivars. The bioactive composition of the extracts was evaluated for the content of total phenolics, total flavonoids, and antioxidant activity (expressed as the half-maximal inhibitory concentration—IC50) by spectrophotometric methods, while the tannins were determined by titration and the anthocyanins were estimated by the pH-differential method. For the evaluation of the antimicrobial activity, the disk diffusion method of Kirby-Bauer was adapted through inhibition halos against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, and Yarrowia lipolytica. The extracts’ phytotoxicity was evaluated in vitro on garden-cress seeds. Extracts from conventional extraction were richer in total phenolics, expressed as gallic acid equivalents (0.16–0.73 mg GAE/mg extract), while those from sonication-assisted extraction had higher contents of total flavonoids, expressed as catechin equivalents (0.019–0.068 mg CATE/mg extract); anthocyanins, expressed as cyanidin-3-glucoside (0.06–0.60 µg C3G/mg, dry basis); and antioxidant activity (IC50, 0.01–0.20 mg/mL). All extracts were more effective against Gram-positive bacteria and yeasts than Gram-negative bacteria. In general, the sonication-assisted extracts led to higher inhibition halos (8.7 to 11.4 mm). All extracts presented phytotoxicity against garden-cress seeds in the tested concentrations. Only the lowest concentration (0.003 mg/mL) enabled the germination of seeds and root growth, and the sonication-assisted extracts showed the highest Munoo-Liisa vitality index (51.3%). Overall, sonication-assisted extraction obtained extracts with greater bioactive and antimicrobial potential and less phytotoxicity.
Collapse
Affiliation(s)
- Lara Campos
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal; (S.D.); (M.H.)
- CERNAS, Research Centre for Natural Resources, Environment and Society, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
- Correspondence:
| | - Luana Seixas
- Polytechnic Institute of Coimbra, ISEC, DEQB, Rua Pedro Nunes—Quinta da Nora, 3030-199 Coimbra, Portugal; (L.S.); (A.C.A.V.)
| | - Susana Dias
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal; (S.D.); (M.H.)
- CERNAS, Research Centre for Natural Resources, Environment and Society, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - António M. Peres
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Ana C. A. Veloso
- Polytechnic Institute of Coimbra, ISEC, DEQB, Rua Pedro Nunes—Quinta da Nora, 3030-199 Coimbra, Portugal; (L.S.); (A.C.A.V.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4715-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Henriques
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal; (S.D.); (M.H.)
- CERNAS, Research Centre for Natural Resources, Environment and Society, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| |
Collapse
|
6
|
Deng Y, Wang W, Zhao S, Yang X, Xu W, Guo M, Xu E, Ding T, Ye X, Liu D. Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Nguyen Q, Dang T, Nguyen T, Nguyen T, Nguyen N. Microencapsulation of roselle ( Hibiscus sabdariffa L.) anthocyanins: Effects of drying conditions on some physicochemical properties and antioxidant activities of spray-dried powder. Food Sci Nutr 2022; 10:191-203. [PMID: 35035921 PMCID: PMC8751440 DOI: 10.1002/fsn3.2659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/15/2021] [Accepted: 10/29/2021] [Indexed: 11/15/2022] Open
Abstract
Anthocyanins are important phytochemical compounds in nature that are of interest not only for their health benefits such as antioxidant, anti-inflammatory, and anti-carcinogenic properties, but also for their role in imparting attractive and characteristic color to food products. In this study, anthocyanins from hibiscus (Hibiscus sabdariffa L.) calyces were microencapsulated by spray-drying technique using maltodextrin as the carrier. The experiment was carried out in the full factorial design with two factors, namely inlet temperature (150, 160, and 170°C) and anthocyanin to maltodextrin mass ratio (1:50, 1:60, 1:70, 1:80, 1:90, and 1:100) with the aim of investigating the effect of spray drying conditions on phenolic content, anthocyanin, antioxidant activity, and color of spray-dried hibiscus powder. The results showed that increasing the carrier ratio significantly reduced the antioxidant content and their activities in the powder. However, the high level of carriers exhibited a protective effect in encapsulating anthocyanin compounds into the maltodextrin matrix, which was demonstrated by high encapsulation efficiency (>85%) observed in the samples prepared at a ratio of 1:100. It should be highlighted that although high temperature (170°C) reduced total anthocyanin concentration, it actually enhanced total phenolic content. In addition, the moisture content of the powder declined with increasing carrier ratio and inlet temperature, and it was found to be in the range of 5.57%-10.19% in the powder. With solubility greater than 93.71%, the total phenolic and total anthocyanin content of spray-dried hibiscus powder were 31.5-41.9 (mg gallic acid equivalent/g of dry powder) and 6.08-10.47 (mg cyanidin-3-glucoside/g of dry powder), respectively.
Collapse
Affiliation(s)
- Quoc‐Duy Nguyen
- Faculty of Environmental and Food EngineeringNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
| | - Thanh‐Thuy Dang
- Faculty of Environmental and Food EngineeringNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
| | - Thi‐Van‐Linh Nguyen
- Faculty of Environmental and Food EngineeringNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
| | - Thi‐Thuy‐Dung Nguyen
- Faculty of Environmental and Food EngineeringNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
| | - Nhu‐Ngoc Nguyen
- Faculty of Environmental and Food EngineeringNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
| |
Collapse
|
8
|
Banožić M, Vladić J, Banjari I, Velić D, Aladić K, Jokić S. Spray Drying as a Method of Choice for Obtaining High Quality Products from Food Wastes– A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marija Banožić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Jelena Vladić
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Ines Banjari
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Darko Velić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Krunoslav Aladić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
9
|
Dumitraşcu L, Stănciuc N, Borda D, Neagu C, Enachi E, Barbu V, Aprodu I. Microencapsulation of bioactive compounds from cornelian cherry fruits using different biopolymers with soy proteins. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Kaseke T, Fawole OA, Mokwena L, Opara UL. Effect of cultivar and blanching of pomegranate seeds on physicochemical properties, nutritional qualities and antioxidant capacity of extracted oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Kori AH, Mahesar SA, Sherazi STH, Laghari ZH, Panhwar T. A review on techniques employed for encapsulation of the bioactive components of
Punicagranatum
L. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Abdul Hameed Kori
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Sarfaraz Ahmed Mahesar
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | | | - Zahid Hussain Laghari
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Tarique Panhwar
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| |
Collapse
|
12
|
Paul A, Radhakrishnan M. Pomegranate seed oil in food industry: Extraction, characterization, and applications. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Kaseke T, Opara UL, Fawole OA. Effect of Microwave Pretreatment of Seeds on the Quality and Antioxidant Capacity of Pomegranate Seed Oil. Foods 2020; 9:E1287. [PMID: 32937735 PMCID: PMC7555658 DOI: 10.3390/foods9091287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 11/21/2022] Open
Abstract
Microwave pretreatment of oilseeds is a novel technique used to enhance oil nutraceutical properties. In this study, the effect of microwave pretreatment of seeds was investigated on pomegranate seed oil quality attributes including oil yield, yellowness index, refractive index, peroxide value, ρ-anisidine value, total oxidation value, conjugated dienes, total phenolic content, total carotenoids content, phytosterol composition, fatty acid composition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, and ferric reducing antioxidant power (FRAP). The seeds of three different pomegranate cultivars ('Acco', 'Herskawitz', and 'Wonderful') were microwave heated at 261 W for 102 s. Pomegranate seeds microwave pretreatment enhanced oil yield, yellowness index, total carotenoids content, total phenolic content, FRAP and DPPH radical scavenging capacity, despite an increase in conjugated dienes, and peroxide value. Palmitic acid, oleic acid, linoleic acid, saturated, and monosaturated fatty acids were increased after pomegranate seeds microwave pretreatment, whilst the levels of punicic acid and β-sitosterol were reduced. Nevertheless, the refractive index, the ratio of unsaturated to saturated fatty acid of the extracted oil were not significantly (p > 0.05) affected by pomegranate seeds microwave pretreatment. Principal component analysis and agglomerative hierarchical clustering established that 'Acco' and 'Wonderful' oil extracts from microwave pretreated PS exhibited better oil yield, whilst 'Herskawitz' oil extracts showed higher total carotenoids content, total phenolic content, and antioxidant capacity.
Collapse
Affiliation(s)
- Tafadzwa Kaseke
- Postharvest Technology Research Laboratory, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa;
| | - Umezuruike Linus Opara
- Postharvest Technology Research Laboratory, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa;
- Postharvest Technology Research Laboratory, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
14
|
Gong M, Hu Y, Wei W, Jin Q, Wang X. Production of conjugated fatty acids: A review of recent advances. Biotechnol Adv 2019; 37:107454. [PMID: 31639444 DOI: 10.1016/j.biotechadv.2019.107454] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Conjugated fatty acids (CFAs) have received a deal of attention due to the increasing understanding of their beneficial physiological effects, especially the anti-cancer effects and metabolism-regulation activities. However, the production of CFAs is generally difficult. Several challenges are the low CFAs content in natural sources, the difficulty to chemically synthesize target CFA isomers in high purity, and the sensitive characteristics of CFAs. In this article, the current technologies to produce CFAs, including physical, chemical, and biotechnical approaches were summarized, with a focus on the conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) which are the most common investigated CFAs. CFAs usually demonstrate stronger physiological effects than other non-conjugated fatty acids; however, they are more sensitive to heat and oxidation. Consequently, the quality control throughout the entire production process of CFAs is significant. Special attention was given to the micro- or nano-encapsulation which presented as an emerging technique to improve the bioavailability and storage stability of CFAs. The current applications of CFAs and the potential research directions were also discussed.
Collapse
Affiliation(s)
- Mengyue Gong
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 3K7, Canada
| | - Wei Wei
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
15
|
Natolino A, Da Porto C. Supercritical carbon dioxide extraction of pomegranate (Punica granatum L.) seed oil: Kinetic modelling and solubility evaluation. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Golly MK, Ma H, Sarpong F, Dotse BP, Oteng-Darko P, Dong Y. Shelf-life extension of grape ( Pinot noir) by xanthan gum enriched with ascorbic and citric acid during cold temperature storage. Journal of Food Science and Technology 2019; 56:4867-4878. [PMID: 31741511 DOI: 10.1007/s13197-019-03956-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
The detrimental health implications of chemical preservatives in fruits have necessitated exploitation of safe and natural alternatives such as edible gums. This work studied shelf-life extension in grape (Pinot noir) under cold storage by xanthan gum (XAN) coatings enriched with ascorbic acid (XANAS) and citric acid (XANCI). Standard scientific methods were used to examine some sensory (color, texture-resilience and hardness), enzyme, anthocyanine and antioxidant activities. Also, the reaction rate mechanism was examined through modeling of selected shelf-life indicators; color change, weight loss, and antioxidants. The results revealed that, Xanthan gum and its acid modified coatings significantly (p < 0.05) suppressed polyphenol oxidase, ascorbic acid oxidase, polymethyl etherase acitivies and maintained the structural integrity of the grape during the 21 days storage period. Weight loss (%) in the grape samples was 13.66 < 13.98 < 14.16 < 15.64 in the order XANAS < XANCI < XAN < CONTROL whilst ferric reducing antioxidant power (FRAP) activity was 150.23 > 143.18 > 136.49 > 104.5 mg/100 g AEAC corresponding to XAN > XANAS > XANCI > CONTROL. Significantly (p < 0.05) higher phytochemical contents were observed in the gum coatings compared to the control. Through statistical parameters such as the coefficient of determination (R 2), root mean square error (RMSE) and reduced Chi square (χ2), the second-order polynomial model predicted precisely the decomposition of color, weight loss and FRAP of grape. Color deterioration was attributed to changes in b* parameter as a result of phenolics and phytochemical decompositions resulting from enzymatic activities. Conclusively, acid modified xanthan gum coatings could preserve phytochemicals, color, antioxidant and textural properties of grape in cold temperature storage.
Collapse
Affiliation(s)
- Moses Kwaku Golly
- 1School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 People's Republic of China.,2Faculty of Applied Sciences and Technology, Sunyani Technical University, P. O. Box 206, Sunyani, Ghana
| | - Haile Ma
- 1School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 People's Republic of China
| | - Frederick Sarpong
- 1School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 People's Republic of China
| | | | - Patricia Oteng-Darko
- 4Council for Scientific and Industrial Research (CSIR)-Crops Research Institute, Oduom Road, P. O. Box 3785, Kumasi, Ghana
| | - Yating Dong
- 1School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 People's Republic of China
| |
Collapse
|
17
|
Kaderides K, Goula AM. Encapsulation of pomegranate peel extract with a new carrier material from orange juice by-products. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Tsali A, Goula AM. Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.09.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Adu‐Frimpong M, Firempong CK, Omari‐Siaw E, Wang Q, Mukhtar YM, Deng W, Yu Q, Xu X, Yu J. Preparation, optimization, and pharmacokinetic study of nanoliposomes loaded with triacylglycerol‐bound punicic acid for increased antihepatotoxic activity. Drug Dev Res 2018; 80:230-245. [DOI: 10.1002/ddr.21485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Adu‐Frimpong
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
- Department of Biomedical and Basic SciencesCollege of Health and Well‐Being Kintampo Ghana
| | - Caleb Kesse Firempong
- Department of Biochemistry and Biotechnology, College of ScienceKwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Emmanuel Omari‐Siaw
- Department of Pharmaceutical SciencesKumasi Technical University Kumasi Ghana
| | - Qilong Wang
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Yusif Mohammed Mukhtar
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Wenwen Deng
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Qingtong Yu
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Ximing Xu
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue Engineering, School of PharmacyJiangsu University Zhenjiang P.R. China
| |
Collapse
|
20
|
Adu‐Frimpong M, Omari‐Siaw E, Mukhtar YM, Xu X, Yu J. Formulation of Pomegranate Seed Oil: A Promising Approach of Improving Stability and Health‐Promoting Properties. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Michael Adu‐Frimpong
- Department of Pharmaceutics and Tissue EngineeringJiangsu University301 Xuefu Road, 212001ZhenjiangChina
| | - Emmanuel Omari‐Siaw
- Dr. E. Omari‐SiawDepartment of Pharmaceutical SciencesKumasi Technical UniversityKumasiGhana
| | - Yusif Mohammed Mukhtar
- Department of Pharmaceutics and Tissue EngineeringJiangsu University301 Xuefu Road, 212001ZhenjiangChina
| | - Ximing Xu
- Department of Pharmaceutics and Tissue EngineeringJiangsu University301 Xuefu Road, 212001ZhenjiangChina
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue EngineeringJiangsu University301 Xuefu Road, 212001ZhenjiangChina
| |
Collapse
|
21
|
Ran XL, Zhang M, Wang Y, Adhikari B. Novel technologies applied for recovery and value addition of high value compounds from plant byproducts: A review. Crit Rev Food Sci Nutr 2018; 59:450-461. [PMID: 28920702 DOI: 10.1080/10408398.2017.1377149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plant byproducts of food processing industry line are undervalued yet important resource. These byproducts contain large percentage of high value functional substances such as antioxidants, pectin, polyphenols and so on. Recently, many research studies concentrated on innovative technologies that promise to overcome such issues as time consuming, inefficiency, and low yield, among others, which exist in most conventional techniques. Consequently, to achieve the recovery of nutraceuticals from high added-value by-products, it is necessary to have more knowledge of these novel technologies and more importantly explore the possibility of application of these latest technologies to the recovery downstream processing. The present work will summarize state-of-the-art technological approaches concerning extraction, superfine and drying applied to plant food processing residues. Simultaneously, the application of the bioactive components originated from byproducts in food industry will also be reviewed.
Collapse
Affiliation(s)
- Xin-Li Ran
- a State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , Jiangsu , China
| | - Min Zhang
- a State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , Jiangsu , China.,b Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University , Wuxi , Jiangsu , China.,c International Joint Laboratory on Food Safety, Jiangnan University , China
| | - Yuchuan Wang
- b Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University , Wuxi , Jiangsu , China
| | - Benu Adhikari
- d School of Science, RMIT University , Melbourne , Australia
| |
Collapse
|
22
|
Bustamante A, Hinojosa A, Robert P, Escalona V. Extraction and microencapsulation of bioactive compounds from pomegranate (Punica granatum
var. Wonderful) residues. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13422] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Andrés Bustamante
- Centro de Estudios Postcosecha; Facultad de Ciencias Agronómicas; Universidad de Chile; Santiago Chile
| | - Andrea Hinojosa
- Centro de Estudios Postcosecha; Facultad de Ciencias Agronómicas; Universidad de Chile; Santiago Chile
| | - Paz Robert
- Departamento de Ciencia de los Alimentos y Tecnología Química; Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile; Santiago Chile
| | - Víctor Escalona
- Centro de Estudios Postcosecha; Facultad de Ciencias Agronómicas; Universidad de Chile; Santiago Chile
- Departamento de Producción Agrícola; Facultad de Ciencias Agronómicas; Universidad de Chile; Santiago Chile
| |
Collapse
|
23
|
Goula AM, Ververi M, Adamopoulou A, Kaderides K. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. ULTRASONICS SONOCHEMISTRY 2017; 34:821-830. [PMID: 27773309 DOI: 10.1016/j.ultsonch.2016.07.022] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 05/18/2023]
Abstract
The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30min. The optimum operating conditions were found to be: extraction temperature, 51.5°C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters.
Collapse
Affiliation(s)
- Athanasia M Goula
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, 541 24 Thessaloniki, Greece.
| | - Maria Ververi
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, 541 24 Thessaloniki, Greece
| | - Anna Adamopoulou
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, 541 24 Thessaloniki, Greece
| | - Kyriakos Kaderides
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, 541 24 Thessaloniki, Greece
| |
Collapse
|
24
|
Siano F, Addeo F, Volpe MG, Paolucci M, Picariello G. Oxidative Stability of Pomegranate (Punica granatum L.) Seed Oil to Simulated Gastric Conditions and Thermal Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8369-8378. [PMID: 27762137 DOI: 10.1021/acs.jafc.6b04611] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The fatty acid composition of pomegranate (Punica granatum L.) seed oil (PSO) is dominated by punicic acid, a conjugated linolenic acid (18:3ω-5). As a free fatty acid, punicic acid is rapidly oxidized in air and extensively isomerizes upon acid-catalyzed methylation at 90 °C. In contrast, triacylglycerol-bound punicic acid in PSO was unchanged by simulated gastric conditions and was degraded by 5-7% by severe heating (up to 170 °C for 4 h), as herein assessed by gas chromatography, attenuated total reflectance-Fourier transform infrared spectroscopy, 1H and 13C NMR, and high-resolution electrospray ionization mass spectrometry. Total polar compounds of PSO were slightly affected by thermal stress, accounting for 5.71, 6.35, and 9.53% (w/w) in the unheated, heated at mild temperature (50 °C, 2 h), and heated at frying temperature (170 °C, 4 h) PSO, respectively. These findings support from a structural standpoint the potential use of PSO as a health-promoting edible oil.
Collapse
Affiliation(s)
- Francesco Siano
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR) , Via Roma 64, I-83100 Avellino, Italy
| | - Francesco Addeo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR) , Via Roma 64, I-83100 Avellino, Italy
- Dipartimento di Agraria, Università di Napoli "Federico II" , Parco Gussone, I-80055 Portici (Napoli), Italy
| | - Maria Grazia Volpe
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR) , Via Roma 64, I-83100 Avellino, Italy
| | - Marina Paolucci
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio , via Port'Arsa 11, I-82100 Benevento, Italy
| | - Gianluca Picariello
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR) , Via Roma 64, I-83100 Avellino, Italy
| |
Collapse
|
25
|
Goula AM, Thymiatis K, Kaderides K. Valorization of grape pomace: Drying behavior and ultrasound extraction of phenolics. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.06.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Goula AM, Lazarides HN. Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.01.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Kaderides K, Goula AM, Adamopoulos KG. A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.08.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|