1
|
Zhao F, Guo J, Zhang G, Zhang L. Insight into konjac glucomannan-retarding deterioration of steamed bread during frozen storage: Quality characteristics, water status, multi-scale structure, and flavor compounds. Food Res Int 2024; 195:114962. [PMID: 39277233 DOI: 10.1016/j.foodres.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Konjac glucomannan (KGM), a water-soluble hydrocolloid, holds considerable potential in the food industry, especially for improving the quality and nutritional properties of frozen products. This study explored the alleviative effect of KGM on the quality characteristics, water status, multi-scale structure, and flavor compounds of steamed bread throughout frozen storage. KGM significantly improved the quality of steamed bread by slowing down the decrease in water content and the increase in water migration while maintaining softness and taste during frozen storage. Notably, KGM also delayed amylopectin retrogradation and starch recrystallization, thus preserving the texture and structure of the steamed bread. At week 3, the microstructure of the steamed bread with 1.0 % KGM remained intact, with the lowest free sulfhydryl content. Additionally, heat map analysis revealed that KGM contributed to flavor retention in steamed bread frozen for 3 weeks. These results indicate that KGM holds promise as an effective cryoprotectant for improving the quality of frozen steamed bread.
Collapse
Affiliation(s)
- Fen Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Gege Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Lantian Zhang
- Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Hebei Food Inspection and Research Institute, Shijiazhuang 050227, PR China
| |
Collapse
|
2
|
Wang J, Wen J, Fan X, Zheng X. Control of the oil content of fried dough sticks through modulating structure change by reconstituted gluten fractions. Food Chem 2024; 455:139909. [PMID: 38843717 DOI: 10.1016/j.foodchem.2024.139909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
In our study, we explored how gluten's role during dough formation and thermal processing can mitigate the adverse effects of physical factors on product quality. We discovered that a gluten network with a gliadin/glutenin ratio of 5:5 effectively limits oil penetration into the dough's core. This particular ratio is found to reduce the exposure of hydrophobic groups due to the presence of hydrated β-sheet structures. In contrast, gluten networks with higher gliadin proportions than typical wheat gluten tend to be looser, leading to increased chromophore exposure and facilitating more oil absorption. These observations highlighted the complex link between changes in gluten structure, varying protein compositions, and oil content in fried dough sticks. This research provided a foundation for developing specialized low-fat wheat flour and improving the quality of fried dough products.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiping Wen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiangqi Fan
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs of the People Republic of China, Beijing 100193, PR China
| | - Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Zeng Z, Guan X, Qin X, Chen Z, Liu X. Effects of konjac glucomannan with different degrees of deacetylation on the properties and structure of wheat gluten protein. Int J Biol Macromol 2024; 276:133780. [PMID: 38992525 DOI: 10.1016/j.ijbiomac.2024.133780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The properties and structure of gluten protein with different deacetylation degrees of konjac glucomannan (KGM) were investigated, in an attempt to improve the quality of gluten protein in flour products. Results showed that deacetylated KGM (DKGM) could improve the textural properties and enhance the thermal stability of gluten protein. DKGM increased the water holding capacity and shortened the T2 relaxation time of gluten after removing some acetyl groups. As the deacetylation degree increased, the hardness and adhesiveness of gluten gels gradually increased, while the springiness decreased. In addition, the presence of DKGM promoted the conversion from free sulfhydryl to disulfide bonds and increased the β-sheet content in gluten protein. The low-deacetylation KGM decreased the surface hydrophobicity and fluorescence intensity of gluten protein, and the microstructures of gluten gels became more compact. Compared with gluten protein-KGM complex gel, the degradation temperature of gluten protein-DKGM complex gels was observed to increase by >3 °C. Overall, the low-deacetylation KGM was beneficial for improving the physicochemical properties and maintaining the network structure of gluten protein. This study provides valuable references and practical insights to improve gluten quality in the flour industry.
Collapse
Affiliation(s)
- Zhilong Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyao Guan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhaojun Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
4
|
Tan J, Cao H, Wang X, Li S, Song H, Huang K, Zhang Y, Lu J, Guan X. Insight into the mechanism of the aggregation behavior of wheat protein modulated by l-lysine under microwave irradiation. J Food Sci 2024; 89:4298-4311. [PMID: 38957101 DOI: 10.1111/1750-3841.17169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
This study explored the mechanism of l-lysine intervention in wheat gluten protein (WG) gel formation under a microwave (MW) field. The results showed that the MW treatment had higher ζ-potential values at the same heating rate. After adding l-lysine, the solution conductivity and dielectric loss were significantly increased. Moreover, the WG gel strength enhanced 4.40% under the MW treatment. The Fourier spectra showed that the α-helix content was decreased 13.78% with the addition of lysine. The ultraviolet absorption spectra and fluorescence spectra indicated that MW irradiation impacted the interactions between WG molecules more effectively than the water bath heating, promoting the denaturation and unfolding of the protein structure. In addition, scanning electron microscopy analysis showed that the incorporation of lysine promoted an ordered network structure formation of the protein, which enhanced the gel properties. This indicated that the zwitterion of l-lysine played a regulatory role in the aggregation of proteins in the MW field.
Collapse
Affiliation(s)
- Jing Tan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Xiaoxue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Jun Lu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
5
|
Gao Y, Liu R, Liang H. Food Hydrocolloids: Structure, Properties, and Applications. Foods 2024; 13:1077. [PMID: 38611381 PMCID: PMC11011930 DOI: 10.3390/foods13071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hydrocolloids are extensively used in the food industry for various functions, including gelling, thickening, stabilizing foams, emulsions, and dispersions, as well as facilitating the controlled release of flavor [...].
Collapse
Affiliation(s)
- Yanlei Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.L.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.L.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.L.)
| |
Collapse
|
6
|
Liu M, Fan M, Qian H, Li Y, Wang L. Effect of different enzymes on thermal and structural properties of gluten, gliadin, and glutenin in triticale whole-wheat dough. Int J Biol Macromol 2023; 253:127384. [PMID: 37838124 DOI: 10.1016/j.ijbiomac.2023.127384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Three enzymes promoted the development of the gluten network in triticale whole-wheat noodles (TWWN). To further understand the mechanism of gluten enhancement, the effects of three enzymes on the structure of gluten and its fractions (gliadin and glutenin) were evaluated. The results showed that glucose oxidase (GOD), xylanase (XYL), and laccase (LAC) decreased the content of sodium dodecyl sulfate (SDS) extractable proteins. The content of glutenin subunits was reduced by 17.25 %, 30.60 %, and 20.09 % with the addition of GOD, XYL, and LAC, respectively. Furthermore, GOD and LAC increased the content of glutenin macropolymer (GMP) by 2.64 % and 7.71 %, respectively, suggesting the promotion of glutenin aggregation. The addition of three enzymes decreased the weight loss and increased the degradation temperature of the gluten and its fractions. GOD and XYL decreased the fluorescence intensity of gluten and its fractions, except for XYL which increased the fluorescence intensity of glutenin by 10.50 %. Intermolecular interactions and surface hydrophobicity were enhanced by XYL in gluten and its fractions. GOD and LAC decreased the free sulfhydryl content and increased the β-sheet content, suggesting that the covalent interaction between gluten fractions was enhanced. Therefore, this research can enrich the theoretical study of enzymatic cross-linking.
Collapse
Affiliation(s)
- Minnan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
7
|
Chen Z, Li Y, Wang H, Tian H, Feng X, Tan L, Liu X. Synergistic effects of oxidized konjac glucomannan on rheological, thermal and structural properties of gluten protein. Int J Biol Macromol 2023; 248:125598. [PMID: 37423447 DOI: 10.1016/j.ijbiomac.2023.125598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Oxidation is an effective way to prepare depolymerized konjac glucomannan (KGM). The oxidized KGM (OKGM) differed from native KGM in physicochemical properties due to different molecular structure. In this study, the effects of OKGM on the properties of gluten protein were investigated and compared with native KGM (NKGM) and enzymatic hydrolysis KGM (EKGM). Results showed that the OKGM with a low molecular weight and viscosity could improve rheological properties and enhance thermal stability. Compared to native gluten protein (NGP), OKGM stabilized the protein secondary structure by increasing the contents of β-sheet and α-helix, and improved the tertiary structure through increasing the disulfide bonds. The compact holes with shrunk pore size confirmed a stronger interaction between OKGM and gluten protein through scanning electron microscopy, forming a highly networked gluten structure. Furthermore, OKGM depolymerized by the moderate ozone-microwave treatment of 40 min had a higher effect on gluten proteins than that by the 100 min treatment, demonstrating that the excessive degradation of KGM weakened the interaction between the gluten protein and OKGM. These findings demonstrated that incorporating moderately oxidized KGM into gluten protein was an effective strategy to improve the properties of gluten protein.
Collapse
Affiliation(s)
- Zhaojun Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China
| | - Yao Li
- College of Food Science, Southwest University, Chongqing 400715, China; College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hui Wang
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China
| | - Hongmei Tian
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Feng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Lulin Tan
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Li J, Liu M, Qin G, Wu X, Li M, Sun L, Dang W, Zhang S, Liang Y, Zheng X, Li L, Liu C. Classification, gelation mechanism and applications of polysaccharide-based hydrocolloids in pasta products: A review. Int J Biol Macromol 2023; 248:125956. [PMID: 37487993 DOI: 10.1016/j.ijbiomac.2023.125956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Polysaccharide-based hydrocolloids (PBHs) are a group of water-soluble polysaccharides with high molecular weight hydrophilic long-chain molecules, which are widely employed in food industry as thickeners, emulsifiers, gelling agents, and stabilizers. Pasta products are considered to be an important source of nutrition for humans, and PBHs show great potential in improving their quality and nutritional value. The hydration of PBHs to form viscous solutions or sols under specific processing conditions is a prerequisite for improving the stability of food systems. In this review, PBHs are classified in a novel way according to food processing conditions, and their gelation mechanisms are summarized. The application of PBHs in pasta products prepared under different processing methods (baking, steaming/cooking, frying, freezing) are reviewed, and the potential mechanism of PBHs in regulating pasta products quality is revealed from the interaction between PBHs and the main components of pasta products (protein, starch, and water). Finally, the safety of PBHs is critically explored, along with future perspectives. This review provides a scientific foundation for the development and specific application of PBHs in pasta products, and provides theoretical support for improving pasta product quality.
Collapse
Affiliation(s)
- Jie Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Liu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Guolan Qin
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xinyue Wu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Maozhi Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Le Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenqian Dang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shenying Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Limin Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chong Liu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
9
|
Lu P, Guo J, Fan J, Wang P, Yan X. Combined effect of konjac glucomannan addition and ultrasound treatment on the physical and physicochemical properties of frozen dough. Food Chem 2023; 411:135516. [PMID: 36696719 DOI: 10.1016/j.foodchem.2023.135516] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The effects of dual sequential modification using konjac glucomannan and ultrasound treatments at power densities of 15-37.5 W/L on the hydration, rheology and structural characteristics of frozen dough were investigated in this study. The results revealed that the konjac glucomannan and ultrasound treatments improved the textural properties of frozen dough, but had a negative impact on its viscoelasticity. Furthermore, konjac glucomannan and ultrasound treatments increased the content of free sulfhydryl group and disulfide bond, as well as improved the freeze tolerance of dough. The results exhibited that the enthalpy of frozen dough decreased by 20.42 % compared with the frozen blank control dough under ultrasonic power density of 22.5 W/L. The network structure of frozen dough treated by konjac glucomannan and ultrasound was more ordered and integral than that of frozen blank control dough. These results provide valuable knowledge on the application of konjac glucomannan and ultrasound to frozen wheat-based foods.
Collapse
Affiliation(s)
- Peng Lu
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan Province, P.R. China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan Province, P.R. China.
| | - Jiawei Fan
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan Province, P.R. China
| | - Ping Wang
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan Province, P.R. China
| | - Xiang Yan
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan Province, P.R. China
| |
Collapse
|
10
|
Li F, Li T, Zhao J, Fan M, Qian H, Li Y, Wang L. Entanglement between Water Un-Extractable Arabinoxylan and Gliadin or Glutenins Induced a More Fragile and Soft Gluten Network Structure. Foods 2023; 12:foods12091800. [PMID: 37174338 PMCID: PMC10178768 DOI: 10.3390/foods12091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to investigate the effects of water-unextractable arabinoxylan (WUAX) on the gluten network structure, especially on gliadins and glutenins. The results indicated that the free sulfhydryl (free SH) of gliadins increased by 25.5% with 100 g/kg WUAX, whereas that of glutenins increased by 65.2%, which inhibited the formation of covalent bonds. Furthermore, β-sheets content decreased 5.63% and 4.75% for gliadins and glutenins with 100 g/kg WUAX, respectively, compared with the control. WUAX increased β-turns prevalence for gliadins, while the content of α-helixes and random coils had less fluctuation. In glutenins, the contents of α-helixes and β-sheets decreased and β-turns increased. Moreover, compared with the control, the weight loss rate for gliadins and glutenins increased by 2.49% and 2.04%, respectively, with 60 g/kg WUAX. The dynamic rheological analysis manifested that WUAX impaired the viscoelasticity property of gliadin and glutenin. Overall, WUAX weakened the structure of the gliadins and glutenins, leading to quality deterioration of gluten.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou 225000, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
11
|
Wen Q, Zhang K, Zhang Y, Liu B, Xu G, Sun D, Li T, Zhao D. Characterization of protein isolates from green wheat: structure, thermal and rheological properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Wang Y, Guo J, Wang C, Li Y, Bai Z, Luo D, Hu Y, Chen S. Effects of konjac glucomannan and freezing on thermal properties, rheology, digestibility and microstructure of starch isolated from wheat dough. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Song Y, Huang D, Guo W, Gao Y, Xue F, Xiong X, Li C. Physicochemical and Structural Properties of Gluten-Konjac glucomannan Conjugates Prepared by Maillard Reaction. Polymers (Basel) 2023; 15:polym15030631. [PMID: 36771931 PMCID: PMC9921320 DOI: 10.3390/polym15030631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Gluten (Glu) is important to wheat products by forming a three-dimensional matrix. This study aimed to investigate the physicochemical and structural properties of gluten after conjugation with konjac glucomannan (KGM) through the Maillard reaction. The study revealed that the degree of graft increased with the prolonged reaction time. The Glu-KGM conjugates were possessed of increased β-sheet but decreased α-helix and β-turn, as well as unfolding and loose tertiary structures as the reaction proceeded. Among three different proportions, the Glu-KGM 1:1 conjugate was proved to have the most excellent foaming and emulsifying properties, and could form more rigid and firm gelation structures, which could be related to the decreased particle size and increased zeta potential of the conjugate. Overall, the physicochemical and structural properties of gluten were significantly related to the KGM ratios as well as the reaction period.
Collapse
Affiliation(s)
- Yukang Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Danping Huang
- Nanjing Station of National Light Industry Food Quality Supervision and Inspection, Nanjing 211816, China
| | - Wanchun Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiqing Gao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- Correspondence: ; Tel.: +86-138-13362715
| |
Collapse
|
14
|
Cao G, Chen X, Wang N, Tian J, Song S, Wu X, Wang L, Wen C. Effect of konjac glucomannan with different viscosities on the quality of surimi-wheat dough and noodles. Int J Biol Macromol 2022; 221:1228-1237. [PMID: 36087756 DOI: 10.1016/j.ijbiomac.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
It was investigated that the rheology, starch-gluten-surimi network, thermal properties, and water distribution of surimi-wheat dough, and texture characteristics, cooking properties, and microscopic characteristics of the surimi-wheat noodles with konjac glucomannan (KGM) of different viscosities in different concentrations. The results showed that the storage (G'), loss (G″), and complex (G⁎) moduli of dough increased with adding KGM. With the increase of KGM viscosity, the reduction in the free sulfhydryl (SH) content to 0.84 μmol/g and the increase in the free water content to 8.25 % led to significantly improved enthalpy and the microstructure density. The hardness and tensile length of noodles were substantially increased by adding 3 % KGM. In addition, the KGM enhanced the starch-gluten-surimi network and improved the cooking qualities and textural properties of noodles. More importantly, the application of KGM in the wheat flour composite system also showed better performance. Thus, the introduction of KGM into the surimi-wheat dough had a significant effect on the optimization of the macro- and micro-characteristics of dough and noodles.
Collapse
Affiliation(s)
- Geng Cao
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xueting Chen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Nan Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Tian
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyu Wu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Wang
- School of Chemistry and Food Science, Yulin Normal University, Yulin 573000, China
| | - Chengrong Wen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Sharif N, Golmakani MT, Hajjari MM. Integration of physicochemical, molecular dynamics, and in vitro evaluation of electrosprayed γ-oryzanol-loaded gliadin nanoparticles. Food Chem 2022; 395:133589. [PMID: 35779508 DOI: 10.1016/j.foodchem.2022.133589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Electrospraying is a technique to improve the application and stability of bioactive compounds in food. Here, electrospraying was applied to fabricate gliadin particles incorporated γ-oryzanol. The round particles were obtained, with an average diameter of 481.56 ± 283.74 nm, from scanning electron microscopy. Simulations demonstrated how γ-oryzanol-loaded gliadin particles were unfolded in acetic acid and culminated in their globular shape under an electric field. The results also revealed that γ-oryzanol was present in gliadin particles. Moreover, there was a successful formation of particles with a homogeneous distribution and an enhanced thermostabilization of γ-oryzanol. In food simulants, γ-oryzanol demonstrated an initial burst release, followed by a subsequent, slower release that occurred gradually. Finally, MTT assays showed concentration- and time-dependent inhibitions of γ-oryzanol-loaded gliadin particles on HT-29 cells, with IC50 values of 0.47 and 0.40 mg/mL for 24 and 48 h, respectively. This study described a protocol for developing γ-oryzanol-loaded gliadin particles with enhanced stability, valuable release-behavior, and decreased HT-29 proliferation.
Collapse
Affiliation(s)
- Niloufar Sharif
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohammad Mahdi Hajjari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|