1
|
Zhang Y, Liu G. Electrostatically-enhanced two-stage low-temperature tempering: Effects on the quality of frozen tan mutton. Food Chem X 2024; 24:101926. [PMID: 39525067 PMCID: PMC11550020 DOI: 10.1016/j.fochx.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The two-stage low-temperature tempering (TLT) and TLT assisted by electrostatic fields (TLT-1500/2000/2500/3000) were developed to investigate their effects on the quality of frozen Tan mutton. The results demonstrated that both TLT and TLT-1500/2000/2500/3000 significantly (P < 0.05) enhanced the tempering rate compared to refrigerator tempering (4 °C, RT). The analysis of tempering, cooking, and centrifugal losses, along with the evaluation of electrical conductivity, pH, and TVB-N, showed that the water retention capacity and freshness of Tan mutton treated with TLT-2500 were closest to those of fresh Tan mutton. Scanning electron microscopy analysis demonstrated that TLT-2500 best maintained the tissue integrity of Tan mutton, while low-field nuclear magnetic resonance analysis revealed it contained the highest immobile water and least free water. Furthermore, Tan mutton treated with TLT-2000 and TLT-2500 exhibited minimal lipid oxidation and color change. In contrast, the most significant changes in all indicators were observed after RT.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
2
|
Zhang Y, Li Y, Guo J, Feng Y, Xie Q, Guo M, Yin J, Liu G. Effect of two-stage low-temperature tempering process assisted by electrostatic field application on physicochemical and structural properties of myofibrillar protein in frozen longissimus dorsi of tan mutton. Food Chem 2024; 456:140001. [PMID: 38852449 DOI: 10.1016/j.foodchem.2024.140001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The effects of refrigerator tempering, two-stage low-temperature tempering (TLT), and a combination of TLT with electrostatic field tempering (TLT-1500/2000/2500/3000) on the physicochemical and structural properties of the myofibrillar protein (MPs) in Longissimus dorsi of Tan mutton were investigated. The results from differential scanning calorimetry and dynamic rheology indicated that TLT-2000/2500 had the least impact on the thermal stability of MPs. While the carbonyl and dityrosine contents of MPs in TLT-2000/2500 were the lowest, the total sulfhydryl content and Ca2+-ATPase activity were the highest, suggesting that TLT-2000/2500 preserved the properties of MPs more effectively. The smaller and uniformly distributed particle size, highest zeta potential, and SDS-PAGE analysis confirmed that TLT-2000/2500 had minimal impact on the aggregation and degradation of MPs. Additionally, results from surface hydrophobicity, Fourier transform infrared spectroscopy, intrinsic fluorescence, and UV second-derivative absorption spectra suggested that TLT-2000/2500 was more conducive to stabilizing the primary, secondary, and tertiary structures of MPs.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
3
|
Lin H, Wu G, Hu X, Chisoro P, Yang C, Li Q, Blecker C, Li X, Zhang C. Electric fields as effective strategies for enhancing quality attributes of meat in cold chain logistics: A review. Food Res Int 2024; 193:114839. [PMID: 39160042 DOI: 10.1016/j.foodres.2024.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Meat quality (MQ) is unstable during cold chain logistics (CCL). Different technologies have been developed to enhance MQ during the CCL process, while most of them cannot cover all the links of the cold chain because of complex environment (especially transportation and distribution), compatibility issues, and their single effect. Electric fields (EFs) have been explored as a novel treatment for different food processing. The effects and potential advantages of EFs for biological cryopreservation have been reported in many publications and some commercial applications in CCL have been realized. However, there is still a lack of a systematic review on the effects of EFs on their quality attributes in meat and its applications in CCL. In this review, the potential mechanisms of EFs on meat physicochemical properties (heat and mass transfer and ice formation and melting) and MQ attributes during different CCL links (freezing, thawing, and refrigeration processes) were summarized. The current applications and limitations of EFs for cryopreserving meat were also discussed. Although high intensity EFs have some detrimental effects on the quality attributes in meat due to electroporation and electro-breakdown effect, EFs present good applicability opportunities in most CCL scenes that have been realized in some commercial applications. Future studies should focus on the biochemical reactions of meat to the different EFs parameters, and break the limitations on equipment, so as to make EFs techniques closer to usability in the production environment and realize cost-effective large-scale application of EFs on CCL.
Collapse
Affiliation(s)
- Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Guangyu Wu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaojia Hu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Prince Chisoro
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingqing Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Wang Y, Ding C. Effect of Electrohydrodynamic Drying on Drying Characteristics and Physicochemical Properties of Carrot. Foods 2023; 12:4228. [PMID: 38231695 DOI: 10.3390/foods12234228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
This study investigates the effects of electrohydrodynamic (EHD) drying technology on the drying kinetics, microstructure, quality, and nutritional components of carrots, along with conducting experiments on EHD drying under different voltage gradients. The experimental results showed that EHD drying technology could significantly increase the drying rate and the effective moisture diffusion coefficient. Within a certain range, the drying rate was directly proportional to the voltage. When the range was exceeded, the increase in voltage had a minimal effect on the drying rate. In terms of quality, the EHD drying group's color, shrinkage rate, and rehydration performance were superior to the control group, and different voltages had no significant effect on the shrinkage rate and rehydration performance. The retention of carotenoids in the EHD drying group was 1.58 to 2 times that of the control group. EHD drying had a negative impact on the total phenolic content and vitamin A content of dried carrot slices. Based on the results of infrared spectroscopy and scanning electron microscopy (SEM), the dehydrated carrot slices showed wrinkling due to water loss, with numerous pores, a generally intact structure, and retained functional groups. EHD drying had a significant impact on the secondary structure of proteins, where an increase in voltage led to an increase in disordered structure, with a smaller proportion of disordered structure in the lower voltage group compared to the control group, and a similar proportion of disordered structure between the higher voltage group and the control group. Results from low-field nuclear magnetic resonance (NMR) showed that EHD drying could retain more bound water compared to the control group, with the best retention of cellular bound water at a voltage of 26 kV and the best retention of cellular immobilized water at a voltage of 38 kV, indicating the superiority of EHD drying in preserving cellular structure. This study provided a theoretical basis and experimental foundation for the application of electrohydrodynamic drying technology to carrot drying, and promoted the practical application of EHD drying technology.
Collapse
Affiliation(s)
- Yanghong Wang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Changjiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
5
|
Chang CK, Lung CT, Gavahian M, Yudhistira B, Chen MH, Santoso SP, Hsieh CW. Effect of pulsed electric field-assisted thawing on the gelling properties of pekin duck meat myofibrillar protein. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
6
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. A comprehensive review of the principles, key factors, application, and assessment of thawing technologies for muscle foods. Compr Rev Food Sci Food Saf 2023; 22:107-134. [PMID: 36318404 DOI: 10.1111/1541-4337.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
For years, various thawing technologies based on pressure, ultrasound, electromagnetic energy, and electric field energy have been actively investigated to minimize the amount of drip and reduce the quality deterioration of muscle foods during thawing. However, existing thawing technologies have limitations in practical applications due to their high costs and technical defects. Therefore, key factors of thawing technologies must be comprehensively analyzed, and their effects must be systematically evaluated by the quality indexes of muscle foods. In this review, the principles and key factors of thawing techniques are discussed, with an emphasis on combinations of thawing technologies. Furthermore, the application effects of thawing technologies in muscle foods are systematically evaluated from the viewpoints of eating quality and microbial and chemical stability. Finally, the disadvantages of the existing thawing technologies and the development prospects of tempering technologies are highlighted. This review can be highly instrumental in achieving more ideal thawing goals.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
7
|
PENG J, LIU C, XING S, BAI K, LIU F. The application of electrostatic field technology for the preservation of perishable foods. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jiakun PENG
- China Agricultural University, China; China Agricultural University, China
| | - Chune LIU
- China Agricultural University, China
| | | | - Kaikai BAI
- China Agricultural University, China; China Agricultural University, China
| | - Feng LIU
- China Agricultural University, China
| |
Collapse
|
8
|
Effect of Different Thawing Methods on the Physicochemical Properties and Microstructure of Frozen Instant Sea Cucumber. Foods 2022; 11:foods11172616. [PMID: 36076802 PMCID: PMC9455729 DOI: 10.3390/foods11172616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
To provide recommendations to users regarding which thawing method for frozen instant sea cucumbers entails lower quality losses, in this study we compared the water retention, mechanical properties, protein properties, and microstructures of frozen instant sea cucumbers post-thawing by means of different thawing approaches, including refrigerator thawing (RT), air thawing (AT), water immersion thawing (WT), and ultrasound-assisted thawing (UT). The results indicated that UT took the shortest time. RT samples exhibited the best water-holding capacity, hardness and rheological properties, followed by UT samples. The α-helix and surface hydrophobicity of WT and AT samples were significantly lower than those of the first two methods (p < 0.05). The lowest protein maximum denaturation temperature (Tmax) was obtained by means of WT. AT samples had the lowest maximum fluorescence emission wavelength (λmax). Based on these results, WT and AT were more prone to the degradation of protein thermal stability and the destruction of the protein structure. Similarly, more crimping and fractures of the samples after WT and AT were observed in the sea cucumbers’ microstructures. Overall, we observed that UT can be used to maintain the quality of frozen instant sea cucumbers in the shortest time.
Collapse
|
9
|
Ahmmed MK, Carne A, Tian H(S, Bekhit AEDA. The effect of pulsed electric fields on the extracted total lipid yield and the lipidomic profile of hoki roe. Food Chem 2022; 384:132476. [DOI: 10.1016/j.foodchem.2022.132476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/14/2022]
|
10
|
Qi M, Yan H, Zhang Y, Yuan Y. Impact of high voltage prick electrostatic field (HVPEF) processing on the quality of ready-to-eat fresh salmon (Salmo salar) fillets during storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
A potential spoilage bacteria inactivation approach on frozen fish. Food Chem X 2022; 14:100335. [PMID: 35663602 PMCID: PMC9156805 DOI: 10.1016/j.fochx.2022.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/19/2022] [Accepted: 05/15/2022] [Indexed: 11/22/2022] Open
Abstract
US&HVEF technology revealed an inactivation effect on S. putrefaciens. US&HVEF technology minimized the thawing damage to frozen fish. US&HVEF thawing achieved better quality maintenance of frozen aquatic products.
Frozen products are more susceptible to microbial spoilage during thawing. Therefore, the development of a thawing technology with effective bacteriostasis is still urgent in food science. In this study, red sea bream was used as the research object, S. putrefaciens was incubated on the surface of fish fillets, and ultrasound plus high voltage electric field (US&HVEF) was performed to investigate the antibacterial activity. On this basis, the effect of US&HVEF thawing on the quality characteristics of fillets was further studied. The results indicated that US&HVEF showed a better antibacterial performance toward S. putrefaciens, with the lethality of 96.73%. Furthermore, US&HVEF could minimize thawing loss, preserve fillets texture, stabilize the secondary and tertiary conformation of myofibrillar protein (MFP), and inhibit the MFP aggregation and oxidation. Accordingly, this study shows that food safety also involves spoilage bacteria prevention except for quality and proves that US&HVEF technology has great potential in food thawing.
Collapse
|
12
|
Wang B, Bai X, Du X, Pan N, Shi S, Xia X. Comparison of Effects from Ultrasound Thawing, Vacuum Thawing and Microwave Thawing on the Quality Properties and Oxidation of Porcine Longissimus Lumborum. Foods 2022; 11:1368. [PMID: 35564090 PMCID: PMC9099600 DOI: 10.3390/foods11091368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
The effects of vacuum thawing (VT), ultrasound thawing (UT) and microwave thawing (MT) on the quality, protein and lipid oxidation, internal temperature distribution and microstructure of porcine longissimus lumborum were compared. The results showed that a significant decrease (p < 0.05) in quality compared with those of fresh meat (FM) occurred for all of the thawing samples, especially for the MT samples. Changes in quality of the VT and UT samples were less significant than those of the MT samples. The increases in carbonyl content and TBARS value indicated that proteins and lipids in the thawing samples were oxidized. The decreases in uniform degrees of internal temperature distributions of muscles from the thawing samples were analysed by infrared thermography. Scanning electron microscopy images showed that the myofibril arrangements of thawing samples were looser than those of the FM samples with compact and ordered structure, which was proven by the obvious increase in the myofibril gap value of the thawing samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (B.W.); (X.B.); (X.D.); (N.P.); (S.S.)
| |
Collapse
|
13
|
Han R, He J, Chen Y, Li F, Shi H, Jiao Y. Effects of Radio Frequency Tempering on the Temperature Distribution and Physiochemical Properties of Salmon ( Salmo salar). Foods 2022; 11:foods11060893. [PMID: 35327315 PMCID: PMC8953369 DOI: 10.3390/foods11060893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Salmon (Salmo salar) is a precious fish with high nutritional value, which is perishable when subjected to improper tempering processes before consumption. In traditional air and water tempering, the medium temperature of 10 °C is commonly used to guarantee a reasonable tempering time and product quality. Radio frequency tempering (RT) is a dielectric heating method, which has the advantage of uniform heating to ensure meat quality. The effects of radio frequency tempering (RT, 40.68 MHz, 400 W), water tempering (WT + 10 °C, 10 ± 0.5 °C), and air tempering (AT + 10 °C, 10 ± 1 °C) on the physiochemical properties of salmon fillets were investigated in this study. The quality of salmon fillets was evaluated in terms of drip loss, cooking loss, color, water migration and texture properties. Results showed that all tempering methods affected salmon fillet quality. The tempering times of WT + 10 °C and AT + 10 °C were 3.0 and 12.8 times longer than that of RT, respectively. AT + 10 °C produced the most uniform temperature distribution, followed by WT + 10 °C and RT. The amount of immobile water shifting to free water after WT + 10 °C was higher than that of RT and AT + 10 °C, which was in consistent with the drip and cooking loss. The spaces between the intercellular fibers increased significantly after WT + 10 °C compared to those of RT and AT + 10 °C. The results demonstrated that RT was an alternative novel salmon tempering method, which was fast and relatively uniform with a high quality retention rate. It could be applied to frozen salmon fillets after receiving from overseas catches, which need temperature elevation for further cutting or consumption.
Collapse
Affiliation(s)
- Rong Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Jialing He
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Yixuan Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Feng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Hu Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Yang Jiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
- Correspondence: ; Tel.: +86-21-6190-8758
| |
Collapse
|
14
|
Wang H, Shi W, Wang X. Effects of different thawing methods on microstructure and the biochemical properties of tilapia (
Oreochromis niloticus
) fillets during frozen storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongli Wang
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| | - Wenzheng Shi
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| | - Xichang Wang
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| |
Collapse
|
15
|
Wang XY, Xie J. Comparison of Physicochemical Changes and Water Migration of Acinetobacter johnsonii, Shewanella putrefaciens, and Cocultures From Spoiled Bigeye Tuna ( Thunnus obesus) During Cold Storage. Front Microbiol 2021; 12:727333. [PMID: 34777276 PMCID: PMC8586447 DOI: 10.3389/fmicb.2021.727333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
This study investigates the physicochemical changes and water migration of Acinetobacter johnsonii (A), Shewanella putrefaciens (S), and cocultured A. johnsonii and S. putrefaciens (AS) inoculated into bigeye tuna during cold storage. The physicochemical indexes [fluorescence ratio (FR), total volatile base nitrogen (TVB-N), thiobarbituric acid (TBA), trimethylamine (TMA), peroxide value (POV), and pH] of bigeye tuna increased cold storage. A significant decrease in trapped water was found in the AS samples, and direct monitoring of the water dynamics was provided by low-field nuclear magnetic resonance. Samples inoculated with A. johnsonii and S. putrefaciens also induced the degradation of myofibrillar proteins and weakness of some Z-lines and M-lines. Higher values of physicochemical indexes and water dynamics were shown in the coculture of S. putrefaciens and A. johnsonii than in the other groups. Therefore, this paper reveals that the coculture of A. johnsonii and S. putrefaciens resulted in a bigeye tuna that was more easily spoiled when compared to the single culture. This study provides insight into the spoilage potential of A. johnsonii and S. putrefaciens during cold storage, which further assists in the application of appropriate technologies to keep the freshness of aquatic foods.
Collapse
Affiliation(s)
- Xin-Yun Wang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
16
|
Barbhuiya RI, Singha P, Singh SK. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Res Int 2021; 149:110647. [PMID: 34600649 DOI: 10.1016/j.foodres.2021.110647] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Non-thermal food processing is a viable alternative to traditional thermal processing to meet customer needs for high-quality, convenient and minimally processed foods. They are designed to eliminate elevated temperatures during processing and avoid the adverse effects of heat on food products. Numerous thermal and novel non-thermal technologies influence food structure at the micro and macroscopic levels. They affect several properties such as rheology, flavour, process stability, texture, and appearance at microscopic and macroscopic levels. This review presents existing knowledge and advances on the impact of non-thermal technologies, for instance, cold plasma treatment, irradiation, high-pressure processing, ultrasonication, pulsed light technology, high voltage electric field and pulsed electric field treatment on the structural changes of food components. An extensive review of the literature indicates that different non-thermal processing technologies can affect the food components, which significantly affects the structure of food. Applications of novel non-thermal technologies have shown considerable impact on food structure by altering protein structures via free radicals or larger or smaller molecules. Lipid oxidation is another process responsible for undesirable effects in food when treated with non-thermal techniques. Non-thermal technologies may also affect starch properties, reduce molecular weight, and change the starch granule's surface. Such modification of food structure could create novel food textures, enhance sensory properties, improve digestibility, improve water-binding ability and improve mediation of gelation processes. However, it is challenging to determine these technologies' influence on food components due to differences in their primary operation and equipment design mechanisms and different operating conditions. Hence, to get the most value from non-thermal technologies, more in-depth research about their effect on various food components is required.
Collapse
Affiliation(s)
- Rahul Islam Barbhuiya
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
17
|
Vilkova D, Kondratenko E, Chèné C, Karoui R. Effect of multiple freeze–thaw cycles on the quality of Russian sturgeon (Acipenser gueldenstaedtii) determined by traditional and emerging techniques. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Bozzato A, Pippia E, Tiberi E, Manzocco L. Air impingement to reduce thawing time of chicken fingers for food service. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arianna Bozzato
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali University of Udine Udine Italy
- The Research Hub by Electrolux Professional SpA Pordenone Italy
| | - Eleonora Pippia
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche University of Udine Udine Italy
| | - Emidio Tiberi
- The Research Hub by Electrolux Professional SpA Pordenone Italy
| | - Lara Manzocco
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali University of Udine Udine Italy
| |
Collapse
|
19
|
Rapid evaluation of freshness of largemouth bass under different thawing methods using hyperspectral imaging. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Mousakhani-Ganjeh A, Amiri A, Nasrollahzadeh F, Wiktor A, Nilghaz A, Pratap-Singh A, Mousavi Khaneghah A. Electro-based technologies in food drying - A comprehensive review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Li F, Zhu Y, Li S, Wang P, Zhang R, Tang J, Koral T, Jiao Y. A strategy for improving the uniformity of radio frequency tempering for frozen beef with cuboid and step shapes. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Anukiruthika T, Moses J, Anandharamakrishnan C. Electrohydrodynamic drying of foods: Principle, applications, and prospects. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Applying low voltage electrostatic field in the freezing process of beef steak reduced the loss of juiciness and textural properties. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102600] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Li J, Shi J, Huang X, Zou X, Li Z, Zhang D, Zhang W, Xu Y. Effects of pulsed electric field on freeze-thaw quality of Atlantic salmon. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102454] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Pinto VS, Flores IS, Ferri PH, Lião LM. NMR Approach for Monitoring Caranha Fish Meat Alterations due to the Freezing-Thawing Cycles. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01836-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Huang H, Sun W, Xiong G, Shi L, Jiao C, Wu W, Li X, Qiao Y, Liao L, Ding A, Wang L. Effects of HVEF treatment on microbial communities and physicochemical properties of catfish fillets during chilled storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Xu CC, Yu H, Xie P, Sun BZ, Wang XY, Zhang SS. Influence of Electrostatic Field on the Quality Attributes and Volatile Flavor Compounds of Dry-Cured Beef during Chill Storage. Foods 2020; 9:foods9040478. [PMID: 32290142 PMCID: PMC7230492 DOI: 10.3390/foods9040478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 12/03/2022] Open
Abstract
The purpose was to investigate the quality characteristics of dry-cured beef with different storage times under a high-voltage electrostatic field (HVEF) condition. The pH, moisture content, meat color, and volatile compounds of dry-cured beef samples treated with HVEF (3 kV) were compared with those of a common refrigerator (CON) at days 0, 3, 7, 10, and 14. The results showed that, compared with CON group, the decline rates of the pH and moisture content of beef and ∆E values were lower under HVEF storage condition. From the fingerprints, the 42 volatile compounds identified were mainly aldehydes, alcohols, ketones, and esters. The benzaldehyde, trimethyl pyrazine, and maltol contents in the HVEF group exhibited a dramatic increase after 10 days of storage. Principal component analysis revealed clustering of compound classes, distributed in a separate time. Based on the above findings, we concluded that HVEF treatment could promote color stability and enhance characteristic flavor during the storage of dry-cured beef. These results suggested that HVEF might be applicable for dry-cured meat storage techniques.
Collapse
Affiliation(s)
- Chen-Chen Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.-C.X.); (P.X.); (B.-Z.S.)
| | - Hui Yu
- Shandong Agriculture and Engineering College, Jinan 250100, China; (H.Y.); (X.-Y.W.)
| | - Peng Xie
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.-C.X.); (P.X.); (B.-Z.S.)
| | - Bao-Zhong Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.-C.X.); (P.X.); (B.-Z.S.)
| | - Xiang-Yuan Wang
- Shandong Agriculture and Engineering College, Jinan 250100, China; (H.Y.); (X.-Y.W.)
| | - Song-Shan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.-C.X.); (P.X.); (B.-Z.S.)
- Correspondence: ; Tel.: +86-010-62816010
| |
Collapse
|
28
|
Fattahi S, Zamindar N. Effect of immersion ohmic heating on thawing rate and properties of frozen tuna fish. FOOD SCI TECHNOL INT 2020; 26:453-461. [PMID: 32013563 DOI: 10.1177/1082013219895884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, the application of immersion ohmic heating was examined to improve thawing of frozen tuna fish cubes. The experimental tuna cubes (3 × 3 × 3 cm3) were thawed under ohmic heating subjected to three different voltages (40, 50, and 60 V) with three different concentrations (0.3, 0.4, and 0.5% w/v) of brine solution. The parameters associated with the quality of tuna, such as thawing time, thawing rate, thawing loss, cooking and total losses, centrifugal loss, lipid oxidation, texture, and color, were investigated during ohmic heating thawing, and compared with the conventional still air thawing, water thawing at 27 and 40 ℃. The results showed that immersion ohmic thawing significantly decreased the thawing time of frozen tuna fish cubes. Thawing time in ohmic treatment (50 V- 0.3% brine) was 5.95 times shorter than conventional conditions. The lowest thawing and cooking losses were observed at ohmic treatments. In addition, the ohmic treatments (group 1) were evaluated versus conventional methods (group 2) and the results showed that thawing and total losses in group 1 were significantly lower than group 2.
Collapse
Affiliation(s)
| | - Nafiseh Zamindar
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
29
|
Effects of High-Voltage Electric Field Process Parameters on the Water-Holding Capacity of Frozen Beef during Thawing Process. J FOOD QUALITY 2019. [DOI: 10.1155/2019/9140179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to investigate the thawing time and water-holding capacity under high-voltage electric field (HVEF), we studied the thawing experiments of frozen beef in a multiple needles-to-plate electrode system. The electric field, thawing characteristics, and quality parameters during the thawing process were measured. The results showed that compared with the control, the thawing time of beef under HVEF was significantly shortened, the thawing rate increased significantly, the drip loss decreased, and the centrifugal loss increased during the thawing process. By the response surface analysis and single-factor analysis of variance, the best thawing conditions for each thawing parameter were determined. It provides a theoretical basis and practical guidance for understanding the characteristic parameters of the high-voltage electric field thawing technology.
Collapse
|
30
|
Effects of low voltage electrostatic field thawing on the changes in physicochemical properties of myofibrillar proteins of bovine Longissimus dorsi muscle. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Biological Effects of High-Voltage Electric Field Treatment of Naked Oat Seeds. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In order to study the mechanism of high-voltage electric field (HVEF) biotechnology, corona discharge produced by a multi-needle-plate HVEF was used to treat naked oat seeds, each treatment dose was divided into two groups, one group was covered with a petri dish cover, the other group was directly exposed to HVEF without a petri dish cover. The scanning electron microscope (SEM) results show that the etching degree of the uncovered group was more serious than that of the covered group, it indicates that ion wind etching has a greater impact on the micro-morphology of seed coat, being covered can effectively reduce the etching degree of discharge plasma on seed. Fourier Transform infrared spectroscopy (FTIR) of the seed coat shows most of the HVEF treatment group can form a new absorption peak at 1740 cm−1, which is closely related to the hydrophilicity of the seed. Comprehensive analysis shows that HVEF treatment can improve the hydrophilicity of seeds, whether they are covered or not. Being covered can reduce the degree of etching of the seed coat, but increase the hydrophilicity of the seed, indicating that the non-uniform electric field has a greater impact on the hydrophilicity of the seed. Our study showed that ion wind had an effect on the micro-morphology of seeds, but this effect didn’t translate into a macroscopic effect. This study provides ideas and experimental data support for the study of the biotechnological mechanism of HVEF.
Collapse
|
32
|
Amiri A, Mousakhani-Ganjeh A, Shafiekhani S, Mandal R, Singh AP, Kenari RE. Effect of high voltage electrostatic field thawing on the functional and physicochemical properties of myofibrillar proteins. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102191] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Cai L, Cao M, Regenstein J, Cao A. Recent Advances in Food Thawing Technologies. Compr Rev Food Sci Food Saf 2019; 18:953-970. [DOI: 10.1111/1541-4337.12458] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Luyun Cai
- Dept. of Food ScienceChina Jiliang Univ. Hangzhou Zhejiang 310018 China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsBohai Univ. Jinzhou Liaoning 121013 China
| | - Minjie Cao
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsBohai Univ. Jinzhou Liaoning 121013 China
| | | | - Ailing Cao
- Hangzhou Customs District Hangzhou Zhejiang 310007 China
| |
Collapse
|
34
|
Quality Changes and Discoloration of Basa (Pangasius bocourti) Fillet during Frozen Storage. J CHEM-NY 2018. [DOI: 10.1155/2018/5159080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Physicochemical changes of Basa fish (Pangasius bocourti) fillet during frozen storage at −20°C for 0–20 weeks were studied. The content of thiobarbituric acid reactive substances (TBARS) of fish samples suddenly increased when the samples were stored longer than 8 weeks (p<0.05). The increase in TBARS value of the fish fillet was concomitant with the increase in b∗ value (yellow color). Marked decreases in Ca2+-ATPase activity, sulfhydryl content, and protein solubility of the fish fillet after 8 weeks of storage were observed. Those decreasing values were well correlated with the increasing of disulfide bond content and surface hydrophobicity content (p<0.05). Increases in shear force of fish meat during storage were also observed (p<0.05). The results indicated that frozen storage at −20°C affected on Basa fillet qualities, especially after 8 weeks of storage. These data could be useful for consumer and food industry.
Collapse
|
35
|
High-Voltage Electric Field-Assisted Thawing of Frozen Tofu: Effect of Process Parameters and Electrode Configuration. J FOOD QUALITY 2018. [DOI: 10.1155/2018/5191075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Applying high-voltage electric field (HVEF) to some food materials has been shown to increase the thawing rate. To investigate the effect of process parameters and electrode configuration in high-voltage electric field system, we took the frozen tofu as the research object and investigated the influence of the different voltages, electrode configuration, and electrode distances on thawing process. The thawing time, center temperatures, and loss rate of samples were measured. The results showed that the thawing time of frozen tofu decreases with the increase of voltage and the thawing time has a great relevance with configuration and distance of electrodes. The electric parameters have a major effect on thawing loss and thawing time when center temperatures of frozen tofu are from −2°C to 0°C. This work provides clues and experimental basis for the further application of high-voltage electric field thawing technology.
Collapse
|
36
|
Wang Q, Li Y, Sun DW, Zhu Z. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications. Crit Rev Food Sci Nutr 2018; 58:2285-2298. [PMID: 29393667 DOI: 10.1080/10408398.2018.1434609] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Improvements in living standards result in a growing demand for food with high quality attributes including freshness, nutrition and safety. However, current industrial processing methods rely on traditional thermal and chemical methods, such as sterilization and solvent extraction, which could induce negative effects on food quality and safety. The electric fields (EFs) involving pulsed electric fields (PEFs) and high voltage electric fields (HVEFs) have been studied and developed for assisting and enhancing various food processes. In this review, the principles and applications of pulsed and high voltage electric fields are described in details for a range of food processes, including microbial inactivation, component extraction, and winemaking, thawing and drying, freezing and enzymatic inactivation. Moreover, the advantages and limitations of electric field related technologies are discussed to foresee future developments in the food industry. This review demonstrates that electric field technology has a great potential to enhance food processing by supplementing or replacing the conventional methods employed in different food manufacturing processes. Successful industrial applications of electric field treatments have been achieved in some areas such as microbial inactivation and extraction. However, investigations of HVEFs are still in an early stage and translating the technology into industrial applications need further research efforts.
Collapse
Affiliation(s)
- Qijun Wang
- a School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou 510006 , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou 510641 , China
| | - Yifei Li
- a School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou 510006 , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou 510641 , China
| | - Da-Wen Sun
- a School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou 510006 , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou 510641 , China.,d Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre , University College Dublin, National University of Ireland , Belfield , Dublin 4 , Ireland
| | - Zhiwei Zhu
- a School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou 510006 , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou 510641 , China
| |
Collapse
|
37
|
Jia G, Nirasawa S, Ji X, Luo Y, Liu H. Physicochemical changes in myofibrillar proteins extracted from pork tenderloin thawed by a high-voltage electrostatic field. Food Chem 2018; 240:910-916. [DOI: 10.1016/j.foodchem.2017.07.138] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/16/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
|
38
|
Rahbari M, Hamdami N, Mirzaei H, Jafari SM, Kashaninejad M, Khomeiri M. Effects of high voltage electric field thawing on the characteristics of chicken breast protein. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Roiha IS, Jónsson Á, Backi CJ, Lunestad BT, Karlsdóttir MG. A comparative study of quality and safety of Atlantic cod (Gadus morhua) fillets during cold storage, as affected by different thawing methods of pre-rigor frozen headed and gutted fish. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:400-409. [PMID: 28862323 PMCID: PMC5725708 DOI: 10.1002/jsfa.8649] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 08/09/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The catch of marine whitefish is typically seasonal, whereas the land-based processing industry has a need for all-year stable supply of raw materials. This challenge can be met by applying fish frozen at sea. When using frozen fish, the methods employed for thawing may influence the safety and quality of the final product. This study aimed to investigate the applicability of novel thawing strategies in order to provide an all-year supply of high-quality and safe cod products. RESULTS Comparative investigations of quality and safety factors after thawing in water, with and without air circulation, and contact thawing were performed. The parameters included water-holding capacity, thawing loss, drip loss, cooking yield, sensory evaluation and microbiological analyses (including total volatile bases nitrogen). Water thawing with air circulation provided faster thawing than water thawing without air circulation and contact thawing. For all three methods, the quality of the thawed fish was acceptable and the shelf life of the fillets during chilled storage was between 10 and 14 days post-filleting. CONCLUSION The results show that controlled freezing of cod, followed by appropriate thawing, may provide the processing industry with an all-year delivery of raw materials, without compromising quality and safety of the final product. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Irja Sunde Roiha
- National Institute of Nutrition and Seafood ResearchNordnes, BergenNorway
| | - Ásbjörn Jónsson
- Matís Ltd. Icelandic Food and Biotech R&DVinlandsleid 12, ReykjavíkIceland
| | - Christoph Josef Backi
- Department of Chemical EngineeringNorwegian University of Science and Technology7491TrondheimNorway
| | | | | |
Collapse
|
40
|
Affiliation(s)
- Christoph Josef Backi
- Norwegian University of Science and Technology; Department of Chemical Engineering, NO-7491 Trondheim; Norway
| |
Collapse
|
41
|
The Thawing Characteristic of Frozen Tofu under High-Voltage Alternating Electric Field. J FOOD QUALITY 2017. [DOI: 10.1155/2017/3914074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To systematically and comprehensively investigate the high voltage alternating electric field (HVAEF) thawing processing, we investigated the high-voltage electric field thawing characteristic of the frozen tofu at different voltages for alternating current (AC). The thawing time, thawing loss of frozen tofu, and specific energy consumption (SEC) of HVEF system were measured. Seven different mathematical models were then compared to simulate thawing time curves based on root mean square error, reduced mean square of deviation, and modeling efficiency. The results showed that the thawing rate of frozen tofu was notably greater in the high-voltage electric field system when compared to control. Both Linear and Quadratic models were the best mathematical models. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the HVAEF thawing properties of frozen tofu.
Collapse
|
42
|
Dalvi-Isfahan M, Hamdami N, Le-Bail A, Xanthakis E. The principles of high voltage electric field and its application in food processing: A review. Food Res Int 2016; 89:48-62. [DOI: 10.1016/j.foodres.2016.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 11/27/2022]
|