1
|
In-Depth Analysis of an Obligate Anaerobe Paraclostridium bifermentans Isolated from Uterus of Bubalus bubalis. Animals (Basel) 2022; 12:ani12141765. [PMID: 35883312 PMCID: PMC9311886 DOI: 10.3390/ani12141765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Non-specific uterine infections in bovine (uterine line inflammation) are a significant issue for the dairy industry. These infections are responsible for significant financial losses all over the world. Paraclostridium bifermentans is an obligate anaerobe, gram-positive rod-shaped bacteria belonging to the Clostridia class and the Peptostreptococcaceae family produces endospores. This bacterium has the ability to infiltrate bovine uterine endometrial epithelial cells and cause infection in the endometrium epithelial cells. Our study found that an examination of a buffalo uterus with yellowish purulent discharge reported the presence of pathogenic bacteria Paraclostridium bifermentans, where its genomic characterization, substrate utilization, and antibiotic susceptibility potentiality was studied. This discovery indicates the presence of virulence genes as well as pathogenic features. This is the first report of P. bifermentans from the bovine uterus environment. Abstract Chronic non-specific contamination of the reproductive tract in animals is a major issue during early postpartum, natural coitus, or artificial insemination. Uterine infection is one of the major concerns reducing fertility, production loss, and early culling of the animals. Therefore, the aim of this study was to identify any novel bacterium if present in the uterine environment of Bubalus bubalis causing infections. A strictly anaerobic bacterial strain designated as Paraclostridium bifermentans GBRC was isolated and characterized. Bacterium was found to be Gram positive moderate rod with motility. The optimum growth was observed at 40 ± 2 °C. The pathogenic characteristics of the GBRC strain, such as hemolysis, gelatin hydrolysis, and the production of volatile sulfur compounds, were similar to those seen in the epithelial layer invading pathogenic strains. Assembled genome size was 3.6 MB, with 78 contigs, and a G + C content of 28.10%. Furthermore, the whole genome sequence analysis confirmed the presence of genes encoding virulence factors and provided genomic insights on adaptation of the strain in the uterine environment. Based on the phenotypic and genetic differences with phylogenetic relatives, strain GBRC is proposed to represent a first reported species of the genus Paraclostridium with potential pathogenic character, from the buffalo uterine environment. This study analysis of the GBRC strain serves as a key reference point for the investigation of potential pathogenic strains that may cause endometritis and metritis in bovine.
Collapse
|
2
|
Whole-Genome Sequencing for Tracing the Genetic Diversity of Brucella abortus and Brucella melitensis Isolated from Livestock in Egypt. Pathogens 2021; 10:pathogens10060759. [PMID: 34208761 PMCID: PMC8235727 DOI: 10.3390/pathogens10060759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 02/03/2023] Open
Abstract
Brucellosis is a highly contagious zoonosis that occurs worldwide. Whole-genome sequencing (WGS) has become a widely accepted molecular typing method for outbreak tracing and genomic epidemiology of brucellosis. Twenty-nine Brucella spp. (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were isolated from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats originating from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR. Illumina MiSeq® was used to sequence the 29 Brucella isolates. Using MLST typing, ST11 and ST1 were identified among B. melitensis and B. abortus, respectively. Brucella abortus and B. melitensis isolates were divided into two main clusters (clusters 1 and 2) containing two and nine distinct genotypes by core-genome SNP analysis, respectively. The genotypes were irregularly distributed over time and space in the study area. Both Egyptian B. abortus and B. melitensis isolates proved to be genomically unique upon comparison with publicly available sequencing from strains of neighboring Mediterranean, African, and Asian countries. The antimicrobial resistance mechanism caused by mutations in rpoB, gyrA, and gyrB genes associated with rifampicin and ciprofloxacin resistance were identified. To the best of our knowledge, this is the first study investigating the epidemiology of Brucella isolates from livestock belonging to different localities in Egypt based on whole genome analysis.
Collapse
|
3
|
Investigation of Mutations in the Rifampin-Resistance-Determining Region of the rpoB Gene of Brucella melitensis by Gene Analysis. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: RNA polymerase beta subunit (rpoB) gene analysis in bacterial communities is known as a method for determining rifampin sensitivity and genetic diversity among Brucella spp. Detection of antibiotic resistance among Brucella isolates can be a critical approach to control brucellosis. However, rpoB gene analysis of Brucella melitensis for assessing rifampicin resistance has not yet been performed in Iran, which is considered an endemic area for brucellosis. Objectives: The aim of this study was to analyze the whole sequence of rpoB genes of different B. melitensis isolates from humans to identify the single-nucleotide polymorphisms (SNPs) and mutations related to rifampin resistance and to analyze the genetic diversity of these bacteria in Iran. Methods: Between 2017 and 2019, a total of 156 blood samples along with 12 synovial fluid specimens were collected from brucellosis patients in different Iranian provinces and subjected to bacterial culture in Brucella selective media. Brucella identification was carried out using classical biotyping and molecular examinations. Polymerase chain reaction (PCR)-based amplification of the rpoB gene was performed by specific rpoB primers for whole gene sequencing. The antimicrobial susceptibility of Brucella isolates was assessed using disk diffusion susceptibility tests and minimal inhibitory concentration (MIC) methods. The presence of rifampin-binding sites and SNPs were investigated through rpoB whole gene sequencing. Results: Clinical B. melitensis isolates were obtained from blood (13) and synovial fluid (1) samples of patients from different regions of Iran. The results of MIC and disk diffusion susceptibility tests showed that all the isolates were sensitive to rifampin except for one isolate showing intermediate rifampin resistance based on the standards defined for slow-growing bacteria by the Clinical and Laboratory Standards Institute (CLSI). Gene analysis for identifying the mutations related to rifampin resistance and investigating genetic diversity showed that none of the B. melitensis isolates had missense mutations, confirming the susceptibility of all the studied isolates to rifampin. Conclusions: The present study revealed that rpoB gene analysis could be used for the efficient and precise identifying of the mutations related to rifampin resistance, investigating rifampin binding sites, and genotyping Brucella species. Furthermore, the identification of B. melitensis isolates with intermediate resistance to rifampicin highlighted the importance of periodically carrying out antibiotic susceptibility testing. The molecular detection of rpoB mutations in different Brucella isolates may help to prevent the spread of rifampin-resistant Brucella spp. among humans and livestock.
Collapse
|
4
|
Duplantier AJ, Shurtleff AC, Miller C, Chiang CY, Panchal RG, Sunay M. Combating biothreat pathogens: ongoing efforts for countermeasure development and unique challenges. DRUG DISCOVERY TARGETING DRUG-RESISTANT BACTERIA 2020. [PMCID: PMC7258707 DOI: 10.1016/b978-0-12-818480-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research to discover and develop antibacterial and antiviral drugs with potent activity against pathogens of biothreat concern presents unique methodological and process-driven challenges. Herein, we review laboratory approaches for finding new antibodies, antibiotics, and antiviral molecules for pathogens of biothreat concern. Using high-throughput screening techniques, molecules that directly inhibit a pathogen’s entry, replication, or growth can be identified. Alternatively, molecules that target host proteins can be interesting targets for development when countering biothreat pathogens, due to the modulation of the host immune response or targeting proteins that interfere with the pathways required by the pathogen for replication. Monoclonal and cocktail antibody therapies approved by the Food and Drug Administration for countering anthrax and under development for treatment of Ebola virus infection are discussed. A comprehensive tabular review of current in vitro, in vivo, pharmacokinetic and efficacy datasets has been presented for biothreat pathogens of greatest concern. Finally, clinical trials and animal rule or traditional drug approval pathways are also reviewed. Opinions; interpretations; conclusions; and recommendations are those of the authors and are not necessarily endorsed by the US Army.
Collapse
|
5
|
Khan AU, Shell WS, Melzer F, Sayour AE, Ramadan ES, Elschner MC, Moawad AA, Roesler U, Neubauer H, El-Adawy H. Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt. Microorganisms 2019; 7:microorganisms7120603. [PMID: 31766725 PMCID: PMC6955977 DOI: 10.3390/microorganisms7120603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Brucellosis is a highly contagious zoonosis worldwide with economic and public health impacts. The aim of the present study was to identify Brucella (B.) spp. isolated from animal populations located in different districts of Egypt and to determine their antimicrobial resistance. In total, 34-suspected Brucella isolates were recovered from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR for B. abortus, Brucella melitensis, Brucella ovis, and Brucella suis (AMOS) and Bruce-ladder PCR. Antimicrobial susceptibility testing against clinically used antimicrobial agents (chloramphenicol, ciprofloxacin, erythromycin, gentamicin, imipenem, rifampicin, streptomycin, and tetracycline) was performed using E-Test. The antimicrobial resistance-associated genes and mutations in Brucella isolates were confirmed using molecular tools. In total, 29 Brucella isolates (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were identified and typed. The resistance of B. melitensis to ciprofloxacin, erythromycin, imipenem, rifampicin, and streptomycin were 76.2%, 19.0%, 76.2%, 66.7%, and 4.8%, respectively. Whereas, 25.0%, 87.5%, 25.0%, and 37.5% of B. abortus were resistant to ciprofloxacin, erythromycin, imipenem, and rifampicin, respectively. Mutations in the rpoB gene associated with rifampicin resistance were identified in all phenotypically resistant isolates. Mutations in gyrA and gyrB genes associated with ciprofloxacin resistance were identified in four phenotypically resistant isolates of B. melitensis. This is the first study highlighting the antimicrobial resistance in Brucella isolated from different animal species in Egypt. Mutations detected in genes associated with antimicrobial resistance unravel the molecular mechanisms of resistance in Brucella isolates from Egypt. The mutations in the rpoB gene in phenotypically resistant B. abortus isolates in this study were reported for the first time in Egypt.
Collapse
Affiliation(s)
- Aman Ullah Khan
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
- Institute for Animal Hygiene and Environmental Health, Free University of Berlin, 14163 Berlin, Germany;
- Department of Pathobiology, College of Veterinary and Animal Sciences, 35200 Jhang, Pakistan
| | - Waleed S. Shell
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center, 11517 Abbasaia-Cairo, Egypt;
| | - Falk Melzer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
| | - Ashraf E. Sayour
- Department of Brucellosis, Animal Health Research Institute, Agricultural Research Center, 12618 Dokki-Giza, Egypt;
| | - Eman Shawkat Ramadan
- Animal Reproduction Research Institute, Agricultural Research Center, 12556 Al Ahram-Giza, Egypt;
| | - Mandy C. Elschner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
| | - Amira A. Moawad
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
- Institute for Animal Hygiene and Environmental Health, Free University of Berlin, 14163 Berlin, Germany;
- Provincial Laboratory, Institute of Animal Health Research, 35516 Mansoura, Egypt
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Free University of Berlin, 14163 Berlin, Germany;
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
- Faculty of Veterinary Medicine, Kafr Elsheikh University, 33516 Kafr El-Sheikh, Egypt
- Correspondence:
| |
Collapse
|
6
|
Antimicrobial Resistance in Leptospira, Brucella, and Other Rarely Investigated Veterinary and Zoonotic Pathogens. Microbiol Spectr 2019; 6. [PMID: 30027885 DOI: 10.1128/microbiolspec.arba-0029-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Leptospira, Brucella, and Borrelia are major agents of zoonotic disease, causing high morbidity and, in some cases, significant mortality in humans. For all three genera, prompt diagnosis and appropriate antimicrobial therapy are required to prevent the development of chronic, debilitating illness. Leptospira spp. are intrinsically resistant to several antimicrobial classes; however, there is little evidence in the literature for development of acquired resistance to antimicrobial agents used for clinical treatment of acute leptospirosis. For Brucella infections, there are numerous reports of relapses following therapy, but it is unclear whether this is due to sequestration within infected sites (e.g., bone) or the development of acquired resistance. Brucella have maintained their susceptibility to doxycycline and rifampicin, which in combination remain the most common treatments of brucellosis in humans. In vitro induced point mutations are described as imparting resistance to rifampicin (rpoB) and fluoroquinolones (gyrA). The clinical significance of these mutations is unclear. For Borrelia burgdorferi, although acquired resistance to some antimicrobial agents has been described, resistance due to bacterial persister cells surviving in the presence of antimicrobial, with no apparent increase in the MIC of the organism, have been recently described. Of the remaining veterinary fastidious pathogens, Lawsonia intracellularis is the most interesting from an antimicrobial resistance perspective because it can only be grown in cell culture, making in vitro susceptibility testing challenging. MIC testing has been undertaken on a small number of isolates, and some differences in susceptibility to macrolides have been demonstrated between isolates obtained from different regions.
Collapse
|
7
|
Liu ZG, Wang LJ, Piao DR, Wang M, Liu RH, Zhao HY, Cui BY, Jiang H. Molecular Investigation of the Transmission Pattern of Brucella suis 3 From Inner Mongolia, China. Front Vet Sci 2018; 5:271. [PMID: 30420955 PMCID: PMC6215816 DOI: 10.3389/fvets.2018.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/10/2018] [Indexed: 11/15/2022] Open
Abstract
Brucellosis is an endemic disease in China affecting both humans and livestock. The aim of the present study was to analyze two Brucella strains isolated from sheep spleens from Ulanqab in Inner Mongolia, China using classical and molecular typing techniques. The two strains were identified as Brucella suis biovar 3 and were closely related to isolates previously obtained from two different hosts (human and swine) in Guangxi Province. Our results suggest that B. suis can be directly or indirectly transferred from swine to sheep, which act as reservoirs for B. suis infection and later transmitted to humans. Multiple locus variable-number tandem repeat analysis (MLVA) is a useful tool for tracing the geographical origin of brucellosis infections and elucidating its transmission patterns.
Collapse
Affiliation(s)
- Zhi-Guo Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Li-Jun Wang
- Hulun Buir People's Hospital of the Inner Mongolia Autonomous Region, Hohhot, China
| | - Dong-Ri Piao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Miao Wang
- Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Ri-Hong Liu
- Inner Mongolia Autonomous Region Center for Comprehensive Disease Control and Prevention, Huhhot, China
| | - Hong-Yan Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bu-Yun Cui
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Regeion, Tongliao, China
| |
Collapse
|
8
|
Shevtsov A, Syzdykov M, Kuznetsov A, Shustov A, Shevtsova E, Berdimuratova K, Mukanov K, Ramankulov Y. Antimicrobial susceptibility of Brucella melitensis in Kazakhstan. Antimicrob Resist Infect Control 2017; 6:130. [PMID: 29299304 PMCID: PMC5745643 DOI: 10.1186/s13756-017-0293-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2017] [Indexed: 11/14/2022] Open
Abstract
Background Kazakhstan belongs to countries with a high level of brucellosis among humans and farm animals. Although antibiotic therapy is the main way to treat acute brucellosis in humans there is still little information on a circulation of the antibiotic-resistant Brucella strains in the Central Eurasia. In this article we describe an occurrence of the drug resistance of Brucella melitensis isolates in Kazakhstan which is among the largest countries of the region. Methods Susceptibilities to tetracyclin, gentamycin, doxycyclin, streptomycin and rifampicin were investigated in 329 clinical isolates of Brucella melitensis using E-test method. Results All isolates were susceptible to streptomycin, tetracycline and doxycycline. 97.3% of the Brucella isolates were susceptible to gentamycin, although only 37.4% of isolates were susceptible to rifampicin. 21.9% of isolates had intermediate resistance, and 26.4% of isolates were resistant to this antibacterial drug. Conclusion Isolates of Brucella melitensis circulating in Kazakhstan are susceptible to streptomycin, doxicyclin, tetracyclin and gentamycin. At the same time the resistance to rifampicin is widespread, almost half of the isolates were rifampicin-resistant (including the intermediate resistance).
Collapse
Affiliation(s)
| | - Marat Syzdykov
- Kazakh Scientific Center of Quarantine and Zoonotic Diseases named by Masgut Aykimbayev, Almaty, Kazakhstan
| | - Andrey Kuznetsov
- Kazakh Scientific Center of Quarantine and Zoonotic Diseases named by Masgut Aykimbayev, Almaty, Kazakhstan
| | | | | | | | - Kasim Mukanov
- National Center for Biotechnology, Astana, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, Astana, Kazakhstan
- School of Science and Technology Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
9
|
Shadoud L, Almahmoud I, Jarraud S, Etienne J, Larrat S, Schwebel C, Timsit JF, Schneider D, Maurin M. Hidden Selection of Bacterial Resistance to Fluoroquinolones In Vivo: The Case of Legionella pneumophila and Humans. EBioMedicine 2015; 2:1179-85. [PMID: 26501115 PMCID: PMC4588375 DOI: 10.1016/j.ebiom.2015.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022] Open
Abstract
Background Infectious diseases are the leading cause of human morbidity and mortality worldwide. One dramatic issue is the emergence of microbial resistance to antibiotics which is a major public health concern. Surprisingly however, such in vivo adaptive ability has not been reported yet for many intracellular human bacterial pathogens such as Legionella pneumophila. Methods We examined 82 unrelated patients with Legionnaire's disease from which 139 respiratory specimens were sampled during hospitalization and antibiotic therapy. We both developed a real time PCR assay and used deep-sequencing approaches to detect antibiotic resistance mutations in L. pneumophila and follow their selection and fate in these samples. Findings We identified the in vivo selection of fluoroquinolone resistance mutations in L. pneumophila in two infected patients treated with these antibiotics. By investigating the mutational dynamics in patients, we showed that antibiotic resistance occurred during hospitalization most likely after fluoroquinolone treatment. Interpretation In vivo selection of antibiotic resistances in L. pneumophila may be associated with treatment failures and poor prognosis. This hidden resistance must be carefully considered in the therapeutic management of legionellosis patients and in the control of the gradual loss of effectiveness of antibiotics. Legionellosis is a pneumonia caused by the inhalation of aerosols containing Legionella, mainly L. pneumophila. Its average mortality rate is 10%, despite availability of effective antibiotics such as the macrolides and the fluoroquinolones. Using modern molecular approaches, we identified the selection of fluoroquinolone resistance in L. pneumophila in patients under fluoroquinolone therapy. This may lead to reduction of treatment efficacy and prognosis worsening. Our findings should lead to revised guidelines for therapeutic management and prognosis evaluation of legionellosis.
Collapse
Affiliation(s)
- Lubana Shadoud
- Univ. Grenoble Alpes, Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), F-38000 Grenoble, France ; Centre National de la Recherche Scientifique (CNRS), LAPM, F-38000 Grenoble, France ; Centre Hospitalier Universitaire (CHU) Grenoble, Institut de Biologie et de Pathologie, Grenoble, France
| | - Iyad Almahmoud
- Univ. Grenoble Alpes, Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), F-38000 Grenoble, France ; Centre National de la Recherche Scientifique (CNRS), LAPM, F-38000 Grenoble, France ; Centre Hospitalier Universitaire (CHU) Grenoble, Institut de Biologie et de Pathologie, Grenoble, France
| | - Sophie Jarraud
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France ; CNRS UMR5308, Ecoles Normales Supérieures (ENS), Lyon, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Lyon, France ; Centre National de Référence des Legionella , Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Etienne
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France ; CNRS UMR5308, Ecoles Normales Supérieures (ENS), Lyon, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Lyon, France ; Centre National de Référence des Legionella , Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Sylvie Larrat
- Unit of Virus host Cell Interactions (UVHCI), UMI 3265, Univ. Grenoble Alpes, European Molecular Biology Laboratory (EMBL), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | | | - Jean-François Timsit
- CHU Grenoble, Réanimation Médicale, Grenoble, France ; INSERM U823, Institut Albert Bonniot, Grenoble, France
| | - Dominique Schneider
- Univ. Grenoble Alpes, Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), F-38000 Grenoble, France ; Centre National de la Recherche Scientifique (CNRS), LAPM, F-38000 Grenoble, France
| | - Max Maurin
- Univ. Grenoble Alpes, Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), F-38000 Grenoble, France ; Centre National de la Recherche Scientifique (CNRS), LAPM, F-38000 Grenoble, France ; Centre Hospitalier Universitaire (CHU) Grenoble, Institut de Biologie et de Pathologie, Grenoble, France
| |
Collapse
|
10
|
Shevtsov A, Ramanculov E, Shevtsova E, Kairzhanova A, Tarlykov P, Filipenko M, Dymova M, Abisheva G, Jailbekova A, Kamalova D, Chsherbakov A, Tulegenov S, Akhmetova A, Sytnik I, Karibaev T, Mukanov K. Genetic diversity of Brucella abortus and Brucella melitensis in Kazakhstan using MLVA-16. INFECTION GENETICS AND EVOLUTION 2015; 34:173-80. [PMID: 26160544 DOI: 10.1016/j.meegid.2015.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Brucellosis is an endemic disease in Central Asia characterized by high infection rates in humans and animals. Currently, little is known about the genetic diversity of Brucella spp. circulating in the region, despite the high prevalence of brucellosis. This study aimed to analyze the genetic diversity of Brucella melitensis and Brucella abortus strains circulating in the Republic of Kazakhstan. We genotyped 128 B. melitensis and 124 B. abortus strains collected in regions with the highest prevalence of brucellosis. Genotyping was performed using multi-locus variable-number tandem-repeat analysis (MLVA). Analysis of a subset of 8 loci (MLVA-8) of 128 B. melitensis strains identified genotypes 42 (n=108), 43 (n=2), and 63 (n=19) related to the 'East Mediterranean' group. An MLVA-16 assay sorted 128 B. melitensis strains into 25 different genotypes. Excluding one variable locus, MLVA-15 of B. melitensis was distinct from strains originating in the Mediterranean region; however, 77% of them were identical to strains isolated in China. A minimum spanning tree for B. melitensis using MLVA-15 analysis clustered the local strains together with strains previously collected in China. MLVA-8 analysis of 124 B. abortus strains identified them as genotype 36, suggesting Eurasian distribution of this lineage. Complete MLVA-16 assay analysis clustered the strains into five genotypes, revealing little diversity of B. abortus when compared on the global scale. A minimum spanning tree for B. abortus obtained using MLVA-15 analysis clustered the 2 most prevalent genotypes (n=117) together with strains previously collected in China. Thus, MLVA analysis was used to characterize 252 strains of Brucella collected in Kazakhstan. The analysis revealed genetic homogeneity among the strains. Interestingly, identical MLVA-15 profiles were found in seemingly unrelated outbreaks in China, Turkey, and Kazakhstan. Further analysis is needed for better understanding of the epidemiology of brucellosis in Asia.
Collapse
Affiliation(s)
- Alexandr Shevtsov
- National Center for Biotechnology, 13/1 Valikhanov Str, 010000 Astana, Kazakhstan.
| | - Erlan Ramanculov
- National Center for Biotechnology, 13/1 Valikhanov Str, 010000 Astana, Kazakhstan; School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, 010000 Astana, Kazakhstan.
| | - Elena Shevtsova
- National Center for Biotechnology, 13/1 Valikhanov Str, 010000 Astana, Kazakhstan
| | - Alma Kairzhanova
- National Center for Biotechnology, 13/1 Valikhanov Str, 010000 Astana, Kazakhstan
| | - Pavel Tarlykov
- National Center for Biotechnology, 13/1 Valikhanov Str, 010000 Astana, Kazakhstan.
| | - Maxim Filipenko
- National Center for Biotechnology, 13/1 Valikhanov Str, 010000 Astana, Kazakhstan; Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentev Str, 630000 Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogov Str, 630090 Novosibirsk, Russian Federation.
| | - Maya Dymova
- Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentev Str, 630000 Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogov Str, 630090 Novosibirsk, Russian Federation
| | - Gulzada Abisheva
- National Center for Biotechnology, 13/1 Valikhanov Str, 010000 Astana, Kazakhstan
| | - Aygul Jailbekova
- National Reference Center for Veterinary, 22/3 150-let Abaya, 010000 Astana, Kazakhstan
| | - Dinara Kamalova
- National Center for Biotechnology, 13/1 Valikhanov Str, 010000 Astana, Kazakhstan
| | - Andrei Chsherbakov
- National Reference Center for Veterinary, 22/3 150-let Abaya, 010000 Astana, Kazakhstan
| | - Samat Tulegenov
- National Reference Center for Veterinary, 22/3 150-let Abaya, 010000 Astana, Kazakhstan
| | - Assel Akhmetova
- National Reference Center for Veterinary, 22/3 150-let Abaya, 010000 Astana, Kazakhstan
| | - Igor Sytnik
- National Reference Center for Veterinary, 22/3 150-let Abaya, 010000 Astana, Kazakhstan.
| | - Talgat Karibaev
- National Reference Center for Veterinary, 22/3 150-let Abaya, 010000 Astana, Kazakhstan
| | - Kasim Mukanov
- National Center for Biotechnology, 13/1 Valikhanov Str, 010000 Astana, Kazakhstan.
| |
Collapse
|
11
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 946] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
12
|
In vitro selection of resistance to pradofloxacin and ciprofloxacin in canine uropathogenic Escherichia coli isolates. Vet Microbiol 2014; 174:514-522. [PMID: 25465666 DOI: 10.1016/j.vetmic.2014.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 11/20/2022]
Abstract
This study explored and compared the mechanisms and selective concentration of resistance between a 3rd (pradofloxacin) and 2nd (ciprofloxacin) generation fluoroquinolone. Pradofloxacin- and ciprofloxacin-resistant mutants were selected by stepwise exposure of Escherichia coli (E. coli) to escalating concentrations of pradofloxacin and ciprofloxacin. The sequence of the quinolone resistance determining region (QRDR) and the transcriptional regulator soxS were analyzed, and efflux pump AcrAB-TolC activity was measured by quantitative real-time reverse transcription-PCR (qRT-PCR). First-step mutants reduced the fluoroquinolone sensitivity and one mutant bore a single substitution in gyrA. Four of six second-step mutants expressed ciprofloxacin resistance, and displayed additional mutations in gyrA and/or parC, while these mutants retained susceptibility to pradofloxacin. All the third-step mutants were fluoroquinolone resistant, and each expressed multidrug resistance (MDR) phenotypes. Further, they displayed resistance to all antibacterials tested except cefotaxime, ceftazidime and meropenem. The number of mutations in QRDR of gyrA and parC correlated with fluoroquinolone MICs. Mutations in parC were not common in pradofloxacin-associated mutants. Moreover, one second- and one third-step ciprofloxacin-associated mutants bore both mutations at position 12 (Ala12Ser) and 78 (Met78Leu) in the soxS gene, yet no mutations in the soxS gene were detected in the pradofloxacin-selected mutants. Altogether, these results demonstrated that resistance emerged relatively more rapidly in 2nd compared to 3rd generation fluoroquinolones. Point mutations in gyrA were a key mechanism of resistance to pradofloxacin, and overexpression of efflux pump gene acrB played a potential role in the emergence of MDR phenotypes identified in this study.
Collapse
|
13
|
Moreno E. Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol 2014; 5:213. [PMID: 24860561 PMCID: PMC4026726 DOI: 10.3389/fmicb.2014.00213] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/23/2014] [Indexed: 11/13/2022] Open
Abstract
Members of the genus Brucella are pathogenic bacteria exceedingly well adapted to their hosts. The bacterium is transmitted by direct contact within the same host species or accidentally to secondary hosts, such as humans. Human brucellosis is strongly linked to the management of domesticated animals and ingestion of their products. Since the domestication of ungulates and dogs in the Fertile Crescent and Asia in 12000 and 33000 ya, respectively, a steady supply of well adapted emergent Brucella pathogens causing zoonotic disease has been provided. Likewise, anthropogenic modification of wild life may have also impacted host susceptibility and Brucella selection. Domestication and human influence on wild life animals are not neutral phenomena. Consequently, Brucella organisms have followed their hosts’ fate and have been selected under conditions that favor high transmission rate. The “arm race” between Brucella and their preferred hosts has been driven by genetic adaptation of the bacterium confronted with the evolving immune defenses of the host. Management conditions, such as clustering, selection, culling, and vaccination of Brucella preferred hosts have profound influences in the outcome of brucellosis and in the selection of Brucella organisms. Countries that have controlled brucellosis systematically used reliable smooth live vaccines, consistent immunization protocols, adequate diagnostic tests, broad vaccination coverage and sustained removal of the infected animals. To ignore and misuse tools and strategies already available for the control of brucellosis may promote the emergence of new Brucella variants. The unrestricted use of low-efficacy vaccines may promote a “false sense of security” and works towards selection of Brucella with higher virulence and transmission potential.
Collapse
Affiliation(s)
- Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional Heredia, Costa Rica ; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José, Costa Rica
| |
Collapse
|
14
|
Vranakis I, Sandalakis V, Chochlakis D, Tselentis Y, Psaroulaki A. DNA gyrase and topoisomerase IV mutations in an in vitro fluoroquinolone-resistant Coxiella burnetii strain. Microb Drug Resist 2010; 16:111-7. [PMID: 20438350 DOI: 10.1089/mdr.2010.0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The etiological agent of Q fever, Coxiella burnetii, is an obligate intracellular bacterium that multiplies within a vacuole with lysosomal characteristics. Quinolones have been used as an alternative therapy for Q fever. In this study, quinolone-resistance-determining regions of the genes coding for DNA gyrase and topoisomerase IV were analyzed by DNA sequencing from an in vitro fluoroquinolone-resistant C. burnetii strain (Q212). Sequencing and aligning of DNA gyrase encoding genes (gyrA and gyrB) and topoisomerase IV genes (parC and parE) revealed one gyrA mutation leading to the amino acid substitution Asp87Gly (Escherichia coli numbering), two gyrB mutations leading to the amino acid substitutions Ser431Pro and Met518Ile, and three parC mutations leading to the amino acid substitutions Asp69Asn, Thr80Ile, and Gly104Ser. The corresponding alignment of the C. burnetii Q212 reference strain, the in vitro developed fluoroquinolone-resistant C. burnetii Q212 strain, and E. coli resulted in the identification of several other naturally occurring mutations within and outside the quinolone-resistance-determining regions of C. burnetii providing indications of possible natural resistance to fluoroquinolones. The present study adds additional potential mutations in the DNA topoisomerases that may be involved in fluoroquinolone resistance in C. burnetii due to their previous characterization in other bacterial species.
Collapse
Affiliation(s)
- Iosif Vranakis
- Laboratory of Clinical Bacteriology, Parasitology, Zoonoses, and Geographical Medicine (WHO Collaborating Center), Medical School, University of Crete, Heraklion, Greece
| | | | | | | | | |
Collapse
|
15
|
Vullo D, Nishimori I, Scozzafava A, Köhler S, Winum JY, Supuran CT. Inhibition studies of a β-carbonic anhydrase from Brucella suis with a series of water soluble glycosyl sulfanilamides. Bioorg Med Chem Lett 2010; 20:2178-82. [DOI: 10.1016/j.bmcl.2010.02.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 11/16/2022]
|
16
|
Valdezate S, Navarro A, Medina-Pascual MJ, Carrasco G, Saéz-Nieto JA. Molecular screening for rifampicin and fluoroquinolone resistance in a clinical population of Brucella melitensis. J Antimicrob Chemother 2010; 65:51-3. [PMID: 19861338 DOI: 10.1093/jac/dkp389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The aim of this study was to determine, using molecular methods, whether rifampicin and fluoroquinolone resistance was present in a clinical Brucella melitensis population. METHODS Sixty-two B. melitensis strains, isolated from humans-most experiencing their first brucellosis episode-over an 11 year period in Spain, were genotyped by multiple locus variable analysis (MLVA-16) for future studies. In the present work, molecular screening was undertaken to detect the presence of rpoB and gyrA/gyrB/parC/parE mutations (previously described in in vitro Brucella spp. mutants) related to resistance to rifampicin and fluoroquinolones, respectively. RESULTS Sixty-two MLVA-16 genotypes were identified among the B. melitensis population, with genetic similarity values ranging from 32% to 94%. rpoB mutations related to rifampicin resistance (positions 154, 526, 536, 539, 541, 574) were not detected. Neither were changes in GyrA described in in vitro mutants (67, 71, 87, 91 and an insertion at 340) detected in these strains. All showed identical GyrA, GyrB, ParC and ParE sequences with respect to B. melitensis 16M, except for one strain (ciprofloxacin and moxifloxacin MICs 0.25-0.50 mg/L) that harboured the Val264Ala replacement outside the GyrA quinolone resistance-determining region (QRDR); no differences were seen, however, in the NorMI/II efflux pump genes. CONCLUSIONS The absence of rpoB mutations clearly related to rifampicin resistance in clinical B. melitensis strains reinforces the first-choice status of this antibiotic in the treatment of first brucellosis episodes, and demonstrates the usefulness of molecular screening for resistant genotypes. The absence of topoisomerase II-IV mutations, however, cannot rule out fluoroquinolone resistance due to the interplay of different mechanisms.
Collapse
Affiliation(s)
- Sylvia Valdezate
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | | | | | | |
Collapse
|
17
|
Joseph P, Turtaut F, Ouahrani-Bettache S, Montero JL, Nishimori I, Minakuchi T, Vullo D, Scozzafava A, Köhler S, Winum JY, Supuran CT. Cloning, Characterization, and Inhibition Studies of a β-Carbonic Anhydrase from Brucella suis. J Med Chem 2010; 53:2277-85. [DOI: 10.1021/jm901855h] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pascale Joseph
- Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France
| | - François Turtaut
- Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex, France
| | - Safia Ouahrani-Bettache
- Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France
| | - Jean-Louis Montero
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex, France
| | - Isao Nishimori
- Department of Gastroenterology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Tomoko Minakuchi
- Department of Gastroenterology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Scozzafava
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Stephan Köhler
- Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex, France
| | - Claudiu T. Supuran
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|