1
|
Roberto Tavolari Jortieke C, Rocha Joaquim A, Fumagalli F. Advances in antibacterial agents for Mycobacterium fortuitum. RSC Med Chem 2024:d4md00508b. [PMID: 39493226 PMCID: PMC11528911 DOI: 10.1039/d4md00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Mycobacterium fortuitum is an emerging human pathogen, characterized by an increase in prevalence and antibacterial resistance over the years, highlighting the need for the development of new drugs against this rapidly growing nontuberculous mycobacterium (NTM). To support this crusade, this review summarizes findings from the past two decades concerning compounds with antimycobacterial activity against M. fortuitum. It identifies the most promising and effective chemical frameworks to inspire the development of new therapeutic alternatives for infections caused by this microorganism. Most compounds effective against M. fortuitum are synthetic, with macozinone, featuring a 2-piperazine-benzothiazinone framework, standing out as a notable drug candidate. Among natural products, the polyphenolic polyketide clostrubin and the sansanmycin peptide analogs have shown efficacy against this NTM. Some compounds' mechanisms of action on M. fortuitum have been studied, including NITD-916, which acts as an enoyl-acyl carrier protein reductase inhibitor, and TBAJ-5307, which inhibits F-ATP synthase. Moreover, this review discusses the pathogenic molecular mechanisms and potential therapeutic targets within this mycobacterium.
Collapse
Affiliation(s)
| | - Angélica Rocha Joaquim
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| | - Fernando Fumagalli
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| |
Collapse
|
2
|
Ahmad I, Khalid H, Perveen A, Shehroz M, Nishan U, Rahman FU, Sheheryar, Moura AA, Ullah R, Ali EA, Shah M, Ojha SC. Identification of Novel Quinolone and Quinazoline Alkaloids as Phosphodiesterase 10A Inhibitors for Parkinson's Disease through a Computational Approach. ACS OMEGA 2024; 9:16262-16278. [PMID: 38617664 PMCID: PMC11007772 DOI: 10.1021/acsomega.3c10351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
Phosphodiesterases (PDEs) are vital in signal transduction, specifically by hydrolyzing cAMP and cGMP. Within the PDE family, PDE10A is notable for its prominence in the striatum and its regulatory function over neurotransmitters in medium-spiny neurons. Given the dopamine deficiency in Parkinson's disease (PD) that affects striatal pathways, PDE10A inhibitors could offer therapeutic benefits by modulating D1 and D2 receptor signaling. This study was motivated by the successful history of quinazoline/quinazoline scaffolds in the inhibition of PDE10A. This study involved detailed in silico evaluations through docking followed by pharmacological, pharmacophoric, and pharmacokinetic analyses, prioritizing central nervous system (CNS)-active drug criteria. Seven cyclic peptides, those featuring the quinazoline/quinazoline moiety at both termini, exhibited notably enhanced docking scores compared to those of the remaining alkaloids within the screened library. We identified 7 quinolines and 1 quinazoline including Lepadin G, Aspernigerin, CJ-13536, Aurachin A, 2-Undecyl-4(1H)-quinolone, Huajiaosimuline 3-Prenyl-4-prenyloxyquinolin-2-one, and Isaindigotone that followed the standard CNS active drug criteria. The dominant quinoline ring in our study and its related quinazoline were central to our evaluations; therefore, the pharmacophoric features of these scaffolds were highlighted. The top alkaloids met all CNS-active drug properties; while nonmutagenic and without PAINS alerts, many indicated potential hepatotoxicity. Among the compounds, Huajiaosimuline was particularly significant due to its alignment with lead-likeness and CNS-active criteria. Aspernigerin demonstrated its affinity for numerous dopamine receptors, which signifies its potential to alter dopaminergic neurotransmission that is directly related to PD. Interestingly, the majority of these alkaloids had biological targets primarily associated with G protein-coupled receptors, critical in PD pathophysiology. They exhibit superior excretion parameters and toxicity end-points compared to the standard. Notably, selected alkaloids demonstrated stability in the binding pocket of PDE10A according to the molecular dynamic simulation results. Our findings emphasize the potential of these alkaloids as PDE10A inhibitors. Further experimental studies may be necessary to confirm their actual potency in inhibiting PDE10A before exploring their therapeutic potential in PD.
Collapse
Affiliation(s)
- Iqra Ahmad
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Hira Khalid
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Asia Perveen
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Muhammad Shehroz
- Department
of Bioinformatics, Kohsar University Murree, Murree 47150, Pakistan
| | - Umar Nishan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Pakistan
| | - Faiz Ur Rahman
- Department
of Zoology, University of Shangla, Shangla 19100, Khyber Pakhtunkhwa, Pakistan
| | - Sheheryar
- Department
of Animal Science, Federal University of
Ceara, Fortaleza 60020-181, Brazil
| | - Arlindo Alencar Moura
- Department
of Animal Science, Federal University of
Ceara, Fortaleza 60020-181, Brazil
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A. Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohibullah Shah
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Suvash Chandra Ojha
- Department
of Infectious Diseases, the Affiliated Hospital
of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Na M, Jeong SY, Ko YJ, Kang DM, Pang C, Ahn MJ, Kim KH. Chemical Investigation of Tetradium ruticarpum Fruits and Their Antibacterial Activity against Helicobacter pylori. ACS OMEGA 2022; 7:23736-23743. [PMID: 35847243 PMCID: PMC9280968 DOI: 10.1021/acsomega.2c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fruit of Tetradium ruticarpum, known as Evodiae Fructus, is a traditional herbal medicine used to treat gastric and duodenal ulcers, vomiting, and diarrhea. The traditional usage can be potentially associated with the antibacterial activity of T. ruticarpum fruits against Helicobacter pylori. However, so far, the antibacterial activity of T. ruticarpum fruits and antibacterial components against H. pylori has not been investigated despite the traditional folk use. The current study was conducted to investigate the bioactive chemical components of T. ruticarpum fruits and evaluate their antibacterial activity against H. pylori. Phytochemical investigation of the EtOH extract of T. ruticarpum fruits led to the isolation and identification of nine compounds (1-9), including phellolactone (1), the absolute configuration of which has not yet been determined. The chemical structures of the isolated compounds were elucidated by analyzing the spectroscopic data from one-dimensional (1D) and two-dimensional (2D) NMR and high-resolution electrospray ionization mass spectrometry (HR-ESIMS) experiments. Specifically, the absolute configuration of compound 1 was established by the application of computational methods, including electronic circular dichroism (ECD) calculation and the NOE/ROE-based interproton distance measurement technique via peak amplitude normalization for the improved cross-relaxation (PANIC) method. In the anti-H. pylori activity test, compound 3 showed the most potent antibacterial activity against H. pylori strain 51, with 94.4% inhibition (MIC50 and MIC90 values of 22 and 50 μM, respectively), comparable to that of metronidazole (97.0% inhibition, and MIC50 and MIC90 values of 17 and 46 μM, respectively). Moreover, compound 5 exhibited moderate antibacterial activity against H. pylori strain 51, with 58.6% inhibition (MIC50 value of 99 μM), which was higher than that of quercetin (34.4% inhibition) as a positive control. Based on the bioactivity results, we also analyzed the structure-activity relationship of the anti-H. pylori activity. Conclusion: These findings demonstrated that T. ruticarpum fruits had antibacterial activity against H. pylori and could be used in the treatment of gastric and duodenal ulcers. Meanwhile, the active compound, 1-methyl-2-(8E)-8-tridecenyl-4(1H)-quinolinone (3), identified herein also indicated the potential application in the development of novel antibiotics against H. pylori.
Collapse
Affiliation(s)
- Myung
Woo Na
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Yun Jeong
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory
of Nuclear Magnetic Resonance, National Center for Inter-University
Research Facilities (NCIRF), Seoul National
University, Gwanak-gu, Seoul 08826, Republic
of Korea
| | - Dong-Min Kang
- College
of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changhyun Pang
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Jeong Ahn
- College
of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ki Hyun Kim
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Alla K, Vijayakumar V, Sarveswari S. Synthesis and In Vitro Antimicrobial Evaluation of New Quinolone Based 2-Arylamino Pyrimidines. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2056209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - S. Sarveswari
- Department of Chemistry, VIT, Vellore, Tamilnadu, India
| |
Collapse
|
5
|
Shang XF, Morris-Natschke SL, Liu YQ, Li XH, Zhang JY, Lee KH. Biology of quinoline and quinazoline alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2022; 88:1-47. [PMID: 35305754 DOI: 10.1016/bs.alkal.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quinoline and quinazoline alkaloids, two important classes of N-based heterocyclic compounds, have attracted scientific and popular interest worldwide since the 19th century. More than 600 compounds have been isolated from nature to date. To build on our two prior reviews, we reexamined the promising molecules described in previous reports and provided updated literature on novel quinoline and quinazoline alkaloids isolated over the past 5 years. This chapter reviews and discusses 205 molecules with a broad range of bioactivities, including antiparasitic and insecticidal, antibacterial and antifungal, cardioprotective, antiviral, anti-inflammatory, and other effects. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- Beijing You'an Hospital, Capital Medical University, Beijing, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China; School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China.
| | - Xiu-Hui Li
- Beijing You'an Hospital, Capital Medical University, Beijing, PR China.
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Wang W, Zhang S, Wang J, Wu F, Wang T, Xu G. Bioactivity-Guided Synthesis Accelerates the Discovery of 3-(Iso)quinolinyl-4-chromenones as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:491-500. [PMID: 33382606 DOI: 10.1021/acs.jafc.0c06700] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fungal infections could cause tremendous decreases in crop yield and quality. Natural products, including flavonoids and (iso)quinolines, have always been an important source for lead discovery in medicinal and agricultural chemistry. To promote the discovery and development of new fungicides, a series of 3-(iso)quinolinyl-4-chromenone derivatives was designed and synthesized by the active substructure splicing principle and evaluated for their antifungal activities. The lead optimization was guided by bioactivity. The bioassay data revealed that the 3-quinolinyl-4-chromenone 13 showed significant in vitro activities against S. sclerotiorum, V. mali, and B. cinerea with EC50 values of 3.65, 2.61, and 2.32 mg/L, respectively. The 3-isoquinolinyl-4-chromenone 25 exhibited excellent in vitro activity against S. sclerotiorum with an EC50 value of 1.94 mg/L, close to that of commercial fungicide chlorothalonil (EC50 = 1.57 mg/L) but lower than that of boscalid (EC50 = 0.67 mg/L). For V. mali and B. cinerea, 3-isoquinolinyl-4-chromenone 25 (EC50 = 1.56, 1.54 mg/L) showed significantly higher activities than chlorothalonil (EC50 = 11.24, 2.92 mg/L). In addition, in vivo experiments proved that compounds 13 and 25 have excellent protective fungicidal activities with inhibitory rates of 88.24 and 94.12%, respectively, against B. cinerea at 50 mg/L, while the positive controls chlorothalonil and boscalid showed inhibitory rates of 76.47 and 97.06%, respectively. Physiological and biochemical studies showed that the primary action of mechanism of compounds 13 and 25 on S. sclerotiorum and B. cinerea may involve changing mycelial morphology and increasing cell membrane permeability. In addition, compound 13 may also affect the respiratory metabolism of B. cinerea. This study revealed that compounds 13 and 25 could be promising candidates for the development of novel fungicides in crop protection.
Collapse
Affiliation(s)
- Wei Wang
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
| | - Shan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Jianhua Wang
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
| | - Furan Wu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Yangling, 712100 Shaanxi, China
| |
Collapse
|
7
|
Watanabe T. Synthesis and Structure−Activity Relationship Study of Intervenolin, an Antitumor and Anti-Helicobacter pylori Quinolone Natural Product. HETEROCYCLES 2021. [DOI: 10.3987/rev-21-957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Li M, Wang C. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the fruit of Tetradium ruticarpum: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113231. [PMID: 32758577 DOI: 10.1016/j.jep.2020.113231] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Tetradium ruticarpum (FTR) known as Tetradii fructus or Evodiae fructus (Wu-Zhu-Yu in Chinese) is a versatile herbal medicine which has been prescribed in Chinese herbal formulas and recognized in Japanese Kampo. FTR has been clinically used to treat various diseases such as headache, vomit, diarrhea, abdominal pain, dysmenorrhea and pelvic inflammation for thousands of years. AIM OF THE REVIEW The present paper aimed to provide comprehensive information on the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, drug interaction and toxicology of FTR in order to build up a foundation on the mechanism of ethnopharmacological uses as well as to explore the trends and perspectives for further studies. MATERIALS AND METHODS This review collected the literatures published prior to July 2020 on the phytochemistry, pharmacology, pharmacokinetics and toxicity of FTR. All relevant information on FTR was gathered from worldwide accepted scientific search engines and databases, including Web of Science, PubMed, Elsevier, ACS, ResearchGate, Google Scholar, and Chinese National Knowledge Infrastructure (CNKI). Information was also obtained from local books, PhD. and MSc. Dissertations as well as from Pharmacopeias. RESULTS FTR has been used as an herbal medicine for centuries in East Asia. A total of 165 chemical compounds have been isolated so far and the main chemical compounds of FTR include alkaloids, terpenoids, flavonoids, phenolic acids, steroids, and phenylpropanoids. Crude extracts, processed products (medicinal slices) and pure components of FTR exhibit a wide range of pharmacological activities such as antitumor, anti-inflammatory, antibacterial, anti-obesity, antioxidant, insecticide, regulating central nervous system (CNS) homeostasis, cardiovascular protection. Furthermore, bioactive components isolated from FTR can induce drug interaction and hepatic injury. CONCLUSIONS Therapeutic potential of FTR has been demonstrated with the pharmacological effects on cancer, inflammation, cardiovascular diseases, CNS, bacterial infection and obesity. Pharmacological and pharmacokinetic studies of FTR mostly focus on its main active alkaloids. Further in-depth studies on combined medication and processing approaches mechanisms, pharmacological and toxic effects not limited to the alkaloids, and toxic components of FTR should be designed.
Collapse
Affiliation(s)
- Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
9
|
Zhou BG, Liu FC, Zhao HM, Zhang XY, Wang HY, Liu DY. Regulatory effect of Zuojin Pill on correlation with gut microbiota and Treg cells in DSS-induced colitis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113211. [PMID: 32739566 DOI: 10.1016/j.jep.2020.113211] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/20/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classic prescription and commercial Chinese patent medicine, Zuojin Pill (ZJP) has been used to treat ulcerative colitis (UC) effectively for many years. However, its mechanism of action remains unclear. AIM OF THE STUDY METHODS: Mice with dextran-sulfate-sodium-induced colitis were treated with ZJP for 7 d. In the present study, the therapeutic effect of ZJP was evaluated by macroscopic and microscopic observation; regulatory T (Treg) cells and their subsets were analyzed by flow cytometry; and the composition of gut microbiota was tested by 16S rRNA analysis. Activation of the phosphoinostide 3-kinase (PI3K)/Akt signaling pathway was observed by western blotting. RESULTS The pathological damage was attenuated and expression of proinflammatory cytokines was decreased. While the diversity of intestinal microflora was regulated, the relative abundance of Actinobacteria, and Sphingobacteriia was modified. Meanwhile, the level of CD4+CD25+Foxp3+ and PD-L1+ Treg cells improved. These changes maintained a positive correlation which was analyzed statistically. Our results also showed that ZJP inhibited activation of the PI3K/Akt signaling pathway. CONCLUSIONS ZJP regulates crosstalk between intestinal microflora and Treg cells to attenuate experimental colitis via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Bu-Gao Zhou
- Office of Academic Research, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Fu-Chun Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Xiao-Yun Zhang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Hai-Yan Wang
- Doctoral Candidate of 2017, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; Formula-Pattern Research Center of Jiangxi, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
10
|
Krishna A, Vijayakumar V, Sarveswari S. Synthesis of New 3‐(2‐Amino‐6‐arylpyrimidin‐4‐yl)‐4‐hydroxyquinolin‐2(1
H
)‐ones and Their In Vitro Antimicrobial and “DPPH” Scavenging Activity Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202002082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alla. Krishna
- Department of ChemistryVellore Institute of Technology Vellore 632014 Tamilnadu India
- LGC Promochem private limited Bangalore India
| | - V. Vijayakumar
- Department of ChemistryVellore Institute of Technology Vellore 632014 Tamilnadu India
| | - S. Sarveswari
- Department of ChemistryVellore Institute of Technology Vellore 632014 Tamilnadu India
| |
Collapse
|
11
|
Presser A, Lainer G, Kretschmer N, Schuehly W, Saf R, Kaiser M, Kalt MM. Synthesis of Jacaranone-Derived Nitrogenous Cyclohexadienones and Their Antiproliferative and Antiprotozoal Activities. Molecules 2018; 23:molecules23112902. [PMID: 30405045 PMCID: PMC6278284 DOI: 10.3390/molecules23112902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
The cytotoxic and antiprotozoal activities of the phytoquinoide, jacaranone, and related compounds have been an ongoing topic in recent drug discovery. Starting from the natural product-derived cyclohexadienone scaffold, a series of nitrogen-containing derivatives were synthesized and subsequently evaluated for their antiproliferative and antiprotozoal activity. Anticancer potency was analyzed using different types of cancer cell lines: MDA-MB-231 breast cancer, CCRF-CEM leukemia, HCT-116 colon cancer, U251 glioblastoma, and, in addition, non-tumorigenic MRC-5 lung fibroblasts. Antiproliferative activities at micromolar concentrations could be shown. Antiprotozoal activity was assessed against Plasmodium falciparum NF54 and Trypanosoma brucei rhodesiense STIB900. For all compounds, selectivity indices (SI) were calculated based on assessed cytotoxicity towards L6 cells. In addition, the structure-activity-relationships and physicochemical parameters of these compounds are discussed.
Collapse
Affiliation(s)
- Armin Presser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria.
| | - Gunda Lainer
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria.
| | - Nadine Kretschmer
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | - Wolfgang Schuehly
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, 8010 Graz, Austria.
| | - Robert Saf
- Institute for Chemistry and Technology of Materials (ICTM), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland.
| | - Marc-Manuel Kalt
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria.
| |
Collapse
|
12
|
Shang XF, Morris-Natschke SL, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Yang GZ, Lee KH. Biologically active quinoline and quinazoline alkaloids part I. Med Res Rev 2018; 38:775-828. [PMID: 28902434 PMCID: PMC6421866 DOI: 10.1002/med.21466] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 01/11/2023]
Abstract
Quinoline and quinazoline alkaloids, two important classes of N-based heterocyclic compounds, have attracted tremendous attention from researchers worldwide since the 19th century. Over the past 200 years, many compounds from these two classes were isolated from natural sources, and most of them and their modified analogs possess significant bioactivities. Quinine and camptothecin are two of the most famous and important quinoline alkaloids, and their discoveries opened new areas in antimalarial and anticancer drug development, respectively. In this review, we survey the literature on bioactive alkaloids from these two classes and highlight research achievements prior to the year 2008 (Part I). Over 200 molecules with a broad range of bioactivities, including antitumor, antimalarial, antibacterial and antifungal, antiparasitic and insecticidal, antiviral, antiplatelet, anti-inflammatory, herbicidal, antioxidant and other activities, were reviewed. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Xiao Guo
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Xiao-Shan Xu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Mishra SK, Tripathi G, Kishore N, Singh RK, Singh A, Tiwari VK. Drug development against tuberculosis: Impact of alkaloids. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Geddis SM, Carro L, Hodgkinson JT, Spring DR. Divergent Synthesis of Quinolone Natural Products from Pseudonocardia sp. CL38489. European J Org Chem 2016; 2016:5799-5802. [PMID: 28111524 PMCID: PMC5215369 DOI: 10.1002/ejoc.201601195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 12/21/2022]
Abstract
Two divergent synthetic routes are reported offering access to four quinolone natural products from Pseudonocardia sp. CL38489. Key steps to the natural products involved a regioselective epoxidation, an intramolecular Buchwald-Hartwig amination and a final acid-catalysed 1,3-allylic-alcohol rearrangement to give two of the natural products in one step. This study completes the synthesis of all eight antibacterial quinolone natural products reported in the family. In addition, this modular strategy enables an improved synthesis towards two natural products previously reported.
Collapse
Affiliation(s)
- Stephen M. Geddis
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Laura Carro
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - James T. Hodgkinson
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - David R. Spring
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| |
Collapse
|
15
|
Evodiamine exerts anti-tumor effects against hepatocellular carcinoma through inhibiting β-catenin-mediated angiogenesis. Tumour Biol 2016; 37:12791-12803. [DOI: 10.1007/s13277-016-5251-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
|
16
|
Hochfellner C, Evangelopoulos D, Zloh M, Wube A, Guzman JD, McHugh TD, Kunert O, Bhakta S, Bucar F. Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine. J Appl Microbiol 2015; 118:864-72. [PMID: 25604161 DOI: 10.1111/jam.12753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/17/2014] [Accepted: 01/09/2015] [Indexed: 11/27/2022]
Abstract
AIMS The interaction of quinolone and indoloquinazoline alkaloids concerning their antimycobacterial activity was studied. METHODS AND RESULTS The antimycobacterial and modulating activity of evodiamine (1), rutaecarpine (2) and evocarpine (3) was tested on mycobacteria including three multidrug-resistant (MDR) clinical isolates of Mycobacterium tuberculosis. Antagonistic effects were concluded from fractional inhibitory concentration (FICI) values. Interaction energies of the compounds were calculated using GLUE docking module implemented in GRID. 1 and 2 exhibited weak inhibition of rapidly growing mycobacteria, however, 1 was active against Myco. tuberculosis H37Rv (MIC = 10 mg l(-1) ) while 2 was inactive. Both 1 and 2 showed a marked antagonistic effect on the susceptibility of different mycobacterial strains to 3 giving FICI values between 5 and 9. The interaction energies between compounds 1 and 2 with compound 3 suggested the possibility of complex formation in solution. CONCLUSIONS Indoloquinazoline alkaloids markedly reduce the antimycobacterial effect of the quinolone alkaloid evocarpine. Complex formation may play a role in the attenuation of its antimycobacterial activity. SIGNIFICANCE AND IMPACT OF THE STUDY This study gives a striking example of antagonism between compounds present in the same plant extract which should be considered in natural product based screening projects.
Collapse
Affiliation(s)
- C Hochfellner
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nammalwar B, Bunce RA. Recent syntheses of 1,2,3,4-tetrahydroquinolines, 2,3-dihydro-4(1H)-quinolinones and 4(1H)-quinolinones using domino reactions. Molecules 2013; 19:204-32. [PMID: 24368602 PMCID: PMC6271761 DOI: 10.3390/molecules19010204] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/20/2013] [Indexed: 11/29/2022] Open
Abstract
A review of the recent literature is given focusing on synthetic approaches to 1,2,3,4-tetrahydroquinolines, 2,3-dihydro-4(1H)-quinolinones and 4(1H)-quinolinones using domino reactions. These syntheses involve: (1) reduction or oxidation followed by cyclization; (2) SNAr-terminated sequences; (3) acid-catalyzed ring closures or rearrangements; (4) high temperature cyclizations and (5) metal-promoted processes as well as several less thoroughly studied reactions. Each domino method is presented with a brief discussion of mechanism, scope, yields, simplicity and potential utility.
Collapse
Affiliation(s)
| | - Richard A Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA.
| |
Collapse
|
18
|
Pan X, Bligh SWA, Smith E. Quinolone Alkaloids from Fructus Euodiae Show Activity Against Methicillin-Resistant Staphylococcus aureus. Phytother Res 2013; 28:305-7. [DOI: 10.1002/ptr.4987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/11/2013] [Accepted: 03/05/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaobei Pan
- School of Human Sciences, Faculty of Life Sciences and Computing; London Metropolitan University; 166-220 Holloway Road London N7 8DB UK
| | - S. W. Annie Bligh
- School of Human Sciences, Faculty of Life Sciences and Computing; London Metropolitan University; 166-220 Holloway Road London N7 8DB UK
| | - Eileen Smith
- School of Human Sciences, Faculty of Life Sciences and Computing; London Metropolitan University; 166-220 Holloway Road London N7 8DB UK
| |
Collapse
|
19
|
|
20
|
Wube A, Guzman JD, Hüfner A, Hochfellner C, Blunder M, Bauer R, Gibbons S, Bhakta S, Bucar F. Synthesis and antibacterial evaluation of a new series of N-Alkyl-2-alkynyl/(E)-alkenyl-4-(1H)-quinolones. Molecules 2012; 17:8217-40. [PMID: 22777190 PMCID: PMC3460366 DOI: 10.3390/molecules17078217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 11/24/2022] Open
Abstract
To gain further insight into the structural requirements of the aliphatic group at position 2 for their antimycobacterial activity, some N-alkyl-4-(1H)-quinolones bearing position 2 alkynyls with various chain length and triple bond positions were prepared and tested for in vitro antibacterial activity against rapidly-growing strains of mycobacteria, the vaccine strain Mycobacterium bovis BCG, and methicillin-resistant Staphylococcus aureus strains, EMRSA-15 and -16. The compounds were also evaluated for inhibition of ATP-dependent MurE ligase of Mycobacterium tuberculosis. The lowest MIC value of 0.5 mg/L (1.2-1.5 µM) was found against M. fortuitum and M. smegmatis. These compounds displayed no or only weak toxicity to the human lung fibroblast cell line MRC-5 at 100 µM concentration. The quinolone derivatives exhibited pronounced activity against the epidemic MRSA strains (EMRSA-15 and -16) with MIC values of 2-128 mg/L (5.3-364.7 µM), and M. bovis BCG with an MIC value of 25 mg/L (66.0-77.4 µM). In addition, the compounds inhibited the MurE ligase of M. tuberculosis with moderate to weak activity showing IC50 values of 200-774 µM. The increased selectivity towards mycobacterial bacilli with reference to MRC-5 cells observed for 2-alkynyl quinolones compared to their corresponding 2-alkenyl analogues serves to highlight the mycobacterial specific effect of the triple bond. Exploration of a terminal bromine atom at the side chain of N-alkyl-2-(E)-alkenyl-4-(1H)-quinolones showed improved antimycobacterial activity whereas a cyclopropyl residue at N-1 was suggested to be detrimental to antibacterial activity.
Collapse
Affiliation(s)
- Abraham Wube
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 4, A-8010 Graz, Austria; (A.W.); (C.H.); (M.B.); (R.B.)
| | - Juan-David Guzman
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; (J.-D.G.); (S.B.)
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Antje Hüfner
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, A-8010 Graz, Austria;
| | - Christina Hochfellner
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 4, A-8010 Graz, Austria; (A.W.); (C.H.); (M.B.); (R.B.)
| | - Martina Blunder
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 4, A-8010 Graz, Austria; (A.W.); (C.H.); (M.B.); (R.B.)
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 4, A-8010 Graz, Austria; (A.W.); (C.H.); (M.B.); (R.B.)
| | - Simon Gibbons
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; (J.-D.G.); (S.B.)
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 4, A-8010 Graz, Austria; (A.W.); (C.H.); (M.B.); (R.B.)
| |
Collapse
|
21
|
Guzman JD, Wube A, Evangelopoulos D, Gupta A, Hüfner A, Basavannacharya C, Rahman MM, Thomaschitz C, Bauer R, McHugh TD, Nobeli I, Prieto JM, Gibbons S, Bucar F, Bhakta S. Interaction of N-methyl-2-alkenyl-4-quinolones with ATP-dependent MurE ligase of Mycobacterium tuberculosis: antibacterial activity, molecular docking and inhibition kinetics. J Antimicrob Chemother 2011; 66:1766-72. [PMID: 21622974 PMCID: PMC3133487 DOI: 10.1093/jac/dkr203] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/18/2011] [Accepted: 04/27/2011] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The aim of this study was to comprehensively evaluate the antibacterial activity and MurE inhibition of a set of N-methyl-2-alkenyl-4-quinolones found to inhibit the growth of fast-growing mycobacteria. METHODS Using the spot culture growth inhibition assay, MICs were determined for Mycobacterium tuberculosis H(37)Rv, Mycobacterium bovis BCG and Mycobacterium smegmatis mc(2)155. MICs were determined for Mycobacterium fortuitum, Mycobacterium phlei, methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa using microplate dilution assays. Inhibition of M. tuberculosis MurE ligase activity was determined both by colorimetric and HPLC methods. Computational modelling and binding prediction of the quinolones in the MurE structure was performed using Glide. Kinetic experiments were conducted for understanding possible competitive relations of the quinolones with the endogenous substrates of MurE ligase. RESULTS The novel synthetic N-methyl-2-alkenyl-4-quinolones were found to be growth inhibitors of M. tuberculosis and rapid-growing mycobacteria as well as methicillin-resistant S. aureus, while showing no inhibition for E. coli and P. aeruginosa. The quinolones were found to be inhibitory to MurE ligase of M. tuberculosis in the micromolar range (IC(50) ∼40-200 μM) when assayed either spectroscopically or by HPLC. Computational docking of the quinolones on the published M. tuberculosis MurE crystal structure suggested that the uracil recognition site is a probable binding site for the quinolones. CONCLUSIONS N-methyl-2-alkenyl-4-quinolones are inhibitors of mycobacterial and staphylococcal growth, and show MurE ligase inhibition. Therefore, they are considered as a starting point for the development of increased affinity MurE activity disruptors.
Collapse
Affiliation(s)
- Juan David Guzman
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Abraham Wube
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Karl Franzens University Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Dimitrios Evangelopoulos
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
- Department of Medical Microbiology, Royal Free Hospital, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Antima Gupta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Antje Hüfner
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl Franzens University Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Chandrakala Basavannacharya
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Md. Mukhleshur Rahman
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Christina Thomaschitz
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Karl Franzens University Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Karl Franzens University Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Timothy Daniel McHugh
- Department of Medical Microbiology, Royal Free Hospital, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Irene Nobeli
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Jose M. Prieto
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gibbons
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Karl Franzens University Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
22
|
Zhong S, Ye H, Peng A, Shi J, He S, Li S, Ye X, Tang M, Chen L. Separation and Purification of Quinolone Alkaloids from the Chinese Herbal MedicineEvodia rutaecarpa (Juss.)Benth by High Performance Counter-Current Chromatography. SEP SCI TECHNOL 2011. [DOI: 10.1080/01496395.2010.532529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Wube AA, Bucar F, Hochfellner C, Blunder M, Bauer R, Hüfner A. Synthesis of N-substituted 2-[(1E)-alkenyl]-4-(1H)-quinolone derivatives as antimycobacterial agents against non-tubercular mycobacteria. Eur J Med Chem 2011; 46:2091-101. [PMID: 21429630 PMCID: PMC3096000 DOI: 10.1016/j.ejmech.2011.02.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 11/23/2022]
Abstract
In an effort to improve biological activities and to examine antimycobacterial-lipophilicity relationships of 2-[(1E)-alkenyl)]-4-(1H)-quinolones, we have synthesized a series of 30 quinolones by introducing several alkyl groups, an alkenyl and an alkynyl group at N-1. All synthetic compounds were first tested in vitro against Mycobacterium smegmatis and the most active compounds (MIC values ∼3.0–7.0 μM) were further examined against three other rapidly growing strains of mycobacteria using a microtiter broth dilution assay. The Clog P values of the synthetic compounds were calculated to provide an estimate of their lipophilicity. Compounds 18e, 19a and 19b displayed the most potent inhibitory effect against M. smegmatis mc2155 with an MIC value of ∼1.5 μM, which was twenty fold and thirteen fold more potent than isoniazid and ethambutol, respectively. On the other hand, compounds 17e, 18e and 19a were most active against Mycobacterium fortuitum and Mycobacterium phlei with an MIC value of ∼3.0 μM. In the human diploid embryonic lung cell line MRC-5 cytotoxicity assay, the derivatives showed moderate to strong cytotoxic activity. Although the antimycobacterial activity of our synthetic compounds could not be correlated with the calculated log P values, an increase in lipophilicity enhances the antimycobacterial activity and C13–C15 total chain length at positions 1 and 2 is required to achieve optimal inhibitory effect against the test strains.
Collapse
Affiliation(s)
- Abraham A Wube
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl Franzens Universität Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
24
|
Wube AA, Hüfner A, Thomaschitz C, Blunder M, Kollroser M, Bauer R, Bucar F. Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones. Bioorg Med Chem 2011; 19:567-79. [PMID: 21106378 PMCID: PMC3268452 DOI: 10.1016/j.bmc.2010.10.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/30/2010] [Accepted: 10/29/2010] [Indexed: 12/02/2022]
Abstract
A series of 23 new 1-methyl-2-alkenyl-4(1H)quinolones have been synthesized and evaluated in vitro for their antimycobacterial activities against fast growing species of mycobacteria, such as Mycobacterium fortuitum, M. smegmatis and M. phlei. The compounds displayed good to excellent inhibition of the growth of the mycobacterial test strains with improved antimycobacterial activity compared to the hit compound, evocarpine. The most active compounds, which possessed chain length of 11-13 carbons at position-2 displayed potent inhibitory effects with an MIC value of 1.0mg/L. In a human diploid embryonic lung cell line, MRC-5 cytotoxicity assay, the alkaloids showed weak to moderate cytotoxic activity. Biological evaluation of these evocarpine analogues on the less pathogenic fast growing strains of mycobacteria showed an interesting antimycobacterial profile and provided significant insight into the structure-activity relationships.
Collapse
Affiliation(s)
- Abraham A. Wube
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Antje Hüfner
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical
Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz,
Austria
| | - Christina Thomaschitz
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Martina Blunder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Manfred Kollroser
- Institute of Forensic Medicine, Medical University of Graz,
Universitätsplatz 4/2, 8010 Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| |
Collapse
|
25
|
Negi AS, Kumar JK, Luqman S, Saikia D, Khanuja SPS. Antitubercular potential of plants: a brief account of some important molecules. Med Res Rev 2010; 30:603-45. [PMID: 19626592 DOI: 10.1002/med.20170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis is the most lethal pathogen causing tuberculosis in human. After the discovery of antitubercular drugs pyrazinamide, rifampicin, isoniazid, streptomycin, and ethambutol (PRISE), the disease was controlled for a limited period. However, over the course of their usage, the pathogen acquired resistance and evolved into multi-drug resistant, single-drug resistant, and extensive drug resistant forms. A good number of plant secondary metabolites are reported to have antitubercular activity comparable to the existing antitubercular drugs or sometimes even better in potency. A well-defined strategy is required to exploit these phytomolecules as antitubercular drugs. This review gives concise up-to-date information regarding the chemistry and pharmacology of plant-based leads and some insight into their structure-activity relationship.
Collapse
Affiliation(s)
- Arvind S Negi
- Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow-226 015, India.
| | | | | | | | | |
Collapse
|
26
|
Kishore N, Mishra BB, Tripathi V, Tiwari VK. Alkaloids as potential anti-tubercular agents. Fitoterapia 2009; 80:149-63. [PMID: 19344681 DOI: 10.1016/j.fitote.2009.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/10/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
An increasing incidence of deaths due to tuberculosis and the known drawbacks of the current existing drugs including the emergence of multi drug-resistant strains have led to a renewed interest in the discovery of new anti-tubercular agents with novel modes of actions. The recent researches focused on natural products have shown a useful way to obtain a potentially rich source of drug candidates, where alkaloids have been found more effective. The present review focuses on current epidemiology of tuberculosis, synergy of the disease with HIV, current therapy, available molecular targets and, highlights why natural products especially alkaloids are so important. The review summarizes alkaloids found active against mycobacteria from the mid-1980s to late 2008 with special attention on the study of structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Navneet Kishore
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | | | | | | |
Collapse
|
27
|
Abstract
This review covers the isolation, structure determination, synthesis and biological activity of quinoline, quinazoline and acridone alkaloids from plant, microbial and animal sources; 115 references are cited.
Collapse
Affiliation(s)
- Joseph P Michael
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Wits, South Africa.
| |
Collapse
|
28
|
Chen YC, Lu PH, Pan SL, Teng CM, Kuo SC, Lin TP, Ho YF, Huang YC, Guh JH. Quinolone analogue inhibits tubulin polymerization and induces apoptosis via Cdk1-involved signaling pathways. Biochem Pharmacol 2007; 74:10-9. [PMID: 17475221 DOI: 10.1016/j.bcp.2007.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Cancer chemotherapeutic agents that interfere with tubulin/microtubule function are in extensive use. Quinolone is a common structure in alkaloids and its related components exhibit several pharmacological activities. In this study, we have identified the anticancer mechanisms of 2-phenyl-4-quinolone. 2-Phenyl-4-quinolone displayed anti-proliferative effect in several cancer types, including hormone-resistant prostate cancer PC-3, hepatocellular carcinoma Hep3B and HepG2, non-small cell lung cancer A549 and P-glycoprotein-rich breast cancer NCI/ADR-RES cells. The IC(50) values were 0.85, 1.81, 3.32, 0.90 and 1.53 microM, respectively. 2-Phenyl-4-quinolone caused G2/M arrest of the cell-cycle and a subsequent apoptosis. The turbidity assay showed an inhibitory effect on tubulin polymerization. After immunochemical examination, the data demonstrated that the microtubules were arranged irregularly into dipolarity showing prometaphase-like states. Furthermore, 2-Phenyl-4-quinolone induced the Mcl-1 cleavage, the phosphorylation of Bcl-2 and Bcl-xL (12-h treatment), and the caspase activation including caspase-8, -2 and -3 (24-h treatment). The exposure of cells to 2-phenyl-4-quinolone caused Cdk1 activation by several observations, namely (i) elevation of cyclin B1 expression, (ii) dephosphorylation on inhibitory Tyr-15 of Cdk1, and (iii) dephosphorylation on Ser-216 of Cdc25c. Moreover, a long-term treatment (36h) caused the release reaction and subsequent nuclear translocation of AIF. In summary, it is suggested that 2-phenyl-4-quinolone displays anticancer effect through the dysregulation of mitotic spindles and induction of mitotic arrest. Furthermore, participation of cell-cycle regulators, Bcl-2 family of proteins, activation of caspases and release of AIF may mutually cross-regulate the apoptotic signaling cascades induced by 2-phenyl-4-quinolone.
Collapse
Affiliation(s)
- Ying-Cheng Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Aguinaldo AM, Dalangin-Mallari VM, Macabeo APG, Byrne LT, Abe F, Yamauchi T, Franzblau SG. Quinoline alkaloids from Lunasia amara inhibit Mycobacterium tuberculosis H37Rv in vitro. Int J Antimicrob Agents 2007; 29:744-6. [PMID: 17399957 DOI: 10.1016/j.ijantimicag.2007.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 02/01/2007] [Indexed: 12/01/2022]
|
30
|
Han XH, Hong SS, Lee D, Lee JJ, Lee MS, Moon DC, Han K, Oh KW, Lee MK, Ro JS, Hwang BY. Quinolone alkaloids from evodiae fructus and their inhibitory effects on monoamine oxidase. Arch Pharm Res 2007; 30:397-401. [PMID: 17489352 DOI: 10.1007/bf02980210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
1-Methyl-2-undecyl-4(1H)-quinolone (1) was previously isolated as a selective MAO-B inhibitor from the Evodiae Fructus. Further bioassay-guided purification led to the identification of five known quinolone alkaloids, 1-methyl-2-nonyl-4(1H)-quinolone (2), 1-methyl-2-[(Z)-6-undecenyl]-4(1H)-quinolone (3), evocarpine (4), 1-methyl-2-[(6Z,9Z)-6,9-pentadecadienyl]-4(1H)-quinolone (5), and dihydroevocarpine (6). All the isolates showed more potent inhibitory effects against MAO-B compared to MAO-A. The most MAO-B selective compound 5 among the isolates inhibited MAO-B in a competitive manner, according to kinetic analyses by Lineweaver-Burk reciprocal plots.
Collapse
Affiliation(s)
- Xiang Hua Han
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Barrows LR, Powan E, Pond CD, Matainaho T. Anti-TB activity of Evodia elleryana bark extract. Fitoterapia 2007; 78:250-2. [PMID: 17350179 PMCID: PMC2754760 DOI: 10.1016/j.fitote.2006.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
An ethyl acetate extract of bark from Evodia elleryana produced significant growth inhibition of Mycobacterium tuberculosis at concentrations only minimally inhibitory to human T cells. The crude extract yielded 95% inhibition of TB at 50 microg/ml. The crude extract yielded 29% growth inhibition of human T-cells in culture at that concentration.
Collapse
Affiliation(s)
- Louis R Barrows
- Department of Pharmacology and Toxicology, University of Utah, College of Pharmacy, Salt Lake City, UT, USA.
| | | | | | | |
Collapse
|
32
|
Janin YL. Antituberculosis drugs: ten years of research. Bioorg Med Chem 2007; 15:2479-513. [PMID: 17291770 DOI: 10.1016/j.bmc.2007.01.030] [Citation(s) in RCA: 360] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/26/2006] [Accepted: 01/17/2007] [Indexed: 02/03/2023]
Abstract
Tuberculosis is today amongst the worldwide health threats. As resistant strains of Mycobacterium tuberculosis have slowly emerged, treatment failure is too often a fact, especially in countries lacking the necessary health care organisation to provide the long and costly treatment adapted to patients. Because of lack of treatment or lack of adapted treatment, at least two million people will die of tuberculosis this year. Due to this concern, this infectious disease was the focus of renewed scientific interest in the last decade. Regimens were optimized and much was learnt on the mechanisms of action of the antituberculosis drugs used. Moreover, the quest for original drugs overcoming some of the problems of current regimens also became the focus of research programmes and many new series of M. tuberculosis growth inhibitors were reported. This review presents the drugs currently used in antituberculosis treatments and the most advanced compounds undergoing clinical trials. We then provide a description of their mechanism of action along with other series of inhibitors known to act on related biochemical targets. This is followed by other inhibitors of M. tuberculosis growth, including recently reported compounds devoid of a reported mechanism of action.
Collapse
Affiliation(s)
- Yves L Janin
- URA 2128 CNRS-Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
33
|
Abstract
This review covers natural products (secondary metabolites) with reported growth inhibitory activity towards Mycobacterium tuberculosis or related organisms. Such compounds have been isolated from a variety of sources including terrestrial and marine plants and animals, and microorganisms, with the express intent of identifying novel scaffolds for the development of new antituberculosis agents. The literature from January 2003 to December 2005 (inclusive) is reviewed and 146 references to 353 compounds are cited. The compounds are presented in order of chemical type, namely lipids/fatty acids and simple aromatics, phenolics and quinones, peptides, alkaloids, terpenes (monoterpenoids, diterpenes, sesquiterpenes and triterpenes), steroids and miscellaneous structures.
Collapse
Affiliation(s)
- Brent R Copp
- Department of Chemistry, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
34
|
Nunes FM, Barros-Filho BA, de Oliveira MCF, de Mattos MC, Andrade-Neto M, Barbosa FG, Mafezoli J, Montenegro RC, Pessoa C, de Moraes MO, Costa-Lotufo LV, Galetti FCS, Silva CL, De Souza AO. 3,3-Diisopentenyl-N-Methyl-2,4-Quinoldione from Esenbeckia Almawillia: The Antitumor Activity of this Alkaloid and its Derivatives. Nat Prod Commun 2006. [DOI: 10.1177/1934578x0600100409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
n-Hexane, chloroform and ethyl acetate fractions obtained from methanol extracts of the wood and roots of Esenbeckia almawillia (Rutaceae) were tested against five tumor cells lines (HL-60, CEM, B-16, HCT-8 and MCF-7). The most active fractions were the less polar ones (IC50 from 1.7 to 5.3 μg/mL) and these were subjected to column chromatography, allowing the isolation of the alkaloid 3,3-diisopentenyl-N-methyl-2, 4-quinoldione (1) in high yields. Alkaloid 1 was bioassayed and gave an IC50 value in the range 9.2 to >25 μg/mL. Derivatives 2–12, obtained by chemical modifications of 1, were tested and lower IC50 values were found for compounds 4 (IC50 from 2.8 to 17.0 μg/mL), 10 (IC50 from 5.9 to 15.8 μg/mL) and 11 (IC50 from 6.7 to 14.8 μg/mL).
Collapse
Affiliation(s)
- Fátima M. Nunes
- Curso de Pós-graduação em Química Orgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - Bartholomeu A. Barros-Filho
- Curso de Pós-graduação em Química Orgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - Maria C. F. de Oliveira
- Curso de Pós-graduação em Química Orgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - Marcos C. de Mattos
- Curso de Pós-graduação em Química Orgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - Manoel Andrade-Neto
- Curso de Pós-graduação em Química Orgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - Francisco G. Barbosa
- Curso de Pós-graduação em Química Orgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Caixa Postal 6044, Fortaleza-CE, 60455-970, Brazil
| | - Jair Mafezoli
- Curso de Farmácia, Universidade de Fortaleza, Av. Washington Soares, 1321, Cx. Postal 1258, Fortaleza-CE, 60.811-341, Brazil
| | - Raquel C. Montenegro
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Caixa Postal 3157, Fortaleza-CE, 60430-270, Brazil
| | - Cláudia Pessoa
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Caixa Postal 3157, Fortaleza-CE, 60430-270, Brazil
| | - Manoel O. de Moraes
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Caixa Postal 3157, Fortaleza-CE, 60430-270, Brazil
| | - Letícia V. Costa-Lotufo
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Caixa Postal 3157, Fortaleza-CE, 60430-270, Brazil
| | - Fabio C. S. Galetti
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Celio L. Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana O. De Souza
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Zhou Y, Li SH, Jiang RW, Cai M, Liu X, Ding LS, Xu HX, But PPH, Shaw PC. Quantitative analyses of indoloquinazoline alkaloids in Fructus Evodiae by high-performance liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:3111-8. [PMID: 16986209 DOI: 10.1002/rcm.2705] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fructus Evodiae (Wuzhuyu), the fruits of Evodia rutaecarpa and related varieties, is widely used in traditional Chinese medicine. The bioactive constituents include the indoloquinazoline alkaloids rutaecarpine, evodiamine and dehydroevodiamine. A new assay based on high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/UV/APCI-MS/MS) was developed for the measurement of the indoloquinazoline alkaloids in commercial Fructus Evodiae products. Initially, the MS/MS fragmentation pathways of indoloquinazoline alkaloids were investigated to identify fragment ions that might be useful for the sensitive and selective detection of trace indoloquinazoline alkaloids during LC/MS/MS. Then, quantitative MS analysis of five indoloquinazoline alkaloids in 12 commercial Fructus Evodiae products from different geographical sources was performed. Analyte recovery was in the range of 97.5-105.3% for all with relative standard deviations (RSDs) below 6%, the intra-assay and inter-assay RSDs were less than 7%, and good linear relationships were shown with correlation coefficients for the analytes exceeding 0.999. Therefore, this LC/MS/MS assay facilitated the rapid quantitative analysis of rutaecarpine, evodiamine, evodiamide, 14-formyldihydrorutaecarpine and dehydroevodiamine in 12 commercial Fructus Evodiae products with excellent recovery, repeatability, accuracy and sensitivity. This method is simple and specific and can be used for identification and quality control of this traditional Chinese remedy.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Chinese Medicine and Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|