1
|
Coenradie SM, Smeets TJL, Kamp RC, Elderman JH, Koch BCP, Endeman H, Favie LMA, Hunfeld NGM. Higher doses of fluconazole are needed to ensure target attainment in critically ill adults on continuous Veno-venous hemodialysis. J Crit Care 2025; 85:154924. [PMID: 39332343 DOI: 10.1016/j.jcrc.2024.154924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Critically ill patients undergoing Continuous Renal Replacement Therapy (CRRT) are treated with higher doses of fluconazole based on the literature recommendations. However, clinical follow-up data demonstrating the effectiveness of this approach are lacking. PURPOSE A retrospective cohort study was conducted to evaluate whether target attainment was achieved with higher doses of fluconazole. Additionally, the study focused on identifying factors that may contribute to variability in fluconazole exposure in these patients. METHODS Critically ill patients undergoing Continuous Veno-Venous Hemodialysis (CVVHD) who received either standard or higher doses of intravenous fluconazole were included. Evaluation of target attainment was conducted for each dose regimen. RESULTS Administering higher doses resulted in target attainment in 100 % of the patients, indicating that starting with at least 400 mg twice daily is an adequate dosing guideline. In this study, only the dose of fluconazole was found to significantly influence target attainment (p < 0.001), with no other predefined factors identified as having a significant impact. CONCLUSION According to the results of the study, increasing the fluconazole dose to at least 400 mg twice daily is sufficient to reach the desired target in critically ill patients undergoing CVVHD.
Collapse
Affiliation(s)
- Saskia M Coenradie
- Department of Hospital Pharmacy, Reinier de Graaf Hospital Delft, Reinier de Graafweg 5, 2625 AD Delft, the Netherlands.
| | - Tim J L Smeets
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Richard C Kamp
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Jan H Elderman
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Laurent M A Favie
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Nicole G M Hunfeld
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands; Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
2
|
Li L, Zinger J, Sassen SDT, Juffermans NP, Koch BCP, Endeman H. The relation between inflammatory biomarkers and drug pharmacokinetics in the critically ill patients: a scoping review. Crit Care 2024; 28:376. [PMID: 39563441 PMCID: PMC11577668 DOI: 10.1186/s13054-024-05150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/26/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The level of inflammation alters drug pharmacokinetics (PK) in critically ill patients. This might compromise treatment efficacy. Understanding the specific effects of inflammation, measured by biomarkers, on drug absorption, distribution, metabolism, and excretion is might help in optimizing dosing strategies. OBJECTIVES This review investigates the relationship between inflammatory biomarkers and PK parameters absorption, distribution, metabolism and excretion (ADME) in critically ill patients, providing insight in the complexity of dosing drugs in critically ill patients. METHOD Following PRISMA guidelines, we conducted a comprehensive search of Medline, Embase, Web of Science, and Cochrane databases (January 1946-November 2023). Studies examining inflammatory biomarkers, PK parameters, or drug exposure in critically ill patients were included. Records were screened by title, abstract, and full text, with any discrepancies resolved through discussion or consultation with a third reviewer. RESULTS Of the 4479 records screened, 31 met our inclusion criteria: 2 on absorption, 7 on distribution, 17 on metabolism, and 6 on excretion. In general, results are only available for a limited number of drugs, and most studies are done only looking at one of the components of ADME. Higher levels of inflammatory biomarkers may increase or decrease drug absorption depending on whether the drug undergoes hepatic first-pass elimination. For drug distribution, inflammation is negatively correlated with drug protein binding capacity, positively correlated with cerebrospinal fluid penetration, and negatively correlated with peritoneal penetration. Metabolizing capacity of most drugs was inversely correlated with inflammatory biomarkers. Regarding excretion, inflammation can lead to reduced drug clearance, except in the neonatal population. CONCLUSION Inflammatory biomarkers can offer valuable information regarding altered PK in critically ill patients. Our findings emphasize the need to consider inflammation-driven PK variability when individualizing drug therapy in this setting, at the same time research is limited to certain drugs and needs further research, also including pharmacodynamics.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Xinqiao Hospital, Army Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Julia Zinger
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sebastiaan D T Sassen
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Intensive Care, OLVG, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Yang Y, Shang J, Xu S, Wang Z. Dose Optimization of Fluconazole After Initial Treatment Failure in Pulmonary Cryptococcosis in an Obese Patient with Type 2 Diabetes and Cirrhosis: A Case Report. Infect Drug Resist 2024; 17:4993-5000. [PMID: 39554469 PMCID: PMC11566214 DOI: 10.2147/idr.s491615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Pulmonary cryptococcosis is a fungal infection of the lungs, particularly challenging to treat in patients with multiple comorbidities such as obesity, type 2 diabetes, and cirrhosis. Fluconazole is a first-line medication for the treatment of pulmonary cryptococcosis, but currently there is a lack of clinical medication experience in obese patients with multiple comorbidities, especially in dose adjustment after treatment failure. Case Introduction This case report describes the experience of fluconazole in the treatment of pulmonary cryptococcal infection in a 45-year-old Chinese male with obesity, type 2 diabetes, and cirrhosis. The patient had a history of antifungal therapy for two weeks before admission, but the cough and hemoptysis were not improved. The treatment failed. After admission, it was recommended to use a conventional dose of fluconazole as an antifungal regimen according to the guidelines. However, the treatment effect was still unsatisfactory, due to the patients' cough, hemoptysis, and fever symptoms were not relieved. During this period, it was newly found that the patient had cirrhosis and type 2 diabetes and had not previously controlled blood glucose. Considering the above situation, combined with the pharmacokinetic characteristics of fluconazole and the patient's weight reaching 113 kg, the team readjusted the fluconazole medication regimen, and ultimately, the pulmonary infection improved without significant adverse reactions. Results We found that it was more suitable for patients with obesity to calculate the dose of fluconazole by the lean weight. By estimation, the patient was finally given a loading dose of 800 mg fluconazole, and his condition improved significantly. After two weeks of medication, it was adjusted to a maintenance dose of 600 mg until the pulmonary infection in the patient disappeared. Conclusion This case suggests that fluconazole antifungal therapy for pulmonary cryptococcal infection should fully consider the risk of comorbidities in patients. If necessary, medication dosage can be adjusted according to weight, and it is recommended to use lean bodyweight for evaluation and optimization. In addition, close attention should be paid to liver and kidney function.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jin Shang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Novy E, Abdul-Aziz MH, Cheng V, Burrows F, Buscher H, Corley A, Diehl A, Gilder E, Levkovich BJ, McGuinness S, Ordonez J, Parke R, Parker S, Pellegrino V, Reynolds C, Rudham S, Wallis SC, Welch SA, Fraser JF, Shekar K, Roberts JA. Population pharmacokinetics of fluconazole in critically ill patients receiving extracorporeal membrane oxygenation and continuous renal replacement therapy: an ASAP ECMO study. Antimicrob Agents Chemother 2024; 68:e0120123. [PMID: 38063399 PMCID: PMC10777822 DOI: 10.1128/aac.01201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024] Open
Abstract
This multicenter study describes the population pharmacokinetics (PK) of fluconazole in critically ill patients receiving concomitant extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) and includes an evaluation of different fluconazole dosing regimens for achievement of target exposure associated with maximal efficacy. Serial blood samples were obtained from critically ill patients on ECMO and CRRT receiving fluconazole. Total fluconazole concentrations were measured in plasma using a validated chromatographic assay. A population PK model was developed and Monte Carlo dosing simulations were performed using Pmetrics in R. The probability of target attainment (PTA) of various dosing regimens to achieve fluconazole area under the curve to minimal inhibitory concentration ratio (AUC0-24/MIC) >100 was estimated. Eight critically ill patients receiving concomitant ECMO and CRRT were included. A two-compartment model including total body weight as a covariate on clearance adequately described the data. The mean (±standard deviation, SD) clearance and volume of distribution were 2.87 ± 0.63 L/h and 15.90 ± 13.29 L, respectively. Dosing simulations showed that current guidelines (initial loading dose of 12 mg/kg then 6 mg/kg q24h) achieved >90% of PTA for a MIC up to 1 mg/L. None of the tested dosing regimens achieved 90% of PTA for MIC above 2 mg/L. Current fluconazole dosing regimen guidelines achieved >90% PTA only for Candida species with MIC <1 mg/L and thus should be only used for Candida-documented infections in critically ill patients receiving concomitant ECMO and CRRT. Total body weight should be considered for fluconazole dose.
Collapse
Affiliation(s)
- Emmanuel Novy
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
- Université de Lorraine, SIMPA, Nancy, France
- Departement of anesthesiology, Critical care and peri-operative medicine, University hospital of Nancy, Nancy, France
| | - Mohd H. Abdul-Aziz
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Vesa Cheng
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Fay Burrows
- Department of Pharmacy, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Hergen Buscher
- Department of Intensive Care Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
- University of New South Wales, St Vincent’s Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Amanda Corley
- The Prince Charles Hospital, Critical Care Research Group and Adult Intensive Care Services, Brisbane, Queensland, Australia
| | - Arne Diehl
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital and School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Eileen Gilder
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Bianca J. Levkovich
- Experiential Development and Graduate Education and Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Shay McGuinness
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Jenny Ordonez
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Rachael Parke
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
- The University of Auckland, School of Nursing, Auckland, New Zealand
| | - Suzanne Parker
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Vincent Pellegrino
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital and School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Claire Reynolds
- Department of Intensive Care Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Sam Rudham
- Department of Intensive Care Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Steven C. Wallis
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Susan A. Welch
- Department of Pharmacy, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - John F. Fraser
- The Prince Charles Hospital, Critical Care Research Group and Adult Intensive Care Services, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Kiran Shekar
- The Prince Charles Hospital, Critical Care Research Group and Adult Intensive Care Services, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Jason A. Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
5
|
Novy E, Roger C, Roberts JA, Cotta MO. Pharmacokinetic and pharmacodynamic considerations for antifungal therapy optimisation in the treatment of intra-abdominal candidiasis. Crit Care 2023; 27:449. [PMID: 37981676 PMCID: PMC10659066 DOI: 10.1186/s13054-023-04742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Intra-abdominal candidiasis (IAC) is one of the most common of invasive candidiasis observed in critically ill patients. It is associated with high mortality, with up to 50% of deaths attributable to delays in source control and/or the introduction of antifungal therapy. Currently, there is no comprehensive guidance on optimising antifungal dosing in the treatment of IAC among the critically ill. However, this form of abdominal sepsis presents specific pharmacokinetic (PK) alterations and pharmacodynamic (PD) challenges that risk suboptimal antifungal exposure at the site of infection in critically ill patients. This review aims to describe the peculiarities of IAC from both PK and PD perspectives, advocating an individualized approach to antifungal dosing. Additionally, all current PK/PD studies relating to IAC are reviewed in terms of strength and limitations, so that core elements for the basis of future research can be provided.
Collapse
Affiliation(s)
- Emmanuel Novy
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
- Department of Anaesthesiology, Critical Care and Peri-Operative Medicine, University Hospital of Nancy, Nancy, France
- Université de Lorraine, SIMPA, 54500, Nancy, France
| | - Claire Roger
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France
- UR UM103 IMAGINE, Univ Montpellier, Montpellier, France
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia.
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France.
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.
| | - Menino Osbert Cotta
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
6
|
Patel JS, Kooda K, Igneri LA. A Narrative Review of the Impact of Extracorporeal Membrane Oxygenation on the Pharmacokinetics and Pharmacodynamics of Critical Care Therapies. Ann Pharmacother 2022; 57:706-726. [PMID: 36250355 DOI: 10.1177/10600280221126438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Extracorporeal membrane oxygenation (ECMO) utilization is increasing on a global scale, and despite technological advances, minimal standardized approaches to pharmacotherapeutic management exist. This objective was to create a comprehensive review for medication dosing in ECMO based on the most current evidence. Data Sources: A literature search of PubMed was performed for all pertinent articles prior to 2022. The following search terms were utilized: ECMO, pharmacokinetics, pharmacodynamics, sedation, analgesia, antiepileptic, anticoagulation, antimicrobial, antifungal, nutrition. Retrospective cohort studies, case-control studies, case series, case reports, and ex vivo investigations were reviewed. Study Selection and Data Extraction: PubMed (1975 through July 2022) was the database used in the literature search. Non-English studies were excluded. Search terms included both drug class categories, specific drug names, ECMO, and pharmacokinetics. Data Synthesis: Medications with high protein binding (>70%) and high lipophilicity (logP > 2) are associated with circuit sequestration and the potential need for dose adjustment. Volume of distribution changes with ECMO may also impact dosing requirements of common critical care medications. Lighter sedation targets and analgosedation may help reduce sedative and analgesia requirements, whereas higher antiepileptic dosing is recommended. Vancomycin is minimally affected by the ECMO circuit and recommendations for dosing in critically ill adults are reasonable. Anticoagulation remains challenging as optimal aPTT goals have not been established. Relevance to Patient Care and Clinical Practice: This review describes the anticipated impacts of ECMO circuitry on sedatives, analgesics, anticoagulation, antiepileptics, antimicrobials, antifungals, and nutrition support and provides recommendations for drug therapy management. Conclusions: Medication pharmacokinetic/pharmacodynamic parameters should be considered when determining the potential impact of the ECMO circuit on attainment of therapeutic effect and target serum drug concentrations, and should guide therapy choices and/or dose adjustments when data are not available.
Collapse
Affiliation(s)
| | - Kirstin Kooda
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
7
|
Pharmacokinetic/Pharmacodynamic Target Attainment of Different Antifungal Agents in De-escalation Treatment in Critically Ill Patients: a Step toward Dose Optimization Using Monte Carlo Simulation. Antimicrob Agents Chemother 2022; 66:e0009922. [PMID: 35604209 DOI: 10.1128/aac.00099-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differences in pharmacokinetics/pharmacodynamics (PK/PD) target attainment are rarely considered when antifungals are switched in critically ill patients. This study intends to explore whether the antifungal de-escalation treatment strategy and the new intermittent dosing strategy of echinocandins in critically ill patients are able to achieve the corresponding PK/PD targets. The published population PK models of antifungals in critically ill patients and a public data set from the MIMIC-III database (n = 662) were employed to evaluate PK/PD target attainment of different dosing regimens of antifungals. Cumulative fraction of response (CFR) was calculated for each dosing regimen. Most guideline-recommended dosing regimens of fluconazole and voriconazole could achieve target exposure as de-escalation treatment in critically ill patients. For initial echinocandin treatment, achievement of the target exposure decreased as body weight increased, and the intermittent dosing strategy had a slightly higher CFR value in most simulations compared to conventional dosing strategy. For Candida albicans and Candida glabrata infection, caspofungin at the lowest dose achieved a CFR of >90%, while micafungin or anidulafungin required almost the highest doses simulated in this study to achieve the same effect. None of the echinocandins other than 150 mg every 24 h (q24h) or 200 mg q48h of caspofungin achieved the target CFR for Candida parapsilosis infection. These findings support the guideline-recommended dose of triazoles for antifungal de-escalation treatment and confirm the insufficient dosage of echinocandins in critically ill patients, indicating that a dosing regimen based on body weight or intermittent dosing of echinocandins may be required.
Collapse
|
8
|
Caspofungin Population Pharmacokinetic Analysis in Plasma and Peritoneal Fluid in Septic Patients with Intra-Abdominal Infections: A Prospective Cohort Study. Clin Pharmacokinet 2021; 61:673-686. [PMID: 34931282 DOI: 10.1007/s40262-021-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The aim of this study was to report the pharmacokinetics (PK) of caspofungin in plasma and peritoneal fluid and to identify optimal dosing strategies in septic patients with intra-abdominal infections. METHODS Eleven patients with secondary peritonitis with septic shock received the standard dosing regimen of caspofungin. Total caspofungin plasma and peritoneal concentrations were subject to a population PK analysis using Pmetrics®. Monte Carlo simulations were performed considering the ratio of 24-h total drug exposure above the minimum inhibitory concentration (AUC24/MIC) in plasma and comparing simulated concentrations versus MIC in peritoneal fluid. RESULTS Fat-free mass (FFM) was retained in the final model of caspofungin, reporting a total clearance (standard deviation) of 0.78 (0.17) L/h and a central volume of distribution of 9.36 (2.61) L. The peritoneal fluid/plasma ratio of caspofungin was 33% on the first day of therapy (AUC24 73.92 (21.93) and 26.03 (9.88) mg*h/L for plasma and peritoneal data, respectively). Dosing simulations supported the use of standard dosing regimens for patients with an FFM < 50 kg for the most susceptible candida species (C. albicans and C. glabrata). For higher FFM, a loading dose of 70 or 100 mg, with a maintenance dose of 70 mg, reached AUC24/MIC ratios for these species. CONCLUSIONS There is moderate penetration of caspofungin into the peritoneal cavity (33%). For empirical treatment, a dose escalation of 100 mg loading dose on the first day is suggested for higher FFM to ensure adequate concentrations into the abdominal cavity for the most susceptible candida species.
Collapse
|
9
|
Garbez N, Mbatchi LC, Maseda E, Luque S, Grau S, Wallis SC, Muller L, Lipman J, Roberts JA, Lefrant JY, Roger C. A Loading Micafungin Dose in Critically Ill Patients Undergoing Continuous Venovenous Hemofiltration or Continuous Venovenous Hemodiafiltration: A Population Pharmacokinetic Analysis. Ther Drug Monit 2021; 43:747-755. [PMID: 33560097 DOI: 10.1097/ftd.0000000000000874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND In this study, the authors aimed to compare the pharmacokinetics (PK) of micafungin in critically ill patients receiving continuous venovenous hemofiltration (CVVH, 30 mL·kg-1·h-1) with those of patients receiving equidoses of hemodiafiltration (CVVHDF, 15 mL·kg-1·h-1 + 15 mL·kg-1·h-1) and determine the optimal dosing regimen using the developed model. METHODS Patients with septic shock undergoing continuous renal replacement therapy and receiving a conventional dose of 100 mg micafungin once daily were eligible for inclusion. Total micafungin plasma concentrations from 8 CVVH sessions and 8 CVVHDF sessions were subjected to a population PK analysis using Pmetrics. Validation of the model performance was reinforced by external validation. Monte Carlo simulations were performed considering the total ratio of free drug area under the curve (AUC) over 24 hours to the minimum inhibitory concentration (MIC) (AUC0-24/MIC) in plasma. RESULTS The median total body weight (min-max) was 94.8 (66-138) kg. Micafungin concentrations were best described by a 2-compartmental PK model. No covariates, including continuous renal replacement therapy modality (CVVH or CVVHDF), were retained in the final model. The mean parameter estimates (SD) were 0.96 (0.32) L/h for clearance and 14.8 (5.3) L for the central compartment volume. External validation confirmed the performance of the developed PK model. Dosing simulations did not support the use of standard 100 mg daily dosing, except for Candida albicans on the second day of therapy. A loading dose of 150 mg followed by 100 mg daily reached the probability of target attainment for all C. albicans and C. glabrata, but not for C. krusei and C. parapsilosis. CONCLUSIONS No difference was observed in micafungin PK between equidoses of CVVH and CVVHDF. A loading dose of 150 mg is required to achieve the PK/PD target for less susceptible Candida species from the first day of therapy.
Collapse
Affiliation(s)
- Nicolas Garbez
- Service des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, Centre Hospitalier Universitaire (CHU) Nîmes, Nîmes
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Univ Montpellier
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
| | - Litaty C Mbatchi
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Univ Montpellier
- Laboratoire de Biochimie, CHU Nîmes, Hôpital Carémeau, Nîmes, France
| | - Emilio Maseda
- Department of Anesthesia and Surgical Intensive Care, Hospital Universitario La Paz,
- Departamento de Cirugía, Universidad Autónoma de Madrid, Madrid
| | - Sonia Luque
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
- Pharmacy Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d Investigacions Médiques (IMIM), Universitat Autónoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
- Pharmacy Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d Investigacions Médiques (IMIM), Universitat Autónoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Steven C Wallis
- UQ Centre for Clinical Research, the University of Queensland
| | - Laurent Muller
- Service des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, Centre Hospitalier Universitaire (CHU) Nîmes, Nîmes
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
| | - Jeffrey Lipman
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
- UQ Centre for Clinical Research, the University of Queensland
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital
| | - Jason A Roberts
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
- UQ Centre for Clinical Research, the University of Queensland
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, the University of Queensland ; and
- Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jean-Yves Lefrant
- Service des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, Centre Hospitalier Universitaire (CHU) Nîmes, Nîmes
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
| | - Claire Roger
- Service des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, Centre Hospitalier Universitaire (CHU) Nîmes, Nîmes
- Equipe d'accueil 2992 Caractéristiques Féminines des Interfaces Vasculaires (IMAGINE), Faculté de médecine, Univ Montpellier, Montpellier
- Pharmacy Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d Investigacions Médiques (IMIM), Universitat Autónoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
10
|
Garbez N, Mbatchi LC, Louart G, Wallis SC, Muller L, Lipman J, Roberts JA, Lefrant JY, Roger C. Micafungin Population PK Analysis in Healthy and Septic Pigs: Can the Septic Porcine Model Predict the Micafungin PK in Septic Patients? Pharm Res 2021; 38:1863-1871. [PMID: 34845574 DOI: 10.1007/s11095-021-03137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/05/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To describe micafungin pharmacokinetic (PK) alterations of sepsis induced in piglets and to determine whether the porcine septic model is able to predict the PK of micafungin in septic patients at the plasma and peritoneal sites. METHODS From healthy (n = 8) and septic piglet group (n = 16), total micafungin concentrations were subject to a population PK analysis using Monolix®. Data from 16 septic humans patients from others studies was used to compare micafungin PK between septic piglets and septic patients. RESULTS Sepsis induced in piglets slightly alters the total clearance and the volume of distribution, while inter-compartment clearance is increased (from 3.88 to 5.74 L/h) as well as the penetration into peritoneal cavity (from 61 to 90%). In septic human patients, PK parameters are similar except for the Vd, which is corrected by an allometric factor based on the body weight of each species. Micafungin penetration into peritoneal cavity of humans is lower than in septic piglets (40 versus 90%). CONCLUSIONS The sepsis induced in the porcine model alters the PK of micafungin comparable to that in humans. In addition, micafungin PK is similar between these two species at the plasma level taking into account the allometric relationship of the body weight of these species on the central volume of distribution. The porcine septic plasma model would be able to predict the micafungin PK in the septic patients. However, further studies on peritoneal penetration are necessary to characterize this inter-species difference.
Collapse
Affiliation(s)
- Nicolas Garbez
- Service Des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, CHU Nîmes, Nîmes, France.
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, Montpellier, France.
- UR-UM 103: IMAGINE (Initial Management And Prévention of orGan Failures IN Critically Ill patiEnts), Faculté de Médecine, Université de Montpellier, Montpellier, France.
| | - Litaty C Mbatchi
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France
| | - Guillaume Louart
- Service Des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, CHU Nîmes, Nîmes, France
- UR-UM 103: IMAGINE (Initial Management And Prévention of orGan Failures IN Critically Ill patiEnts), Faculté de Médecine, Université de Montpellier, Montpellier, France
| | - Steven C Wallis
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Laurent Muller
- Service Des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, CHU Nîmes, Nîmes, France
- UR-UM 103: IMAGINE (Initial Management And Prévention of orGan Failures IN Critically Ill patiEnts), Faculté de Médecine, Université de Montpellier, Montpellier, France
| | - Jeffrey Lipman
- UR-UM 103: IMAGINE (Initial Management And Prévention of orGan Failures IN Critically Ill patiEnts), Faculté de Médecine, Université de Montpellier, Montpellier, France
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Jamieson Trauma Institute and Intensive Care Services, Royal Brisbane and Womens' Hospital, Brisbane, QLD, Australia
| | - Jason A Roberts
- UR-UM 103: IMAGINE (Initial Management And Prévention of orGan Failures IN Critically Ill patiEnts), Faculté de Médecine, Université de Montpellier, Montpellier, France
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Jamieson Trauma Institute and Intensive Care Services, Royal Brisbane and Womens' Hospital, Brisbane, QLD, Australia
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Pharmacy Department, Royal Brisbane and Womens' Hospital, Brisbane, QLD, Australia
| | - Jean-Yves Lefrant
- Service Des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, CHU Nîmes, Nîmes, France
- UR-UM 103: IMAGINE (Initial Management And Prévention of orGan Failures IN Critically Ill patiEnts), Faculté de Médecine, Université de Montpellier, Montpellier, France
| | - Claire Roger
- Service Des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, CHU Nîmes, Nîmes, France
- UR-UM 103: IMAGINE (Initial Management And Prévention of orGan Failures IN Critically Ill patiEnts), Faculté de Médecine, Université de Montpellier, Montpellier, France
| |
Collapse
|
11
|
Duricova J, Jadrnickova P, Brozmanova H, Kacirova I. Therapeutic drug monitoring guided fluconazole therapy in a patient with cholangitis sepsis. Per Med 2021; 19:9-14. [PMID: 34747184 DOI: 10.2217/pme-2021-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Candida and other fungal species play an increasing role in nosocomial infections, including cholangitis and cholangiosepsis. Early diagnosis and prompt treatment are essential in successful patient outcomes. Fluconazole is an antifungal of choice in fluconazole-sensitive Candida infections. Little information is known about the fluconazole biliary excretion. Decreased tissue penetration may be one of the possible causes of treatment failure. Due to favorable pharmacokinetics, therapeutic drug monitoring of this antifungal has not been recommended routinely. In the presented case we report the successful therapeutic drug monitoring-guided fluconazole treatment in a patient with cholangitis and cholangiosepsis caused by fluconazole-sensitive Candida spp.
Collapse
Affiliation(s)
- Jana Duricova
- Department of Clinical Pharmacology, Department of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czech Republic.,Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pavla Jadrnickova
- Department of Internal Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - Hana Brozmanova
- Department of Clinical Pharmacology, Department of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czech Republic.,Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Ivana Kacirova
- Department of Clinical Pharmacology, Department of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czech Republic.,Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
12
|
Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med 2021; 49:e1063-e1143. [PMID: 34605781 DOI: 10.1097/ccm.0000000000005337] [Citation(s) in RCA: 1060] [Impact Index Per Article: 265.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, Schorr C, Simpson S, Wiersinga WJ, Alshamsi F, Angus DC, Arabi Y, Azevedo L, Beale R, Beilman G, Belley-Cote E, Burry L, Cecconi M, Centofanti J, Coz Yataco A, De Waele J, Dellinger RP, Doi K, Du B, Estenssoro E, Ferrer R, Gomersall C, Hodgson C, Møller MH, Iwashyna T, Jacob S, Kleinpell R, Klompas M, Koh Y, Kumar A, Kwizera A, Lobo S, Masur H, McGloughlin S, Mehta S, Mehta Y, Mer M, Nunnally M, Oczkowski S, Osborn T, Papathanassoglou E, Perner A, Puskarich M, Roberts J, Schweickert W, Seckel M, Sevransky J, Sprung CL, Welte T, Zimmerman J, Levy M. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med 2021; 47:1181-1247. [PMID: 34599691 PMCID: PMC8486643 DOI: 10.1007/s00134-021-06506-y] [Citation(s) in RCA: 1755] [Impact Index Per Article: 438.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Laura Evans
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA.
| | - Andrew Rhodes
- Adult Critical Care, St George's University Hospitals NHS Foundation Trust & St George's University of London, London, UK
| | - Waleed Alhazzani
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Massimo Antonelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | - Flávia R Machado
- Anesthesiology, Pain and Intensive Care Department, Federal University of São Paulo, Hospital of São Paulo, São Paulo, Brazil
| | | | | | - Hallie C Prescott
- University of Michigan and VA Center for Clinical Management Research, Ann Arbor, MI, USA
| | | | - Steven Simpson
- University of Kansas Medical Center, Kansas City, KS, USA
| | - W Joost Wiersinga
- ESCMID Study Group for Bloodstream Infections, Endocarditis and Sepsis, Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Fayez Alshamsi
- Department of Internal Medicine, College of Medicine and Health Sciences, Emirates University, Al Ain, United Arab Emirates
| | - Derek C Angus
- University of Pittsburgh Critical Care Medicine CRISMA Laboratory, Pittsburgh, PA, USA
| | - Yaseen Arabi
- Intensive Care Department, Ministry of National Guard Health Affairs, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Luciano Azevedo
- School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | | | | | - Lisa Burry
- Mount Sinai Hospital & University of Toronto (Leslie Dan Faculty of Pharmacy), Toronto, ON, Canada
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University Pieve Emanuele, Milan, Italy.,Department of Anaesthesia and Intensive Care, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - John Centofanti
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Angel Coz Yataco
- Lexington Veterans Affairs Medical Center/University of Kentucky College of Medicine, Lexington, KY, USA
| | | | | | - Kent Doi
- The University of Tokyo, Tokyo, Japan
| | - Bin Du
- Medical ICU, Peking Union Medical College Hospital, Beijing, China
| | - Elisa Estenssoro
- Hospital Interzonal de Agudos San Martin de La Plata, Buenos Aires, Argentina
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | | | - Carol Hodgson
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Morten Hylander Møller
- Department of Intensive Care 4131, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Shevin Jacob
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Michael Klompas
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Population Medicine, Harvard Medical School, and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Younsuck Koh
- ASAN Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Anand Kumar
- University of Manitoba, Winnipeg, MB, Canada
| | - Arthur Kwizera
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Suzana Lobo
- Intensive Care Division, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Henry Masur
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | | | | | - Yatin Mehta
- Medanta the Medicity, Gurugram, Haryana, India
| | - Mervyn Mer
- Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Nunnally
- New York University School of Medicine, New York, NY, USA
| | - Simon Oczkowski
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Tiffany Osborn
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Michael Puskarich
- University of Minnesota/Hennepin County Medical Center, Minneapolis, MN, USA
| | - Jason Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | | | | | | | - Charles L Sprung
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Tobias Welte
- Medizinische Hochschule Hannover and German Center of Lung Research (DZL), Hannover, Germany
| | - Janice Zimmerman
- World Federation of Intensive and Critical Care, Brussels, Belgium
| | - Mitchell Levy
- Warren Alpert School of Medicine at Brown University, Providence, Rhode Island & Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
14
|
Lewis RE, Andes DR. Managing uncertainty in antifungal dosing: antibiograms, therapeutic drug monitoring and drug-drug interactions. Curr Opin Infect Dis 2021; 34:288-296. [PMID: 34010233 PMCID: PMC9914162 DOI: 10.1097/qco.0000000000000740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW A number of pharmacokinetic and pharmacodynamic factors in critically ill or severely immunosuppressed patients influence the effectiveness of antifungal therapy making dosing less certain. Recent position papers from infectious diseases societies and working groups have proposed methods for dosage individualization of antibiotics in critically ill patients using a combination of population pharmacokinetic models, Monte-Carlo simulation and therapeutic drug monitoring (TDM) to guide dosing. In this review, we examine the current limitations and practical issues of adapting a pharmacometrics-guided dosing approaches to dosing of antifungals in critically ill or severely immunosuppressed populations. RECENT FINDINGS We review the current status of antifungal susceptibility testing and challenges in incorporating TDM into Bayesian dose prediction models. We also discuss issues facing pharmacometrics dosage adjustment of newer targeted chemotherapies that exhibit severe pharmacokinetic drug-drug interactions with triazole antifungals. SUMMARY Although knowledge of antifungal pharmacokinetic/pharmacodynamic is maturing, the practical application of these concepts towards point-of-care dosage individualization is still limited. User-friendly pharmacometric models are needed to improve the utility of TDM and management of a growing number of severe pharmacokinetic antifungal drug-drug interactions with targeted chemotherapies.
Collapse
Affiliation(s)
- Russell E. Lewis
- Department of Medical and Surgical Sciences, University of Bologna. Infectious Diseases, IRCCS S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - David R. Andes
- Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Prospective Cohort Study of Micafungin Population Pharmacokinetic Analysis in Plasma and Peritoneal Fluid in Septic Patients with Intra-abdominal Infections. Antimicrob Agents Chemother 2021; 65:e0230720. [PMID: 33846133 DOI: 10.1128/aac.02307-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to describe the pharmacokinetics (PK) of micafungin in plasma and peritoneal fluid in septic patients with intra-abdominal infections. Twelve patients with secondary peritonitis in septic shock receiving 100 mg micafungin once daily were included. Total micafungin plasma and peritoneal fluid were subjected to a population pharmacokinetic analysis using Pmetrics. Monte Carlo simulations were performed considering the total area under the curve from 0 to 24 h (AUC0-24)/MIC ratios in plasma. Micafungin concentrations in both plasma and the peritoneal exudate were best described by a three-compartmental PK model with the fat-free mass (FFM) as a covariate of clearance (CL) and the volume of the central compartment (Vc). The mean parameter estimates (standard deviations [SD]) were 1.18 (0.40) liters/h for CL and 12.85 (4.78) liters for Vc. The mean peritoneal exudate/plasma ratios (SD) of micafungin were 25% (5%) on day 1 and 40% (8%) between days 3 and 5. Dosing simulations supported the use of standard 100-mg daily dosing for Candida albicans (FFM, <60 kg), C. glabrata (FFM, <50 kg), and C. tropicalis (FFM, <30 kg) on the second day of therapy. There is a moderate penetration of micafungin into the peritoneal cavity (25 to 40%). For empirical treatment, a dose escalation of at least a loading dose of 150 mg depending on the FFM of patients and the Candida species is suggested to be effective from the first day of therapy.
Collapse
|
16
|
Johnson MD, Lewis RE, Dodds Ashley ES, Ostrosky-Zeichner L, Zaoutis T, Thompson GR, Andes DR, Walsh TJ, Pappas PG, Cornely OA, Perfect JR, Kontoyiannis DP. Core Recommendations for Antifungal Stewardship: A Statement of the Mycoses Study Group Education and Research Consortium. J Infect Dis 2021; 222:S175-S198. [PMID: 32756879 DOI: 10.1093/infdis/jiaa394] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the global public health community has increasingly recognized the importance of antimicrobial stewardship (AMS) in the fight to improve outcomes, decrease costs, and curb increases in antimicrobial resistance around the world. However, the subject of antifungal stewardship (AFS) has received less attention. While the principles of AMS guidelines likely apply to stewarding of antifungal agents, there are additional considerations unique to AFS and the complex field of fungal infections that require specific recommendations. In this article, we review the literature on AMS best practices and discuss AFS through the lens of the global core elements of AMS. We offer recommendations for best practices in AFS based on a synthesis of this evidence by an interdisciplinary expert panel of members of the Mycoses Study Group Education and Research Consortium. We also discuss research directions in this rapidly evolving field. AFS is an emerging and important component of AMS, yet requires special considerations in certain areas such as expertise, education, interventions to optimize utilization, therapeutic drug monitoring, and data analysis and reporting.
Collapse
Affiliation(s)
- Melissa D Johnson
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Russell E Lewis
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elizabeth S Dodds Ashley
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Laboratory of Mycology Research, McGovern Medical School, Houston, Texas, USA
| | - Theoklis Zaoutis
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - George R Thompson
- Division of Infectious Diseases, Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | - David R Andes
- Department of Medicine and Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oliver A Cornely
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Centre for Infection Research, partner site Bonn-Cologne, Cologne, Germany.,CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.,Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany
| | - John R Perfect
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Arastehfar A, Gabaldón T, Garcia-Rubio R, Jenks JD, Hoenigl M, Salzer HJF, Ilkit M, Lass-Flörl C, Perlin DS. Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics (Basel) 2020; 9:antibiotics9120877. [PMID: 33302565 PMCID: PMC7764418 DOI: 10.3390/antibiotics9120877] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
The high clinical mortality and economic burden posed by invasive fungal infections (IFIs), along with significant agricultural crop loss caused by various fungal species, has resulted in the widespread use of antifungal agents. Selective drug pressure, fungal attributes, and host- and drug-related factors have counteracted the efficacy of the limited systemic antifungal drugs and changed the epidemiological landscape of IFIs. Species belonging to Candida, Aspergillus, Cryptococcus, and Pneumocystis are among the fungal pathogens showing notable rates of antifungal resistance. Drug-resistant fungi from the environment are increasingly identified in clinical settings. Furthermore, we have a limited understanding of drug class-specific resistance mechanisms in emerging Candida species. The establishment of antifungal stewardship programs in both clinical and agricultural fields and the inclusion of species identification, antifungal susceptibility testing, and therapeutic drug monitoring practices in the clinic can minimize the emergence of drug-resistant fungi. New antifungal drugs featuring promising therapeutic profiles have great promise to treat drug-resistant fungi in the clinical setting. Mitigating antifungal tolerance, a prelude to the emergence of resistance, also requires the development of effective and fungal-specific adjuvants to be used in combination with systemic antifungals.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies. Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | | | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| |
Collapse
|
18
|
Liu X, Liu D, Pan Y, Li Y. Pharmacokinetic/pharmacodynamics variability of echinocandins in critically ill patients: A systematic review and meta-analysis. J Clin Pharm Ther 2020; 45:1207-1217. [PMID: 32672361 PMCID: PMC7689702 DOI: 10.1111/jcpt.13211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Anidulafungin, caspofungin and micafungin are three widely used echinocandin drugs licensed for the treatment of invasive fungal infections, and their clinical use is widespread. To evaluate pharmacokinetic/pharmacodynamics variability of echinocandins in critically ill patients by comparing the differences in pharmacokinetic parameters between critically ill patients and healthy volunteers or general patients. METHODS MEDLINE, EMBASE, The Cochrane Library and Pubmed were searched from inception until 6 September 2018. Studies investigating the pharmacokinetic parameters of echinocandins in critically ill patients, healthy volunteers or general patients were included. Our primary outcomes included AUC0-24 h , Cmax and Cmin (24 hours). Two reviewers independently reviewed all titles, abstracts and text, and extracted data. We applied R software (R 2017) to conduct meta-analysis. RESULTS AND DISCUSSION Of 3235 articles screened, 17 studies were included in the data synthesis. Descriptive data from single-arm studies show that critically ill patients who received caspofungin had more stable AUC0-24 h than those who received anidulafungin and micafungin. The Cmax of critically ill patients who received caspofungin and micafungin was similar to healthy volunteers. However, the Cmax in critically ill patients who received anidulafungin was lower than in healthy volunteers. The Cmin and T1/2 of critically ill patients who received caspofungin were larger than in healthy volunteers. The Vd and CL of critically ill patients receiving anidulafungin and micafungin were larger than in healthy volunteers. WHAT IS NEW AND CONCLUSION This systematic review provides an analysis of the pharmacokinetic/pharmacodynamics variability of echinocandins in critically ill patients. Based on the limited data available, caspofungin has less pharmacokinetic/pharmacodynamics variability than anidulafungin and micafungin.
Collapse
Affiliation(s)
- Xiaoqing Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory HealthGuangzhouChina
| | - Dongdong Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory HealthGuangzhouChina
| | - Ying Pan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory HealthGuangzhouChina
| | - Yimin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory HealthGuangzhouChina
| |
Collapse
|
19
|
Pea F, Lewis RE. Overview of antifungal dosing in invasive candidiasis. J Antimicrob Chemother 2019; 73:i33-i43. [PMID: 29304210 DOI: 10.1093/jac/dkx447] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the past, most antifungal therapy dosing recommendations for invasive candidiasis followed a 'one-size fits all' approach with recommendations for lowering maintenance dosages for some antifungals in the setting of renal or hepatic impairment. A growing body of pharmacokinetic/pharmacodynamic research, however now points to a widespread 'silent epidemic' of antifungal underdosing for invasive candidiasis, especially among critically ill patients or special populations who have altered volume of distribution, protein binding and drug clearance. In this review, we explore how current adult dosing recommendations for antifungal therapy in invasive candidiasis have evolved, and special populations where new approaches to dose optimization or therapeutic drug monitoring may be needed, especially in light of increasing antifungal resistance among Candida spp.
Collapse
Affiliation(s)
- Federico Pea
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Russell E Lewis
- Infectious Diseases Unit, S. Orsola-Malpighi Hospital; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Jang SM, Hough G, Mueller BA. Ex vivo Rezafungin Adsorption and Clearance During Continuous Renal Replacement Therapy. Blood Purif 2018; 46:214-219. [PMID: 30048960 DOI: 10.1159/000489212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/12/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS To determine adsorption and transmembrane clearances (CLTM) of rezafungin, a novel long-acting echinocandin, in continuous venovenous hemofiltration (CVVH). METHODS A validated ex vivo bovine blood CVVH model using polysulfone and AN69 hemodiafilters was used to evaluate urea and rezafungin CLTM at 3 different ultrafiltrate flow rates. Rezafungin adsorption to the CRRT apparatus was determined for each hemodiafilter. RESULTS The sieving coefficient (SC) from CVVH with 3 different ultrafiltrate flow rates was 0 for both HF1400 and Multiflow-150 hemodiafilters, while urea SC was approximately 1 at all flow rates. Hemodiafilter type and ultrafiltrate flow rate did not influence CLTM. Rezafungin adsorption to the CVVH apparatus was not observed for either hemodiafilter. CONCLUSION Rezafungin is not removed by CVVH by membrane adsorption or via CLTM. Ultrafiltrate flow rates and hemodiafilter types are unlikely to influence rezafungin CLTM. No dosage adjustment of rezafungin is likely required for critically ill patients receiving CVVH.
Collapse
Affiliation(s)
- Soo Min Jang
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | | | - Bruce A Mueller
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Pérez-Pitarch A, Ferriols-Lisart R, Aguilar G, Ezquer-Garín C, Belda FJ, Guglieri-López B. Dosing of caspofungin based on a pharmacokinetic/pharmacodynamic index for the treatment of invasive fungal infections in critically ill patients on continuous venovenous haemodiafiltration. Int J Antimicrob Agents 2017; 51:115-121. [PMID: 28666752 DOI: 10.1016/j.ijantimicag.2017.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/10/2017] [Accepted: 05/01/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The study objective was to evaluate the efficacy of different dosages of caspofungin in the treatment of invasive candidiasis and aspergillosis, in relation to the probability of pharmacokinetic/pharmacodynamic (PK/PD) target attainment, using modelling and Monte Carlo simulations in critically ill adult patients on continuous haemodiafiltration. METHODS Critically ill adult patients on continuous venovenous haemodiafiltration treated with caspofungin were analysed. A population PK model was developed. Four caspofungin dosing regimens were simulated: the licensed regimen, 70 mg/day, 100 mg/day or 200 mg/day. A PK/PD target was defined as the ratio between the area under the caspofungin concentration-time curve over 24 hours and the minimal inhibitory concentration (AUC/MIC) for candidiasis or the minimal effective concentrations (AUC/MEC) for Aspergillus spp. Target attainment based on preclinical target for Candida and Aspergillus was assessed for different MIC or MEC, respectively. RESULTS Concentration-time data were described by a two-compartment model. Body-weight and protein concentration were the only covariates identified by the model. Goodness-of-fit plots and bootstrap analysis proved the model had a satisfactory performance. As expected, a higher maintenance dose resulted in a higher exposure. Target attainment was >90% for candidiasis (MIC≤0.06 mg/L) and aspergillosis (MEC≤0.5 mg/L), irrespective of the dosing regimen, but not for C. parapsilosis. Standard regimen was insufficient to reach the target for C. albicans and C. parapsilosis with MIC≥0.1 mg/L. CONCLUSION The licensed regimen of caspofungin is insufficient to achieve the PK/PD targets in critically ill patients on haemodiafiltration. The determination of MICs will enable dose scheme selection.
Collapse
Affiliation(s)
- Alejandro Pérez-Pitarch
- Department of Pharmacy, University Clinical Hospital of Valencia, Valencia, Spain; Pharmacy and Pharmaceutical Technology Department, Pharmacy School, University of Valencia, Valencia, Spain.
| | | | - Gerardo Aguilar
- Surgical Intensive Care Unit, Department of Anaesthesiology and Intensive Care, Hospital Clínico Universitario, Valencia, Spain
| | - Carlos Ezquer-Garín
- Health Research Institute, INCLIVA, Avenida Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - F Javier Belda
- Surgical Intensive Care Unit, Department of Anaesthesiology and Intensive Care, Hospital Clínico Universitario, Valencia, Spain; School of Medicine, University of Valencia, Spain
| | - Beatriz Guglieri-López
- Pharmacy and Pharmaceutical Technology Department, Pharmacy School, University of Valencia, Valencia, Spain
| |
Collapse
|
22
|
High Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Simultaneous Quantification of Caspofungin, Anidulafungin and Micafungin in Human Plasma for Feasible Applications in Pediatric Haematology/Oncology. Chromatographia 2017. [DOI: 10.1007/s10337-017-3329-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Bailly S, Leroy O, Azoulay E, Montravers P, Constantin JM, Dupont H, Guillemot D, Lortholary O, Mira JP, Perrigault PF, Gangneux JP, Timsit JF. Impact of echinocandin on prognosis of proven invasive candidiasis in ICU: A post-hoc causal inference model using the AmarCAND2 study. J Infect 2017; 74:408-417. [PMID: 28104387 DOI: 10.1016/j.jinf.2016.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE guidelines recommend first-line systemic antifungal therapy (SAT) with echinocandins in invasive candidiasis (IC), especially in critically ill patients. This study aimed at assessing the impact of echinocandins compared to azoles as initial SAT on the 28-day prognosis in adult ICU patients. METHODS From the prospective multicenter AmarCAND2 cohort (835 patients), we selected those with documented IC and treated with echinocandins (ECH) or azoles (AZO). The average causal effect of echinocandins on 28-day mortality was assessed using an inverse probability of treatment weight (IPTW) estimator. RESULTS 397 patients were selected, treated with echinocandins (242 patients, 61%) or azoles (155 patients, 39%); septic shock: 179 patients (45%). The median SAPSII was higher in the ECH group (48 [35; 62] vs. 43 [31; 58], p = 0.01). Crude mortality was 34% (ECH group) vs. 25% (AZO group). After adjustment on baseline confounders, no significant association emerged between initial SAT with echinocandins and 28-day mortality (HR: 0.95; 95% CI: [0.60; 1.49]; p = 0.82). However, echinocandin tended to benefit patients with septic shock (HR: 0.46 [0.19; 1.07]; p = 0.07). CONCLUSION Patients who received echinocandins were more severely ill. Echinocandin use was associated with a non-significant 7% decrease of 28-day mortality and a trend to a beneficial effect for patient with septic shock.
Collapse
Affiliation(s)
- Sébastien Bailly
- Inserm UMR 1137 - IAME Team 5 - DeSCID: Decision Sciences in Infectious Diseases, Control and Care INSERM/ Paris Diderot, Sorbonne Paris Cité University, Paris, France
| | | | - Elie Azoulay
- Medical ICU, Saint-Louis University Hospital, Paris, France
| | - Philippe Montravers
- Paris Diderot Sorbonne Cite University, and Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard University Hospital, APHP, Paris, France
| | - Jean-Michel Constantin
- Perioperative Medicine Department, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Hervé Dupont
- Surgical ICU, Amiens University Hospital, Amiens, France
| | - Didier Guillemot
- Inserm UMR 1181, Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases, (B2PHI), F-75015, Paris, France
| | - Olivier Lortholary
- University Paris Descartes, Necker Pasteur Center for Infectious Diseases, Necker Enfants-Malades Hospital, IHU Imagine, Paris, France; Pasteur Institute, National Reference Center for Invasive Mycoses and Antifungals, CNRS URA3012, Paris, France
| | - Jean-Paul Mira
- Medical ICU, Cochin University Hospital, APHP, and Paris Descartes, Sorbonne Paris Cité University, Paris, France
| | | | | | - Jean-François Timsit
- Inserm UMR 1137 - IAME Team 5 - DeSCID: Decision Sciences in Infectious Diseases, Control and Care INSERM/ Paris Diderot, Sorbonne Paris Cité University, Paris, France; Medical ICU, Paris Diderot University/Bichat University Hospital, APHP, Paris, France
| | | |
Collapse
|
24
|
Effect of Obesity on the Population Pharmacokinetics of Fluconazole in Critically Ill Patients. Antimicrob Agents Chemother 2016; 60:6550-6557. [PMID: 27550344 DOI: 10.1128/aac.01088-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022] Open
Abstract
Our objective was to describe the population pharmacokinetics of fluconazole in a cohort of critically ill nonobese, obese, and morbidly obese patients. Critically ill patients prescribed fluconazole were recruited into three body mass index (BMI) cohorts, nonobese (18.5 to 29.9 kg/m2), obese (30.0 to 39.9 kg/m2), and morbidly obese (≥40 kg/m2). Serial fluconazole concentrations were determined using a validated chromatographic method. Population pharmacokinetic analysis and Monte Carlo dosing simulations were undertaken with Pmetrics. Twenty-one critically ill patients (11 male) were enrolled, including obese (n = 6) and morbidly obese (n = 4) patients. The patients mean ± standard deviation (SD) age, weight, and BMI were 54 ± 15 years, 90 ± 24 kg, and 31 ± 9 kg/m2, respectively. A two-compartment linear model described the data adequately. The mean ± SD population pharmacokinetic parameter estimates were clearance (CL) of 0.95 ± 0.48 liter/h, volume of distribution of the central compartment (Vc) of 15.10 ± 11.78 liter, intercompartmental clearance from the central to peripheral compartment of 5.41 ± 2.28 liter/h, and intercompartmental clearance from the peripheral to central compartment of 2.92 ± 4.95 liter/h. A fluconazole dose of 200 mg daily was insufficient to achieve an area under the concentration-time curve for the free, unbound drug fraction/MIC ratio of 100 for pathogens with MICs of ≥2 mg/liter in patients with BMI of >30 kg/m2 A fluconazole loading dose of 12 mg/kg and maintenance dose of 6 mg/kg/day achieved pharmacodynamic targets for higher MICs. A weight-based loading dose of 12 mg/kg followed by a daily maintenance dose of 6 mg/kg, according to renal function, is required in critically ill patients for pathogens with a MIC of 2 mg/liter.
Collapse
|
25
|
Durantini EN. New insights into the antimicrobial blue light inactivation of Candida albicans. Virulence 2016; 7:493-4. [PMID: 26950053 DOI: 10.1080/21505594.2016.1160194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Edgardo N Durantini
- a Departamento de Química , Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Río Cuarto, Córdoba , Argentina
| |
Collapse
|
26
|
A pharmacokinetic analysis of posaconazole oral suspension in the serum and alveolar compartment of lung transplant recipients. Int J Antimicrob Agents 2015; 47:69-76. [PMID: 26607341 DOI: 10.1016/j.ijantimicag.2015.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/21/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022]
Abstract
Invasive fungal infections cause significant morbidity and mortality after lung transplantation. Fungal prophylaxis following lung transplantation is not standardised, with transplant centres utilising a variety of regimens. Posaconazole is a broad-spectrum antifungal triazole that requires further investigation within the setting of lung transplantation. This prospective, single-centre, observational study explored the pharmacokinetics of posaconazole oral suspension (POS) in the early perioperative period following lung transplantation in 26 patients. Organ recipients were scheduled to receive 400mg POS twice daily for 6 weeks as primary antifungal prophylaxis. Therapeutic drug monitoring (TDM) of serum posaconazole levels was performed in accordance with local clinical protocols. Bronchoalveolar lavage fluid (BALF) was sampled during routine bronchoscopies. Posaconazole levels were measured both in serum and BALF using mass spectrometry. Posaconazole levels were highly variable within lung transplant recipients during the perioperative period and did not achieve 'steady-state'. Serum posaconazole concentrations positively correlated with levels within the BALF (r=0.5527; P=0.0105). Of the 26 patients, 10 failed to complete the study for multiple reasons and so the trial was terminated early. Unlike study findings in stable recipients, serum posaconazole levels rarely achieved steady-state in the perioperative period; however, they do reflect the concentrations within the airways of newly transplanted lungs. The role of POS as primary prophylaxis in the perioperative period is uncertain, but if used TDM may be helpful for determining attainment of therapeutic levels.
Collapse
|
27
|
Photodynamic inactivation of Candida albicans by a tetracationic tentacle porphyrin and its analogue without intrinsic charges in presence of fluconazole. Photodiagnosis Photodyn Ther 2015; 13:334-340. [PMID: 26498876 DOI: 10.1016/j.pdpdt.2015.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/29/2015] [Accepted: 10/08/2015] [Indexed: 01/21/2023]
Abstract
The photodynamic inactivation mediated by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]porphyrin (TAPP) and 5,10,15,20-tetrakis[4-(3-N,N,N-trimethylaminepropoxy)phenyl]porphyrin (TAPP(4+)) were compared in Candida albicans cells. A strong binding affinity was found between these porphyrins and the yeast cells. Photosensitized inactivation of C. albicans increased with both photosensitizer concentration and irradiation time. After 30 min irradiation, a high photoinactivation (∼5 log) was found for C. albicans treated with 5 μM porphyrin. Also, the photoinactivation of yeast cells was still elevated after two washing steps. However, the photocytotoxicity decreases with an increase in the cell density from 10(6) to 10(8) cells/mL. The high photodynamic activity of these porphyrins was also established by growth delay experiments. This C. albicans strain was susceptible to fluconazole with a MIC of 1.0 μg/mL. The effect of photosensitization and the action of fluconazole were combined to eradicate C. albicans. After a PDI treatment with 1 μM porphyrin and 30 min irradiation, the value of MIC decreased to 0.25 μg/mL. In addition, a complete arrest in cell growth was found by combining both effects. TAPP was similarly effective to photoinactivate C. albicans than TAPP(4+). This porphyrin without intrinsic positive charges contains basic amino groups, which can be protonated at physiological pH. Moreover, an enhancement in the antifungal action was found using both therapies because lower doses of the agents were required to achieve cell death.
Collapse
|
28
|
Di Palma MA, Alvarez MG, Durantini EN. Photodynamic Action Mechanism Mediated by Zinc(II) 2,9,16,23-Tetrakis[4-(N-methylpyridyloxy)]phthalocyanine inCandida albicansCells. Photochem Photobiol 2015; 91:1203-9. [DOI: 10.1111/php.12483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/18/2015] [Indexed: 01/10/2023]
Affiliation(s)
- María Albana Di Palma
- Departamento de Química; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - María Gabriela Alvarez
- Departamento de Química; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - Edgardo N. Durantini
- Departamento de Química; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| |
Collapse
|
29
|
Grau S, Luque S, Campillo N, Samsó E, Rodríguez U, García-Bernedo CA, Salas E, Sharma R, Hope WW, Roberts JA. Plasma and peritoneal fluid population pharmacokinetics of micafungin in post-surgical patients with severe peritonitis. J Antimicrob Chemother 2015; 70:2854-61. [DOI: 10.1093/jac/dkv173] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/30/2015] [Indexed: 12/16/2022] Open
|
30
|
Weiss E, Timsit JF. Management of invasive candidiasis in nonneutropenic ICU patients. Ther Adv Infect Dis 2015; 2:105-15. [PMID: 25745560 DOI: 10.1177/2049936114562586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasive candidiasis (IC) is a leading cause of morbidity and mortality among nonneutropenic ICU patients and these life-threatening nosocomial infections require early diagnosis and prompt treatment. However, none of the predictive tools are sufficiently accurate to identify high-risk patients and the potential interest of IC prophylactic, empirical and preemptive treatment in the nonneutropenic ICU population has not yet been demonstrated. In the case of nosocomial severe sepsis after necrotizing pancreatitis or upper digestive anastomotic leakage, early probabilistic antifungals are probably indicated. In the remaining ICU surgical and medical patients, prophylactic and empirical strategies are highly debated because they may promote antifungal selective pressure through an overuse of these molecules. In this context, non-culture-based methods such as mannan or β-D glucan or polymerase chain reaction tests are promising. However, none of these tests used alone in ICU patients is sufficiently accurate to avoid overuse of empirical/preemptive treatment. The interest of strategies associating predictive clinical scores and non-culture-based methods still needs to be demonstrated by well-conducted randomized, controlled trials. While awaiting these studies, we consider that probabilist treatment should be stopped earlier if IC is not proven.
Collapse
Affiliation(s)
- Emmanuel Weiss
- INSERM, CRI, UMR 1149, F-75018 Paris, France AP-HP, Beaujon Hospital, Anesthesiology and Critical Care Department, F-92110 Clichy, France
| | | |
Collapse
|
31
|
Sinnollareddy MG, Roberts JA, Lipman J, Akova M, Bassetti M, De Waele JJ, Kaukonen KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Dimopoulos G. Pharmacokinetic variability and exposures of fluconazole, anidulafungin, and caspofungin in intensive care unit patients: Data from multinational Defining Antibiotic Levels in Intensive care unit (DALI) patients Study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:33. [PMID: 25888060 PMCID: PMC4335513 DOI: 10.1186/s13054-015-0758-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/19/2015] [Indexed: 11/10/2022]
Abstract
Introduction The objective of the study was to describe the pharmacokinetics (PK) of fluconazole, anidulafungin, and caspofungin in critically ill patients and to compare with previously published data. We also sought to determine whether contemporary fluconazole doses achieved PK/pharmacodynamic (PD; PK/PD) targets in this cohort of intensive care unit patients. Methods The Defining Antibiotic Levels in Intensive care unit patients (DALI) study was a prospective, multicenter point-prevalence PK study. Sixty-eight intensive care units across Europe participated. Inclusion criteria were met by critically ill patients administered fluconazole (n = 15), anidulafungin (n = 9), and caspofungin (n = 7). Three blood samples (peak, mid-dose, and trough) were collected for PK/PD analysis. PK analysis was performed by using a noncompartmental approach. Results The mean age, weight, and Acute Physiology and Chronic Health Evaluation (APACHE) II scores of the included patients were 58 years, 84 kg, and 22, respectively. Fluconazole, caspofungin, and anidulafungin showed large interindividual variability in this study. In patients receiving fluconazole, 33% did not attain the PK/PD target, ratio of free drug area under the concentration-time curve from 0 to 24 hours to minimum inhibitory concentration (fAUC0–24/MIC) ≥100. The fluconazole dose, described in milligrams per kilogram, was found to be significantly associated with achievement of fAUC0–24/MIC ≥100 (P = 0.0003). Conclusions Considerable interindividual variability was observed for fluconazole, anidulafungin, and caspofungin. A large proportion of the patients (33%) receiving fluconazole did not attain the PK/PD target, which might be related to inadequate dosing. For anidulafungin and caspofungin, dose optimization also appears necessary to minimize variability. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-0758-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahipal G Sinnollareddy
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia. .,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia. .,Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, Australia.
| | - Jason A Roberts
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia. .,Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - Jeffrey Lipman
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia. .,Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - Murat Akova
- School of Medicine, Hacettepe University, Ankara, Turkey.
| | - Matteo Bassetti
- Azienda Ospedaliera Universitaria Santa Maria della Misericordia, Udine, Italy.
| | | | | | - Despoina Koulenti
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia. .,Attikon University Hospital, Athens, Greece.
| | - Claude Martin
- Hospital Nord, Marseille, France. .,AzuRea Group, Antibes, France.
| | - Philippe Montravers
- Centre Hospitalier Universitaire Bichat-Claude Bernard, AP-HP, Université Paris VII, Paris, France.
| | - Jordi Rello
- CIBERES, Vall d'Hebron Institute of Research, Universitat Autonoma de Barcelona, Barcelona, Spain.
| | - Andrew Rhodes
- St George's Healthcare NHS Trust and St George's University of London, London, England.
| | - Therese Starr
- Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - Steven C Wallis
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.
| | | | | |
Collapse
|
32
|
Sinnollareddy MG, Roberts MS, Lipman J, Robertson TA, Peake SL, Roberts JA. Pharmacokinetics of fluconazole in critically ill patients with acute kidney injury receiving sustained low-efficiency diafiltration. Int J Antimicrob Agents 2014; 45:192-5. [PMID: 25455854 DOI: 10.1016/j.ijantimicag.2014.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 11/27/2022]
Abstract
Fluconazole is a widely used antifungal agent in critically ill patients. It is predominantly (60-80%) excreted unchanged in urine. Sustained low-efficiency diafiltration (SLED-f) is increasingly being utilised in critically ill patients because of its practical advantages over continuous renal replacement therapy. To date, the effect of SLED-f on fluconazole pharmacokinetics and dosing has not been studied. The objective of this study was to describe the pharmacokinetics of fluconazole in critically ill patients with acute kidney injury receiving SLED-f and to compare this with other forms of renal replacement therapy. Serial blood samples were collected at pre- and post-filter ports within the SLED-f circuit during SLED-f and from an arterial catheter before and after SLED-f from three patients during one session. Fluconazole concentrations were measured using a validated chromatography method. Median clearance (CL) and 24-h area under the concentration-time curve (AUC0-24) were 2.1L/h and 152 mg·h/L, respectively, whilst receiving SLED-f. Moreover, 72% of fluconazole was cleared by a single SLED-f session (6h) compared with previous reports of 33-38% clearance by a 4-h intermittent haemodialysis session. CL and AUC0-24 were comparable with previous observations in a pre-dilution mode of continuous venovenous haemodiafiltration. The observed rebound concentration of fluconazole post SLED-f was <2%. Although a definitive dosing recommendation is not possible due to the small patient number, it is clear that doses >200mg daily are likely to be required to achieve the PK/PD target for common pathogens because of significant fluconazole clearance by SLED-f.
Collapse
Affiliation(s)
- Mahipal G Sinnollareddy
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia; Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia.
| | - Michael S Roberts
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia; Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Jeffrey Lipman
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Thomas A Robertson
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia; Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Sandra L Peake
- Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
33
|
Lopez ND, Phillips KM. Fluconazole pharmacokinetics in a morbidly obese, critically ill patient receiving continuous venovenous hemofiltration. Pharmacotherapy 2014; 34:e162-8. [PMID: 25074285 DOI: 10.1002/phar.1470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Current fluconazole dosing strategies can be described using either standardized doses (800 or 400 mg) or as weight-based dosing recommendations (12 mg/kg loading dose followed by 6 mg/kg maintenance dose). The ideal method of fluconazole dosing is still unclear for certain patient populations, such as those receiving renal replacement therapy or the morbidly obese. We describe a 48-year-old man with a body mass index of 84 kg/m(2) who was receiving continuous venovenous hemofiltration (CVVH) and was treated with fluconazole by using a weight-based dose determined by lean body weight, infused at a rate of 200 mg/hour. Blood samples were collected at hour 0 (i.e., ~24 hrs after the loading dose was administered) and at 3.5, 6.8, and 11.3 hours after the start of the 600-mg maintenance dose, infused over 3 hours. Pharmacokinetic parameters calculated were maximum serum concentration 9.64 mg/L, minimum serum concentration 5.98 mg/L, area under the serum concentration-time curve from 0-24 hours (AUC0-24 ) 184.75 mg/L•hour, elimination rate constant 0.0199 hour(-1) , elimination half-life 34.8 hours, and total body clearance 3.25 L/hour. Our data, when combined with previously published literature, do not support using a linear dose-to-AUC approximation to estimate drug dosing needs in the critically ill patient population receiving CVVH. In addition, our results suggest that morbidly obese patients are able to achieve pharmacodynamic goals defined as an AUC:MIC ratio higher than 25 by using a lean body weight for fluconazole dosing calculations.
Collapse
Affiliation(s)
- Natasha D Lopez
- Department of Pharmacy, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
34
|
González de Molina F, Martínez-Alberici MDLÁ, Ferrer R. Treatment with echinocandins during continuous renal replacement therapy. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:218. [PMID: 25029596 PMCID: PMC4056439 DOI: 10.1186/cc13803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Echinocandins are indicated as first-line treatment for invasive candidiasis in moderate to severe illness. As sepsis is the main cause of acute kidney injury, the combination of echinocandin treatment and continuous renal replacement therapy (CRRT) is common. Optimizing antibiotic dosage in critically ill patients receiving CRRT is challenging. The pharmacokinetics of echinocandins have been studied under various clinical conditions; however, data for CRRT patients are scarce. Classically, drugs like echinocandins with high protein binding and predominantly non-renal elimination are not removed by CRRT, indicating that no dosage adjustment is required. However, recent studies report different proportions of echinocandins lost by filter adsorption. Nevertheless, the clinical significance of these findings remains unclear.
Collapse
|
35
|
Incidence density of invasive fungal infections during primary antifungal prophylaxis in newly diagnosed acute myeloid leukemia patients in a tertiary cancer center, 2009 to 2011. Antimicrob Agents Chemother 2013; 58:865-73. [PMID: 24277033 DOI: 10.1128/aac.01525-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although primary antifungal prophylaxis (PAP) is routinely administered in patients with acute myeloid leukemia (AML) during remission-induction and consolidation chemotherapy, the impact of PAP on the incidence of invasive fungal infections (IFIs) is not well described. We retrospectively analyzed the incidence of IFIs in 152 patients with AML who had been admitted to a tertiary cancer center between August 2009 and March 2011 and received PAP within 120 days after first remission-induction chemotherapy. We excluded patients who had undergone stem cell transplantation. Patients received a PAP drug with anti-Aspergillus activity during 72% (7,660/10,572) of prophylaxis-days. The incidence of documented IFIs (definite or probable according to revised European Organization for Research and Treatment of Cancer [EORTC] criteria) was 2.0/1,000 prophylaxis-days (95% confidence interval [CI], 1.23 to 3.04). IFIs due to molds were more common than IFIs due to yeasts (1.5/1,000 prophylaxis-days versus 0.4/1,000 prophylaxis-days; P = 0.01). Echinocandin-based PAP (8.6 and 7.1/1,000 prophylaxis-days, respectively) was associated with higher rates of documented IFIs than anti-Aspergillus azoles (voriconazole or posaconazole) (2.4 and 1.1/1,000 prophylaxis-days, respectively) at both 42 days (P = 0.03) and 120 days (P < 0.0001) after first remission-induction chemotherapy. The incidence of overall (documented and presumed) IFIs (P < 0.001), documented IFIs (P < 0.01), and empirical antifungal therapies (P < 0.0001) was higher during the first 42 days than after day 42. Despite the broad use of PAP with anti-Aspergillus activity, IFIs, especially molds, remain a significant cause of morbidity and mortality in AML patients, predominantly during the remission-induction phase. Patients receiving echinocandin-based PAP experienced higher rates of IFIs than did those receiving anti-Aspergillus azoles.
Collapse
|
36
|
Terbinafine in combination with other antifungal agents for treatment of resistant or refractory mycoses: investigating optimal dosing regimens using a physiologically based pharmacokinetic model. Antimicrob Agents Chemother 2013; 58:48-54. [PMID: 24126579 DOI: 10.1128/aac.02006-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens.
Collapse
|
37
|
Di Palma MA, Alvarez MG, Ochoa AL, Milanesio ME, Durantini EN. Optimization of cellular uptake of zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]phthalocyanine for maximal photoinactivation of Candida albicans. Fungal Biol 2013; 117:744-51. [PMID: 24295913 DOI: 10.1016/j.funbio.2013.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Cellular uptake and photodynamic action of zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]phthalocyanine (ZnPPc⁴⁺) was examined in Candida albicans. In vitro investigations showed that ZnPPc⁴⁺ was rapidly bound to C. albicans cells. The binding of phthalocyanine to cells was dependent on ZnPPc⁴⁺ concentrations (1-10 μM) and cells densities (10⁶-10⁸ cells mL⁻¹). A high amount of ZnPPc⁴⁺ retained in the cells after two washing steps, indicating a strong interaction between the photosensitizer and C. albicans. The uptake was temperature dependent, although the difference between 37 °C and 4 °C was about 10 %. Also, the amount of ZnPPc bound to C. albicans was affected when the cells were incubated for a longer time with azide and 2,4-dinitrophenol (DNP) prior to treatment with ZnPP⁴⁺. Cell survival after irradiation was dependent on the irradiation period, ZnPPc⁴⁺ concentration and cells density. Photoinactivation of C. albicans cells was elevated even after two washing steps. The strong dependence of uptake on cell density reveals the strength and avidity of the binding of ZnPPc⁴⁺ to C. albicans cells. The accumulation behaviour of ZnPPc⁴⁺ suggests that mainly an affinity-mediated binding mechanism can be involved. Therefore, ZnPPc⁴⁺ is an interesting phthalocyanine for photodynamic inactivation (PDI) of yeasts in liquid suspensions.
Collapse
Affiliation(s)
- María A Di Palma
- Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
38
|
del Mar Fernández de Gatta M, Martin-Suarez A, Lanao JM. Approaches for dosage individualisation in critically ill patients. Expert Opin Drug Metab Toxicol 2013; 9:1481-93. [PMID: 23898816 DOI: 10.1517/17425255.2013.822486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pharmacokinetic variability in critically ill patients is the result of the overlapping of multiple pathophysiological and clinical factors. Unpredictable exposure from standard dosage regimens may influence the outcome of treatment. Therefore, strategies for dosage individualisation are recommended in this setting. AREAS COVERED The authors focus on several approaches for dosage individualisation that have been developed, ranging from the well-established therapeutic drug monitoring (TDM) up to the innovative application of pharmacogenomics criteria. Furthermore, the authors summarise the specific population pharmacokinetic models for different drugs developed for critically ill patients to improve the initial dosage selection and the Bayesian forecasting of serum concentrations. The authors also consider the use of Monte Carlo simulation for the selection of dosage strategies. EXPERT OPINION Pharmacokinetic/pharmacodynamics (PK/PD) modelling and dosage individualisation methods based on mathematical and statistical criteria will contribute in improving pharmacologic treatment in critically ill patients. Moreover, substantial effort will be necessary to integrate pharmacogenomics criteria into critical care practice. The lack of availability of target biomarkers for dosage adjustment emphasizes the value of TDM which allows a large part of treatment outcome variability to be controlled.
Collapse
Affiliation(s)
- M del Mar Fernández de Gatta
- University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , Avda. Licenciado Méndez Núñez, 37007 Salamanca , Spain +0034 923 294 536 ; +0034 923 294 515 ;
| | | | | |
Collapse
|
39
|
Uso actual de los antifúngicos triazoles en niños. INFECTIO 2012. [DOI: 10.1016/s0123-9392(12)70031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Roberts JA, De Waele JJ, Dimopoulos G, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J. DALI: Defining Antibiotic Levels in Intensive care unit patients: a multi-centre point of prevalence study to determine whether contemporary antibiotic dosing for critically ill patients is therapeutic. BMC Infect Dis 2012; 12:152. [PMID: 22768873 PMCID: PMC3506523 DOI: 10.1186/1471-2334-12-152] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/28/2012] [Indexed: 01/31/2023] Open
Abstract
Background The clinical effects of varying pharmacokinetic exposures of antibiotics (antibacterials and antifungals) on outcome in infected critically ill patients are poorly described. A large-scale multi-centre study (DALI Study) is currently underway describing the clinical outcomes of patients achieving pre-defined antibiotic exposures. This report describes the protocol. Methods DALI will recruit over 500 patients administered a wide range of either beta-lactam or glycopeptide antibiotics or triazole or echinocandin antifungals in a pharmacokinetic point-prevalence study. It is anticipated that over 60 European intensive care units (ICUs) will participate. The primary aim will be to determine whether contemporary antibiotic dosing for critically ill patients achieves plasma concentrations associated with maximal activity. Secondary aims will compare antibiotic pharmacokinetic exposures with patient outcome and will describe the population pharmacokinetics of the antibiotics included. Various subgroup analyses will be conducted to determine patient groups that may be at risk of very low or very high concentrations of antibiotics. Discussion The DALI study should inform clinicians of the potential clinical advantages of achieving certain antibiotic pharmacokinetic exposures in infected critically ill patients.
Collapse
Affiliation(s)
- Jason A Roberts
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Posaconazole exposure-response relationship: evaluating the utility of therapeutic drug monitoring. Antimicrob Agents Chemother 2012; 56:2806-13. [PMID: 22391534 DOI: 10.1128/aac.05900-11] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posaconazole has become an important part of the antifungal armamentarium in the prophylaxis and salvage treatment of invasive fungal infections (IFIs). Structurally related to itraconazole, posaconazole displays low oral bioavailability due to poor solubility, with significant drug interactions and gastrointestinal disease also contributing to the generally low posaconazole plasma concentrations observed in patients. While therapeutic drug monitoring (TDM) of plasma concentrations is widely accepted for other triazole antifungal agents such as voriconazole, the utility of TDM for posaconazole is controversial due to debate over the relationship between posaconazole exposure in plasma and clinical response to therapy. This review examines the available evidence for a relationship between plasma concentration and clinical efficacy for posaconazole, as well as evaluating the utility of TDM and providing provisional target concentrations for posaconazole therapy. Increasing evidence supports an exposure-response relationship for plasma posaconazole concentrations for prophylaxis and treatment of IFIs; a clear relationship has not been identified between posaconazole concentration and toxicity. Intracellular and intrapulmonary concentrations have been studied for posaconazole but have not been correlated to clinical outcomes. In view of the high mortality and cost associated with the treatment of IFIs, increasing evidence of an exposure-response relationship for posaconazole efficacy in the prevention and treatment of IFIs, and the common finding of low posaconazole concentrations in patients, TDM for posaconazole is likely to be of significant clinical utility. In patients with subtherapeutic posaconazole concentrations, increased dose frequency, administration with high-fat meals, and withdrawal of interacting medications from therapy are useful strategies to improve systemic absorption.
Collapse
|
42
|
Russett F. Recent Publications on Medications and Pharmacy. Hosp Pharm 2012. [DOI: 10.1310/hpj4702-156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hospital Pharmacy presents this feature to keep pharmacists abreast of new publications in the medical/pharmacy literature. Articles of interest regarding a broad scope of topics are abstracted monthly.
Collapse
Affiliation(s)
- Flint Russett
- Department of Pharmacy and Drug Information, St. Claire Regional Medical Center, Morehead, Kentucky
| |
Collapse
|