1
|
Li MN, Jia XZ, Yao QB, Zhu F, Huang YY, Zeng XA. Recent advance for animal-derived polysaccharides in nanomaterials. Food Chem 2024; 459:140208. [PMID: 39053112 DOI: 10.1016/j.foodchem.2024.140208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024]
Abstract
Inspired by the structure characteristics of natural products, the size and morphology of particles are carefully controlled using a bottom-up approach to construct nanomaterials with specific spatial unit distribution. Animal polysaccharide nanomaterials, such as chitosan and chondroitin sulfate nanomaterials, exhibit excellent biocompatibility, degradability, customizable surface properties, and novel physical and chemical properties. These nanomaterials hold great potential for development in achieving a sustainable bio-economy. This paper provides a summary of the latest research results on the preparation of nanomaterials from animal polysaccharides. The mechanism for preparing nanomaterials through the bottom-up method from different sources of animal polysaccharides is introduced. Furthermore, this paper discusses the potential hazards posed by industrial applications to the environment and human health, as well as the challenges and future prospects associated with using animal polysaccharides in nanomaterials.
Collapse
Affiliation(s)
- Meng-Na Li
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Xiang-Ze Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Qing-Bo Yao
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Feng Zhu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Yan-Yan Huang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China.
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China.
| |
Collapse
|
2
|
Colnot E, O’Reilly J, Morin D. Effect of chronic prenatal exposure to the food additive titanium dioxide E171 on respiratory activity in newborn mice. Front Pediatr 2024; 12:1337865. [PMID: 38487474 PMCID: PMC10937531 DOI: 10.3389/fped.2024.1337865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Nanoparticles (NPs) possess unique properties that make their use valuable in all industries. Titanium dioxide (TiO2) NPs are extensively used as a white pigment in food (labeled under the European number E171) and personal care products, which creates a significant potential for chronic consumer exposure. Concerns about the potential toxic effects of TiO2 NPs have arisen, particularly in vulnerable populations, including pregnant women and infants. Recently, human materno-fetal transfer of E171 was demonstrated, and simultaneously, we reported that chronic prenatal exposure to reference P25 TiO2 NPs was found to alter the developing respiratory neural networks. In this study, using whole body plethysmography from postnatal day (P) 0 to P7, we assessed the respiratory function of newborn mice born to mothers fed with E171 during pregnancy. We also evaluated the potential alterations to respiratory centers by using brainstem-spinal cord electrophysiological recordings from P0 to P6. Our study reveals that E171-prenatally exposed animals displayed an abnormally elevated breathing rate from P3 onwards. From P5 to P6, the respiratory-related burst frequency generated by the isolated brainstem-spinal cord preparations was significantly higher in E171-exposed animals than in non-exposed animals. These findings demonstrate prenatal toxicity of E171 to the developing respiratory function and may contribute to policy-making regarding the use of TiO2 NPs.
Collapse
Affiliation(s)
- Eloïse Colnot
- CNRS, INCIA, Universityof Bordeaux, Bordeaux, France
| | | | - Didier Morin
- CNRS, INCIA, Universityof Bordeaux, Bordeaux, France
- Department of Health, Safety and Environment, Bordeaux Institute of Technology, University of Bordeaux, Gradignan, France
| |
Collapse
|
3
|
Mann MK, Sooch BS. Biodegradable nano-reinforced packaging with improved functionality to extend the freshness and longevity of Plums Oemleria cerasiformis. Sci Rep 2023; 13:14583. [PMID: 37666921 PMCID: PMC10477292 DOI: 10.1038/s41598-023-41640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
Food packaging reinforced with Zn-doped TiO2 nanoparticles with enhanced prerequisite film-forming and biodegradable traits was prepared to augment fresh food storage. Pure and tailored metal (Zinc, Copper, and Selenium) doped TiO2 nanoparticles were synthesized and analyzed through multiple characterization techniques (optical spectra, XRD patterns (X-Ray Diffraction), Dynamic Light Scattering, and Scanning Electron Microscopy). The synthesized nanoparticles were tested for their Minimum Inhibitory Concentrations, antimicrobial potential against common lethal food pathogens, and cytotoxicity. Compared to Cu- and Se-doped nanoparticles, Zn-doped TiO2 nanoparticles displayed the most potent antimicrobial activity with insignificant cytotoxicity and were incorporated into the food packaging materials. The developed nano-reinforced food packaging efficaciously augmented the freshness of plums (Oemleria cerasiformis) for 16 days (42 ± 2 °C). The physicomechanical characterization of the nano-reinforced packaging establishes its utility in food packaging applications. The developed biodegradable packaging undergoes complete decomposition within 12 days of storage in natural soil.
Collapse
Affiliation(s)
- Manpreet Kaur Mann
- Enzyme Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147002, India
| | - Balwinder Singh Sooch
- Enzyme Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
4
|
Abd El‐Ghany NA, Abu Elella MH. Overview of Different Materials Used in Food Production. MATERIALS SCIENCE AND ENGINEERING IN FOOD PRODUCT DEVELOPMENT 2023:1-25. [DOI: 10.1002/9781119860594.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Naidoo L, Uwaya GE, Meier F, Bisetty K. A novel electrochemical sensor for the detection of zearalenone in food matrices using PEGylated Fe3O4 nanoparticles supported by in-silico and multidetector AF4. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Höfte H. A dive into the cell wall with Arabidopsis. C R Biol 2023; 345:41-60. [PMID: 36847119 DOI: 10.5802/crbiol.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
One of the many legacies of the work of Michel Caboche is our understanding of plant cell wall synthesis and metabolism thanks to the use of Arabidopsis mutants. Here I describe how he was instrumental in initiating the genetic study of plant cell walls. I also show, with a few examples for cellulose and pectins, how this approach has led to important new insights in cell wall synthesis and how the metabolism of pectins contributes to plant growth and morphogenesis. I also illustrate the limitations of the use of mutants to explain processes at the scale of cells, organs or whole plants in terms of the physico-chemical properties of cell wall polymers. Finally, I sketch how new approaches can cope with these limitations.
Collapse
|
7
|
Nano clays and its composites for food packaging applications. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Biswas R, Alam M, Sarkar A, Haque MI, Hasan MM, Hoque M. Application of nanotechnology in food: processing, preservation, packaging and safety assessment. Heliyon 2022; 8:e11795. [PMID: 36444247 PMCID: PMC9699984 DOI: 10.1016/j.heliyon.2022.e11795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/28/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Even though nanotechnology is extensively applied in agriculture, biochemistry, medicine and many other sectors, it is a developing field that conforms to new and more complex applications in food systems as compared to other technologies. It offers a viable strategy for integrating cutting-edge technology into a wide range of operations related to the production, development, fabrication, packaging, storage and distribution of food. The most fundamentally sophisticated technology in nano-based food science, nanoparticles deal with a wide range of nanostructured materials and nano methods, including nanofood, nanotubes, nanocomposites, nano packaging, nanocapsules, nanosensors, liposomes, nanoemulsions, polymeric nanoparticles and nanoencapsulation. This method is developed to increase food solubility and shelf life, availability of bioactive chemical, the protection of food constituents, nutritional supplementation, fortification and food or constituent delivery. Additionally, it serves as an antibacterial agent by generating reactive oxygen species (ROS) which cause bacterial DNA damage, protein denaturation and cell damage. Although the use of nanotechnology in food applications is advancing, there are certain negative or dangerous effects on health related to the toxicity and dangers of ingesting nanoparticles in food. The use of nanotechnology in the food industry, notably in processing, preservation and packaging, with its promising future, was addressed in this study. The toxicity of nanoparticles in food as well as its development in food safety assessments with certain areas of concern were also reviewed.
Collapse
Affiliation(s)
- Rahul Biswas
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahabub Alam
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Animesh Sarkar
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Ismail Haque
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md. Moinul Hasan
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mominul Hoque
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
9
|
Naguib M, Mekkawy IA, Mahmoud UM, Sayed AEDH. Genotoxic evaluation of silver nanoparticles in catfish Clarias gariepinus erythrocytes; DNA strand breakage using comet assay. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Nanonutraceuticals — Challenges and Novel Nano-based Carriers for Effective Delivery and Enhanced Bioavailability. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02807-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Changez M, Anwar MF, Al-Ghenaime S, Kapoor S, Balushi RA, Chaudhuri A. Synergic effect of aqueous extracts of Ocimum sanctum and Trigonella foenum-graecum L on the in situ green synthesis of silver nanoparticles and as a preventative agent against antibiotic-resistant food spoiling organisms. RSC Adv 2022; 12:1425-1432. [PMID: 35425194 PMCID: PMC8978925 DOI: 10.1039/d1ra08098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
The combination of Ocimum sanctum and Trigonella foenum-graecum L leaf water extract synergistically acts as a reducing and capping agent for the synthesis of narrow polydisperse silver nanoparticles (Ag NPs) with controlled sizes depending on the precursor (AgNO3) concentration in the plant extract. The toxicity of 40 nm-sized green synthesized Ag NPs is less than that of 10 nm-sized NPs. The Ag NP solution in Ocimum sanctum and Trigonella foenum-graecum L leaf water extract shows synergic antibacterial effect on Gram-negative bacteria by effecting the ester group of the lipids (hydrolysis) and also breaking the amide bonds of the bacterial chemical constituents, which leads to their rapid death.
Collapse
Affiliation(s)
- Mohammad Changez
- College of Applied and Health Sciences, A' Sharqiyah University Ibra 400 Sultanate of Oman
| | | | - Said Al-Ghenaime
- College of Applied and Health Sciences, A' Sharqiyah University Ibra 400 Sultanate of Oman
| | - Sumeet Kapoor
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD) India
| | - Rayya Al Balushi
- College of Applied and Health Sciences, A' Sharqiyah University Ibra 400 Sultanate of Oman
| | | |
Collapse
|
12
|
Dey A, Pandey G, Rawtani D. Functionalized nanomaterials driven antimicrobial food packaging: A technological advancement in food science. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
|
14
|
Arshad R, Gulshad L, Haq I, Farooq MA, Al‐Farga A, Siddique R, Manzoor MF, Karrar E. Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Sci Nutr 2021; 9:3354-3361. [PMID: 34136200 PMCID: PMC8194941 DOI: 10.1002/fsn3.2311] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology has revolutionized the field of food systems, diagnostics, therapeutics, pharmaceuticals, the agriculture sector, and nutraceuticals. Nanoparticles are playing important role in giving the solution to enhance bioavailability of oral delivery of bioactive compounds. This review revealed that nanoparticles can improve the bioavailability of micronutrients, for example, vitamin B12, vitamin A, folic acid, and iron. However, toxicity associated with nanoparticle-based delivery systems is still a major concern after ingestion of nano-based supplements. The mode of the mechanism of nanomaterial along with bioactive components in different physiological conditions of the human body is also a major gap in the field of nanoceuticals. In the future, more evidence-based clinical investigations are needed to confirm the exact approach to physiological changes in the human body.
Collapse
Affiliation(s)
- Rizwan Arshad
- University Institute of Diet and Nutritional SciencesThe University of Lahore, Gujrat CampusGujratPakistan
| | - Lubaba Gulshad
- University Institute of Diet and Nutritional SciencesThe University of Lahore, Gujrat CampusGujratPakistan
| | - Iahtisham‐Ul‐ Haq
- School of Food and NutritionFaculty of Allied Health SciencesMinhaj UniversityLahorePakistan
| | - Muhammad Adil Farooq
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Department of Food Science and TechnologyKhwaja Fareed University of Engineering and Information TechnologyRahim Yar KhanPakistan
| | - Ammar Al‐Farga
- Department of BiochemistryCollege of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Rabia Siddique
- Department of ChemistryGovernment College University FaisalabadFaisalabadPakistan
| | | | - Emad Karrar
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| |
Collapse
|
15
|
Abstract
Carbon-based nanomaterials (CBN) are currently used in many biomedical applications. The research includes optimization of single grain size and conglomerates of pure detonated nanodiamond (DND), modified nanodiamond particles and graphene oxide (GO) in order to compare their bactericidal activity against food pathogens. Measurement of grain size and zeta potential was performed using the Dynamic Light Scattering (DLS) method. Surface morphology was evaluated using a Scanning Electron Microscope (SEM) and confocal microscope. X-ray diffraction (XRD) was performed in order to confirm the crystallographic structure of detonation nanodiamond particles. Bacteriostatic tests were performed by evaluating the inhibition zone of pathogens in the presence of carbon based nanomaterials. Raman spectroscopy showed differences between the content of the diamond and graphite phases in diamond nanoparticles. Fluorescence microscopy and adenosine-5′-triphosphate (ATP) determination methods were used to assess the bactericidal of bioactive polymers obtained by modification of food wrapping film using various carbon-based nanomaterials. The results indicate differences in the sizes of individual grains and conglomerates of carbon nanomaterials within the same carbon allotropes depending on surface modification. The bactericidal properties depend on the allotropic form of carbon and the type of surface modification. Depending on the grain size of carbon-based materials, surface modification, the content of the diamond and graphite phases, surface of carbon-based nanomaterials film formation shows more or less intense bactericidal properties and differentiated adhesion of bacterial biofilms to food films modified with carbon nanostructures.
Collapse
|
16
|
Thermal stability, hydrophobicity and antioxidant potential of ultrafine poly (lactic acid)/rice husk lignin fibers. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-020-00083-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Ndwandwe BK, Malinga SP, Kayitesi E, Dlamini BC. Advances in green synthesis of selenium nanoparticles and their application in food packaging. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bongekile K. Ndwandwe
- Department of Biotechnology and Food Technology University of Johannesburg Doornfontein Campus, P.O. Box 17011 Doornfontein, Johannesburg2028South Africa
| | - Soraya P. Malinga
- Department of Chemical Sciences University of Johannesburg P.O Box 17011 Doornfontein, Johannesburg2028South Africa
| | - Eugénie Kayitesi
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20 Hatfield0028South Africa
| | - Bhekisisa C. Dlamini
- Department of Biotechnology and Food Technology University of Johannesburg Doornfontein Campus, P.O. Box 17011 Doornfontein, Johannesburg2028South Africa
| |
Collapse
|
18
|
Wang Y, Yi S, Lu R, Sameen DE, Ahmed S, Dai J, Qin W, Li S, Liu Y. Preparation, characterization, and 3D printing verification of chitosan/halloysite nanotubes/tea polyphenol nanocomposite films. Int J Biol Macromol 2020; 166:32-44. [PMID: 33035530 DOI: 10.1016/j.ijbiomac.2020.09.253] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/17/2023]
Abstract
In this study, chitosan/halloysite nanotubes/tea polyphenol (CS/HNTs/TP) nanocomposite films were prepared by the solution casting method. The scanning electron microscopy (SEM) result showed that the nanocomposite film with a CS/HNTs ratio of 6:4 and a TP content of 10% (C6H4-TP10) had a relatively smooth surface and a dense internal structure. The water vapor barrier property of the nanocomposite film was improved due to the tortuous channels formed by the HNTs. However, the swelling degree and water solubility of the nanocomposite films were decreased. The nanocomposite films have a good antioxidant capacity. Antibacterial experiments showed that the C6H4-TP10 nanocomposite film had certain inhibitory effects on the growth of both E. coli and S. aureus. In addition, we used 3D printer to verify the printability of the optimal formulation of the film-forming solution. Overall, this strategy provides a simple approach to construct promising natural antioxidants and antibacterial food packaging.
Collapse
Affiliation(s)
- Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Shengkui Yi
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Rui Lu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Kumar P, Mahajan P, Kaur R, Gautam S. Nanotechnology and its challenges in the food sector: a review. MATERIALS TODAY. CHEMISTRY 2020; 17:100332. [PMID: 32835156 PMCID: PMC7386856 DOI: 10.1016/j.mtchem.2020.100332] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 05/05/2023]
Abstract
Antibacterial activity of nanoparticles has received significant attention worldwide because of their great physical and chemical stability, excellent magnetic properties, and large lattice constant values. These properties are predominate in the food science for enhancing the overall quality, shelf life, taste, flavor, process-ability, etc., of the food. Nanoparticles exhibit attractive antibacterial activity due to their increased specific surface area leading to enhanced surface reactivity. When nanoparticles are suspended in the biological culture, they encounter various biological interfaces, resulting from the presence of cellular moieties like DNA, proteins, lipids, polysaccharides, etc., which helps antibacterial properties in many ways. This paper reviews different methods used for the synthesis of nanoparticles but is specially focusing on the green synthesis methods owing to its non-toxic nature towards the environment. This review highlights their antibacterial application mainly in the food sector in the form of food-nanosensors, food-packaging, and food-additives. The possible mechanism of nanoparticles for their antibacterial behavior underlying the interaction of nano-particles with bacteria, (i) excessive ROS generation including hydrogen peroxide (H2O2), OH- (hydroxyl radicals), and O- 2 2 (peroxide); and (ii) precipitation of nano-particles on the bacterial exterior; which, disrupts the cellular activities, resulting in membranes disturbance. All these phenomena results in the inhibition of bacterial growth. Along with this, their current application and future perspectives in the food sector are also discussed. Nanoparticles help in destroying not only pathogens but also deadly fungi and viruses. Most importantly it is required to focus more on the crop processing and its containment to stop the post-harvesting loss. So, nanoparticles can act as a smart weapon towards the sustainable move.
Collapse
Affiliation(s)
- P Kumar
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - P Mahajan
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - R Kaur
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - S Gautam
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
20
|
Potential of Nanotechnology for Rural Applications. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-019-04332-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
21
|
|
22
|
Durazzo A, Nazhand A, Lucarini M, Atanasov AG, Souto EB, Novellino E, Capasso R, Santini A. An Updated Overview on Nanonutraceuticals: Focus on Nanoprebiotics and Nanoprobiotics. Int J Mol Sci 2020; 21:E2285. [PMID: 32225036 PMCID: PMC7177810 DOI: 10.3390/ijms21072285] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Over the last few years, the application of nanotechnology to nutraceuticals has been rapidly growing due to its ability to enhance the bioavailability of the loaded active ingredients, resulting in improved therapeutic/nutraceutical outcomes. The focus of this work is nanoprebiotics and nanoprobiotics, terms which stand for the loading of a set of compounds (e.g., prebiotics, probiotics, and synbiotics) in nanoparticles that work as absorption enhancers in the gastrointestinal tract. In this manuscript, the main features of prebiotics and probiotics are highlighted, together with the discussion of emerging applications of nanotechnologies in their formulation. Current research strategies are also discussed, in particular the promising use of nanofibers for the delivery of probiotics. Synbiotic-based nanoparticles represent an innovative trend within this area of interest. As only few experimental studies on nanoprebiotics and nanoprobiotics are available in the scientific literature, research on this prominent field is needed, covering effectiveness, bioavailability, and safety aspects.
Collapse
Affiliation(s)
- Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition; Via Ardeatina 546, 00178 Rome, Italy
| | - Amirhossein Nazhand
- Biotechnology Department, Sari University of Agricultural Sciences and Natural Resources, 9th km of Farah Abad Road, Mazandaran, 48181 68984 Sari, Iran
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition; Via Ardeatina 546, 00178 Rome, Italy
| | - Atanas G Atanasov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici (Napoli), Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
23
|
Das G, Patra JK, Paramithiotis S, Shin HS. The Sustainability Challenge of Food and Environmental Nanotechnology: Current Status and Imminent Perceptions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4848. [PMID: 31810271 PMCID: PMC6926672 DOI: 10.3390/ijerph16234848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Nanotechnology is a connection among various branches of science with potential applications that extend over a variety of scientific disciplines, particularly in the food science and technology fields. For nanomaterial applications in food processing, such as antimicrobials on food contact surfaces along with the improvement of biosensors, electrospun nanofibers are the most intensively studied ones. As in the case of every developing skill, an assessment from a sustainability point of view is necessary to address the balance between its benefits to civilization and the unwanted effects on human health and the environment. The current review aimed to provide an update regarding the sustainability of current nanotechnology applications in food science technology, environment, and public health together with a risk assessment and toxicity evaluation.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Korea
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, GR-11855 Athens, Greece
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Korea
| |
Collapse
|
24
|
Henchion M, McCarthy M, Dillon E, Greehy G, McCarthy S. Big issues for a small technology: Consumer trade-offs in acceptance of nanotechnology in food. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102210] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
A rapid synthesis and antibacterial property of selenium nanoparticles using egg white lysozyme as a stabilizing agent. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1509-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films. Polymers (Basel) 2019; 11:polym11040658. [PMID: 30974908 PMCID: PMC6523815 DOI: 10.3390/polym11040658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
Interest in nanocellulose obtained from natural resources has grown, mainly due to the characteristics that these materials provide when incorporated in biodegradable films as an alternative for the improvement of the properties of nanocomposites. The main purpose of this work was to investigate the effect of the incorporation of nanocellulose obtained from different fibers (corncob, corn husk, coconut shell, and wheat bran) into the chitosan/glycerol films. The nanocellulose were obtained through acid hydrolysis. The properties of the different nanobiocomposites were comparatively evaluated, including their barrier and mechanical properties. The nanocrystals obtained for coconut shell (CS), corn husk (CH), and corncob (CC) presented a length/diameter ratio of 40.18, 40.86, and 32.19, respectively. Wheat bran (WB) was not considered an interesting source of nanocrystals, which may be justified due to the low percentage of cellulose. Significant differences were observed in the properties of the films studied. The water activity varied from 0.601 (WB Film) to 0.658 (CH Film) and the moisture content from 15.13 (CS Film) to 20.86 (WB Film). The highest values for tensile strength were presented for CC (11.43 MPa) and CS (11.38 MPa) films, and this propriety was significantly increased by nanocellulose addition. The results showed that the source of the nanocrystal determined the properties of the chitosan/glycerol films.
Collapse
|
27
|
Chitosan and nano-structured chitin for biobased anti-microbial treatments onto cellulose based materials. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Tan K, Heo S, Foo M, Chew IM, Yoo C. An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1309-1326. [PMID: 30308818 DOI: 10.1016/j.scitotenv.2018.08.402] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Nanocellulose, a structural polysaccharide that has caught tremendous interests nowadays due to its renewability, inherent biocompatibility and biodegradability, abundance in resource, and environmental friendly nature. They are promising green nanomaterials derived from cellulosic biomass that can be disintegrated into cellulose nanofibrils (CNF) or cellulose nanocrystals (CNC), relying on their sensitivity to hydrolysis at the axial spacing of disordered domains. Owing to their unique mesoscopic characteristics at nanoscale, nanocellulose has been widely researched and incorporated as a reinforcement material in composite materials. The world has been consuming the natural resources at a much higher speed than the environment could regenerate. Today, as an uprising candidate in soft condensed matter physics, a growing interest was received owing to its unique self-assembly behaviour and quantum size effect in the formation of three-dimensional nanostructured material, could be utilised to address an increasing concern over global warming and environmental conservation. In spite of an emerging pool of knowledge on the nanocellulose downstream application, that was lacking of cross-disciplinary study of its role as a soft condensed matter for food, water and energy applications toward environmental sustainability. Here we aim to provide an insight for the latest development of cellulose nanotechnology arises from its fascinating physical and chemical characteristic for the interest of different technology holders.
Collapse
Affiliation(s)
- KhangWei Tan
- Department of Environmental Science and Engineering, Center for Environmental Studies, Kyung Hee University, Yongin-Si 446-701, Republic of Korea
| | - SungKu Heo
- Department of Environmental Science and Engineering, Center for Environmental Studies, Kyung Hee University, Yongin-Si 446-701, Republic of Korea.
| | - MeiLing Foo
- School of Engineering, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia.
| | - Irene MeiLeng Chew
- School of Engineering, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia.
| | - ChangKyoo Yoo
- Department of Environmental Science and Engineering, Center for Environmental Studies, Kyung Hee University, Yongin-Si 446-701, Republic of Korea.
| |
Collapse
|
29
|
Sothornvit R. Nanostructured materials for food packaging systems: new functional properties. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Liao Y, Zhang R, Qian J. Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. RSC Adv 2019; 9:29154-29172. [PMID: 35702365 PMCID: PMC9116116 DOI: 10.1039/c9ra05954g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
The diverse demands of consumers for packaging functions and increasingly complex product circulation systems have spurred the development of intelligent food packaging (IFP).
Collapse
Affiliation(s)
- Yu Liao
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
- Chemical & Environmental Engineering
| | - Rui Zhang
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| | - Jun Qian
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| |
Collapse
|
31
|
Huang Y, Mei L, Chen X, Wang Q. Recent Developments in Food Packaging Based on Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E830. [PMID: 30322162 PMCID: PMC6215134 DOI: 10.3390/nano8100830] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
The increasing demand for high food quality and safety, and concerns of environment sustainable development have been encouraging researchers in the food industry to exploit the robust and green biodegradable nanocomposites, which provide new opportunities and challenges for the development of nanomaterials in the food industry. This review paper aims at summarizing the recent three years of research findings on the new development of nanomaterials for food packaging. Two categories of nanomaterials (i.e., inorganic and organic) are included. The synthetic methods, physical and chemical properties, biological activity, and applications in food systems and safety assessments of each nanomaterial are presented. This review also highlights the possible mechanisms of antimicrobial activity against bacteria of certain active nanomaterials and their health concerns. It concludes with an outlook of the nanomaterials functionalized in food packaging.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Lei Mei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Qin Wang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| |
Collapse
|
32
|
Carmelo LGP, Calbo AG, Correa DS, Ferreira MD. Sistema de baixo custo para determinação da permeabilidade de CO2 em filmes plásticos. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2018. [DOI: 10.1590/1981-6723.07117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo O objetivo deste trabalho foi desenvolver um método simples, de baixo custo e eficaz para avaliação da permeabilidade de filmes plásticos utilizados como materiais de embalagem para alimentos. Para isto, foram projetadas e construídas câmaras de permeação que permitem a troca gasosa através de um filme plástico, com área conhecida, e a medição da permeabilidade específica ao CO2 de cada filme. Para tanto, foram avaliados filmes de polietileno de baixa densidade (PEBD) e de policloreto de vinila (PVC). Os resultados demonstram correspondência com os testes realizados em equipamentos comerciais de análise da permeabilidade, em concordância com os valores apresentados por literatura específica. O método apresentado demonstrou eficiência nas análises de filmes poliméricos, podendo ser utilizado como uma ferramenta na determinação da permeabilidade de filmes a diferentes gases, como O2, CO2 e etileno. Além disto, o equipamento é de simples operação e os parâmetros, como umidade relativa, temperatura e fluxo, são facilmente ajustáveis.
Collapse
|
33
|
Abstract
Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized.
Collapse
|