1
|
Pakkulnan R, Sirichoat A, Chareonsudjai S. d-Methionine-induced DNases disperse established Burkholderia pseudomallei biofilms and promotes ceftazidime susceptibility. Biofilm 2024; 8:100213. [PMID: 39148891 PMCID: PMC11325068 DOI: 10.1016/j.bioflm.2024.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Burkholderia pseudomallei biofilm is correlated with pathogenesis, antibiotic resistance, and relapsing cases of melioidosis, leading to challenges in clinical management. There is increasing interest in employing biofilm dispersal agents as adjunctive treatments for biofilm-associated infections. Methionine (Met) has shown promise as an anti-biofilm agent by inducing bacterial DNase production, resulting in the degradation of extracellular DNA (eDNA) and dispersion of bacterial biofilm. In this study, we investigated the impact of 0.05-50 μM D-Met and L-Met on the 24-h established biofilm of a clinical isolate, B. pseudomallei H777. Our findings revealed the ability of D-Met and L-Met to disperse the established biofilm in a non-dose-dependent manner accompanied by eDNA depletion. Real-time PCR analysis further identified an up-regulation of bacterial nuclease genes, including recJ, eddB, nth, xth, and recD, in the presence of 0.05 μM D-Met. Similarly, recJ and eddB in B. pseudomallei were up-regulated in response to the presence of 0.05 μM L-Met. Notably, D-Met enhanced the susceptibility of B. pseudomallei H777 biofilm cells to ceftazidime. Our findings indicate a correlation between methionine supplementation and the up-regulation of nuclease genes, leading to eDNA depletion and the dispersal of preformed B. pseudomallei H777 biofilm. This enhances the susceptibility of biofilm cells to ceftazidime, showing promise in combating biofilm-associated B. pseudomallei infections.
Collapse
Affiliation(s)
- Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Auttawit Sirichoat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Panthi VK, Fairfull-Smith KE, Islam N. Liposomal drug delivery strategies to eradicate bacterial biofilms: Challenges, recent advances, and future perspectives. Int J Pharm 2024; 655:124046. [PMID: 38554739 DOI: 10.1016/j.ijpharm.2024.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Typical antibiotic treatments are often ineffectual against biofilm-related infections since bacteria residing within biofilms have developed various mechanisms to resist antibiotics. To overcome these limitations, antimicrobial-loaded liposomal nanoparticles are a promising anti-biofilm strategy as they have demonstrated improved antibiotic delivery and eradication of bacteria residing in biofilms. Antibiotic-loaded liposomal nanoparticles revealed remarkably higher antibacterial and anti-biofilm activities than free drugs in experimental settings. Moreover, liposomal nanoparticles can be used efficaciously for the combinational delivery of antibiotics and other antimicrobial compounds/peptide which facilitate, for instance, significant breakdown of the biofilm matrix, increased bacterial elimination from biofilms and depletion of metabolic activity of various pathogens. Drug-loaded liposomes have mitigated recurrent infections and are considered a promising tool to address challenges associated to antibiotic resistance. Furthermore, it has been demonstrated that surface charge and polyethylene glycol modification of liposomes have a notable impact on their antibacterial biofilm activity. Future investigations should tackle the persistent hurdles associated with development of safe and effective liposomes for clinical application and investigate novel antibacterial treatments, including CRISPR-Cas gene editing, natural compounds, phages, and nano-mediated approaches. Herein, we emphasize the significance of liposomes in inhibition and eradication of various bacterial biofilms, their challenges, recent advances, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia; Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Kejwal MB, Verboket RD, Sommer K, Dust F, Thomas D, Störmann P, Frank J, Henrich D, Marzi I, Janko MC. Local Gentamicin Fixation with Sprayed Fibrin-An In Vivo Animal Study Reveals New Options to Treat Soft Tissue Infections. J Clin Med 2023; 12:jcm12103390. [PMID: 37240497 DOI: 10.3390/jcm12103390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
For acute and chronic soft tissue infections, radical surgical debridement is required and is considered the gold standard, along with its immediate systemic antibiotic therapy. Treatment with local antibiotics and/or antibiotic-containing materials is commonly used as an additional tool in clinical practice. Spraying with fibrin and antibiotics is a newer technique that has been studied for some antibiotics. However, for gentamicin, data are not yet available on absorption, optimal application, antibiotic fate at the site and transfer of antibiotic into the blood. In an animal study involving 29 Sprague Dawley rats, 116 back wounds were sprayed with gentamicin using either gentamicin alone or one of two possible spray combinations of gentamicin and fibrin. Simultaneous application of gentamicin and fibrin via a spray system to soft tissue wounds resulted in significant antibiotic concentration over a long period of time. The technique is easy and cost-effective. The systemic crossover was significantly minimized in our study, which may have led to fewer side effects in patients. These results could lead to an improvement in local antibiotic therapy.
Collapse
Affiliation(s)
- Meike B Kejwal
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - René D Verboket
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Katharina Sommer
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Fabian Dust
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Philipp Störmann
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Johannes Frank
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Maren C Janko
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe University, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Guedes GMDM, Ribeiro KVC, Araújo ESD, Pereira VC, Soares ACDCF, Freitas AS, Cordeiro RDA, Sidrim JJC, Rocha MFG, Castelo-Branco DDSCM. In vitro effect of the iron chelator deferiprone on the antimicrobial susceptibility and biofilms of Burkholderia pseudomallei. BIOFOULING 2023; 39:135-144. [PMID: 37013808 DOI: 10.1080/08927014.2023.2192405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study evaluated the effect of the iron chelator deferiprone (DFP) on antimicrobial susceptibility and biofilm formation and maintenance by Burkholderia pseudomallei. Planktonic susceptibility to DFP alone and in combination with antibiotics was evaluated by broth microdilution and biofilm metabolic activity was determined with resazurin. DFP minimum inhibitory concentration (MIC) range was 4-64 µg/mL and in combination reduced the MIC for amoxicillin/clavulanate and meropenem. DFP reduced the biomass of biofilms by 21 and 12% at MIC and MIC/2, respectively. As for mature biofilms, DFP reduced the biomass by 47%, 59%, 52% and 30% at 512, 256, 128 and 64 µg/mL, respectively, but did not affect B. pseudomallei biofilm viability nor increased biofilm susceptibility to amoxicillin/clavulanate, meropenem and doxycycline. DFP inhibits planktonic growth and potentiates the effect of β-lactams against B. pseudomallei in the planktonic state and reduces biofilm formation and the biomass of B. pseudomallei biofilms.
Collapse
Affiliation(s)
| | | | | | | | | | - Alyne Soares Freitas
- Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
5
|
Pakkulnan R, Thonglao N, Chareonsudjai S. DNase I and chitosan enhance efficacy of ceftazidime to eradicate Burkholderia pseudomallei biofilm cells. Sci Rep 2023; 13:1059. [PMID: 36658182 PMCID: PMC9852466 DOI: 10.1038/s41598-023-27790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Biofilm-associated Burkholderia pseudomallei infection contributes to antibiotic resistance and relapse of melioidosis. Burkholderia pseudomallei biofilm matrix contains extracellular DNA (eDNA) that is crucial for biofilm establishment. However, the contribution of eDNA to antibiotic resistance by B. pseudomallei remains unclear. In this study, we first demonstrated in vitro that DNase I with the administration of ceftazidime (CAZ) at 24 h considerably inhibited the 2-day biofilm formation and reduced the number of viable biofilm cells of clinical B. pseudomallei isolates compared to biofilm treated with CAZ alone. A 3-4 log reduction in numbers of viable cells embedded in the 2-day biofilm was observed when CAZ was combined with DNase I. Confocal laser-scanning microscope visualization emphasized the competence of DNase I followed by CAZ supplementation to significantly limit B. pseudomallei biofilm development and to eradicate viable embedded B. pseudomallei biofilm cells. Furthermore, DNase I supplemented with chitosan (CS) linked with CAZ (CS/CAZ) significantly eradicated shedding planktonic and biofilm cells. These findings indicated that DNase I effectively degraded eDNA leading to biofilm inhibition and dispersion, subsequently allowing CAZ and CS/CAZ to eradicate both shedding planktonic and embedded biofilm cells. These findings provide efficient strategies to interrupt biofilm formation and improve antibiotic susceptibility of biofilm-associated infections.
Collapse
Affiliation(s)
- Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttaya Thonglao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand. .,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
6
|
Effective Therapeutic Options for Melioidosis: Antibiotics versus Phage Therapy. Pathogens 2022; 12:pathogens12010011. [PMID: 36678359 PMCID: PMC9863960 DOI: 10.3390/pathogens12010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Melioidosis, also known as Whitmore's disease, is a potentially fatal infection caused by the Gram-negative bacteria Burkholderia pseudomallei with a mortality rate of 10-50%. The condition is a "glanders-like" illness prevalent in Southeast Asian and Northern Australian regions and can affect humans, animals, and sometimes plants. Melioidosis received the epithet "the great mimicker" owing to its vast spectrum of non-specific clinical manifestations, such as localised abscesses, septicaemia, pneumonia, septic arthritis, osteomyelitis, and encephalomyelitis, which often lead to misdiagnosis and ineffective treatment. To date, antibiotics remain the backbone of melioidosis treatment, which includes intravenous therapy with ceftazidime or meropenem, followed by oral therapy with TMP-SMX or amoxicillin/clavulanic acid and supported by adjunctive treatment. However, bacteria have developed resistance to a series of antibiotics, including clinically significant ones, during treatment. Therefore, phage therapy has gained unprecedented interest and has been proposed as an alternative treatment. Although no effective phage therapy has been published, the findings of experimental phage therapies suggest that the concept could be feasible. This article reviews the benefits and limitations of antibiotics and phage therapy in terms of established regimens, bacterial resistance, host specificity, and biofilm degradation.
Collapse
|
7
|
Khamwong M, Phanthanawiboon S, Salao K, Chareonsudjai S. Burkholderia pseudomallei biofilm phenotypes confined but surviving in neutrophil extracellular traps of varying appearance. Front Immunol 2022; 13:926788. [PMID: 36059509 PMCID: PMC9434113 DOI: 10.3389/fimmu.2022.926788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Melioidosis is a fatal infectious disease caused by Burkholderia pseudomallei. Complications following treatment are usually due to antibiotic resistance and relapse is mainly caused by B. pseudomallei biofilm. Although the release of neutrophil extracellular traps (NETs) is crucial to capture and eliminate bacterial pathogens, to date response of NETs to B. pseudomallei biofilm is poorly understood. Here we compare the NETs produced by neutrophils in response to B. pseudomallei H777 (a biofilm-producing strain containing the bpsl0618 gene), a biofilm-defect strain lacking this gene (B. pseudomallei M10) and a bpsl0618 biofilm-complemented strain, B. pseudomallei C17, in which function of bpsl0618 was restored. Co-cultivation of these strains with healthy human neutrophils at MOI 10 with or without cytochalasin D demonstrated that H777 significantly resisted neutrophil-mediated killing and non-phagocytotic mechanisms compared to M10 (p < 0.0001). Three distinct morphotypes of NETs were seen: “aggregated”, “spiky” and “cloudy”. These were induced in different proportions by the different bacterial strains. All types of NETs were shown to confine all B. pseudomallei strains. Strains H777 and C17 could stimulate production of twice as much extracellular DNA (234.62 ng/mL and 205.43 ng/mL, respectively) as did M10 (111.87 ng/mL). Cells of H777 and C17 were better able to survive in the presence of neutrophil killing mechanisms relative to M10 (p < 0.0001) and NET formation (p < 0.0001 and 0.05). These findings suggest that NET stimulation was insufficient to eradicate B. pseudomallei H777 and C17 despite their possession of bpsl0618, a sugar-transferase gene associated with biofilm formation ability. Our findings demonstrate that B. pseudomallei biofilm phenotype may be a key factor in assisting pathogens to escape killing by neutrophils. This work provides a better understanding of how B. pseudomallei biofilm-associated infections induce and survive NET formation, resulting in bacterial persistence and increased severity of disease.
Collapse
Affiliation(s)
- Muthita Khamwong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Disease (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Disease (RCEID), Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Sorujsiri Chareonsudjai,
| |
Collapse
|
8
|
Zhang Y, Lin S, Fu J, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Nanocarriers for combating biofilms: advantages and challenges. J Appl Microbiol 2022; 133:1273-1287. [PMID: 35621701 DOI: 10.1111/jam.15640] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/08/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
Abstract
Bacterial biofilms are highly resistant to antibiotics and pose a great threat to human and animal health. The control and removal of bacterial biofilms have become an important topic in the field of bacterial infectious diseases. Nanocarriers show great anti-biofilm potential because of their small particle size and strong permeability. In this review, the advantages of nanocarriers for combating biofilms are analyzed. Nanocarriers can act on all stages of bacterial biofilm formation and diffusion. They can improve the scavenging effect of biofilm by targeting biofilm, destroying extracellular polymeric substances, and enhancing the biofilm permeability of antimicrobial substances. Nanocarriers can also improve the antibacterial ability of antimicrobial drugs against bacteria in biofilm by protecting the loaded drugs and controlling the release of antimicrobial substances. Additionally, we emphasize the challenges faced in using nanocarrier formulations and translating them from a preclinical level to the clinical setting.
Collapse
Affiliation(s)
- Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
9
|
Thonglao N, Pakkulnan R, Paluka J, Chareonsudjai P, Kanokmedhakul S, Kanokmedhakul K, Chareonsudjai S. Chitosan biological molecule improves bactericidal competence of ceftazidime against Burkholderia pseudomallei biofilms. Int J Biol Macromol 2022; 201:676-685. [PMID: 35063492 DOI: 10.1016/j.ijbiomac.2022.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/05/2022]
Abstract
Biofilm-associated Burkholderia pseudomallei infections (melioidosis) are problematic because of reduced sensitivity to antibiotics and high frequency of relapse. Biofilm dispersal agents are essential to liberate the biofilm-encased cells, which then become planktonic and are more susceptible to antibiotics. This study aimed to evaluate the ability of deacetylated chitosan (dCS), an antimicrobial and antibiofilm biological macromolecule, to disrupt established biofilms, thus enabling ceftazidime (CAZ) to kill biofilm-embedded B. pseudomallei. We combined dCS with CAZ using a mechanical stirring method to generate dCS/CAZ. In combination, 1.25-2.5 mg ml-1 dCS/1-2 μg ml-1 CAZ acted synergistically to kill cells more effectively than did either dCS or CAZ alone. Notably, a combination of 5-10 mg ml-1 dCS with 256-512 μg ml-1 CAZ, prepared either by mechanical stirring (dCS/CAZ) or mixing (dCS + CAZ), drastically improved bactericidal activities against biofilm cells leading to a 3-6 log CFU reduction. Confocal laser-scanning microscope (CLSM) images revealed that 10 mg ml-1 dCS/512 μg ml-1 CAZ is by far the best formulation to diminish B. pseudomallei biofilm biomass and produces the lowest live/dead cell ratios of B. pseudomallei in biofilm matrix. Collectively, these findings emphasize the potential of novel therapeutic antibacterial and antibiofilm agents to fight against antibiotic-tolerant B. pseudomallei biofilm-associated infections.
Collapse
Affiliation(s)
- Nuttaya Thonglao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jakkapat Paluka
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Somdej Kanokmedhakul
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Product Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand.
| |
Collapse
|
10
|
do Canto Canabarro M, Meneghetti KL, Geimba MP, Corção G. Biofilm formation and antibiotic susceptibility of Staphylococcus and Bacillus species isolated from human allogeneic skin. Braz J Microbiol 2021; 53:153-160. [PMID: 34735709 DOI: 10.1007/s42770-021-00642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Human skin banks around the world face a serious problem with the high number of allogeneic skins that are discarded and cannot be used for grafting due to persistent bacterial contamination even after antibiotic treatment. The biofilm formation capacity of these microorganisms may contribute to the antibiotic tolerance; however, this is not yet widely discussed in the literature. Thisstudy analyzed bacterial strains isolated from allogeneic human skin samples,which were obtained from a hospital skin bank that had already been discardeddue to microbial contamination. Biofilm formation and susceptibility topenicillin, tetracycline, and gentamicin were evaluated by crystal violetbiomass quantification and determination of the minimum inhibitoryconcentration (MIC), minimum biofilm inhibitory concentration (MBIC), andminimum biofilm eradication concentration (MBEC) by the broth microdilutionmethod with resazurin dye. A total of 216 bacterial strains were evaluated, and204 (94.45%) of them were classified as biofilm formers with varying degrees ofadhesion. MBICs were at least 512 times higher than MICs, and MBECs were atleast 512 times higher than MBICs. Thus, the presence of biofilm in allogeneicskin likely contributes to the inefficiency of the applied treatments as antibiotictolerance is known to be much higher when bacteria are in the biofilmconformation. Thus, antibiotic treatment protocols in skin banks shouldconsider biofilm formation and should include compounds with antibiofilmaction.
Collapse
Affiliation(s)
- Micaela do Canto Canabarro
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Sarmento Leite 500, Porto Alegre, 90050-170, Brazil
| | - Karine Lena Meneghetti
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Sarmento Leite 500, Porto Alegre, 90050-170, Brazil
| | - Mercedes Passos Geimba
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Sarmento Leite 500, Porto Alegre, 90050-170, Brazil
| | - Gertrudes Corção
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Sarmento Leite 500, Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
11
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Wongkaewkhiaw S, Taweechaisupapong S, Anutrakunchai C, Nazmi K, Bolscher JGM, Wongratanacheewin S, Kanthawong S. D-LL-31 in combination with ceftazidime synergistically enhances bactericidal activity and biofilm destruction in Burkholderia pseudomallei. BIOFOULING 2019; 35:573-584. [PMID: 31282211 DOI: 10.1080/08927014.2019.1632835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Melioidosis is a severe disease caused by Burkholderia pseudomallei. The biofilm of B. pseudomallei acquires resistance to several antibiotics and may be related to relapse in melioidosis patients. Here, the killing activity of antimicrobial peptides (LL-37, LL-31) and the D-enantiomers (D-LL-37, D-LL-31) in combination with ceftazidime (CAZ) against B. pseudomallei 1026b, H777 and a biofilm mutant M10, derived from H777 grown under biofilm-stimulating conditions was observed. Using static conditions, D-LL-31 exhibited the strongest killing activity against the three isolates in a dose-dependent manner. IC50 values for D-LL-31 ranged from 1 to 6 µM, for isolates M10, H777, and 1026b, respectively. Moreover, D-LL-31 combined with CAZ synergistically decreased the IC50 values of the peptide and antibiotic and caused also disruption of biofilms of B. pseudomallei 1026b under flow conditions. Thus a combination of D-LL-31 and CAZ may enhance the efficacy of the currently used antibiotic treatments against B. pseudomallei.
Collapse
Affiliation(s)
- Saharut Wongkaewkhiaw
- Department of Microbiology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
- Melioidosis Research Center, Khon Kaen University , Khon Kaen , Thailand
| | - Suwimol Taweechaisupapong
- Melioidosis Research Center, Khon Kaen University , Khon Kaen , Thailand
- Biofilm Research Group, Faculty of Dentistry, Khon Kaen University , Khon Kaen , Thailand
| | | | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , the Netherlands
| | - Jan G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , the Netherlands
| | - Surasakdi Wongratanacheewin
- Department of Microbiology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
- Melioidosis Research Center, Khon Kaen University , Khon Kaen , Thailand
| | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
- Melioidosis Research Center, Khon Kaen University , Khon Kaen , Thailand
- Biofilm Research Group, Faculty of Dentistry, Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
13
|
Pakkulnan R, Anutrakunchai C, Kanthawong S, Taweechaisupapong S, Chareonsudjai P, Chareonsudjai S. Extracellular DNA facilitates bacterial adhesion during Burkholderia pseudomallei biofilm formation. PLoS One 2019; 14:e0213288. [PMID: 30856240 PMCID: PMC6411153 DOI: 10.1371/journal.pone.0213288] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
The biofilm-forming ability of Burkholderia pseudomallei is crucial for its survival in unsuitable environments and is correlated with antibiotic resistance and relapsing cases of melioidosis. Extracellular DNA (eDNA) is an essential component for biofilm development and maturation in many bacteria. The aim of this study was to investigate the eDNA released by B. pseudomallei during biofilm formation using DNase treatment. The extent of biofilm formation and quantity of eDNA were assessed by crystal-violet staining and fluorescent dye-based quantification, respectively, and visualized by confocal laser scanning microscopy (CLSM). Variation in B. pseudomallei biofilm formation and eDNA quantity was demonstrated among isolates. CLSM images of biofilms stained with FITC-ConA (biofilm) and TOTO-3 (eDNA) revealed the localization of eDNA in the biofilm matrix. A positive correlation of biofilm biomass with quantity of eDNA during the 2-day biofilm-formation observation period was found. The increasing eDNA quantity over time, despite constant living/dead ratios of bacterial cells during the experiment suggests that eDNA is delivered from living bacterial cells. CLSM images demonstrated that depletion of eDNA by DNase I significantly lessened bacterial attachment (if DNase added at 0 h) and biofilm developing stages (if added at 24 h) but had no effect on mature biofilm (if added at 45 h). Collectively, our results reveal that eDNA is released from living B. pseudomallei and is correlated with biofilm formation. It was also apparent that eDNA is essential during bacterial cell attachment and biofilm-forming steps. The depletion of eDNA by DNase may provide an option for the prevention or dispersal of B. pseudomallei biofilm.
Collapse
Affiliation(s)
- Rattiyaphorn Pakkulnan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | | | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
- Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Suwimol Taweechaisupapong
- Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
- Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
- Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
14
|
Verboket R, Marzi I, Fleck SC, Frank J, Janko M. Local fixation of antibiotics with fibrin spray on soft tissues: experimental study on the relevance of the application techniques. Eur J Trauma Emerg Surg 2018; 46:635-640. [PMID: 30542746 DOI: 10.1007/s00068-018-1054-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE In acute and chronic infections of soft tissue, a radical surgical debridement is necessary, and is regarded as the 'Gold Standard, as well as an immediately systemic antibiotic therapy. Additional treatment with local antibiotics and/or antibiotic-containing materials is commonly used in clinical settings, but the efficient concentration of the antibiotic is not well-known. METHODS Aside from the typical procedures which are provided and supported by the industry, we have conducted an animal study including 39 Sprague Dawley rats. We have treated the back sores with local antibiotics (vancomycin) alone or in two combinations with a fibrin-glue spray technique. RESULTS It could be demonstrated that, in particular, the simultaneous application of vancomycin and fibrin leads to a stable antibiotic concentration and a long period of time wherein the antibiotic substance remains in the tissue. CONCLUSIONS This easy and inexpensive method of application can be a promising factor for the clinical improvement of local antibiotic therapy.
Collapse
Affiliation(s)
- René Verboket
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stefanie C Fleck
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Johannes Frank
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Maren Janko
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Nuryastuti T, Umaroh N, Asdie RH, Sari IP, Musthafa A. Pan-drug-resistant and biofilm-producing strain of Burkholderia pseudomallei: first report of melioidosis from a diabetic patient in Yogyakarta, Indonesia. Int Med Case Rep J 2018; 11:319-323. [PMID: 30519120 PMCID: PMC6233691 DOI: 10.2147/imcrj.s173461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Melioidosis, an infectious disease caused by Burkholderia pseudomallei, has recently gained importance as an emerging infectious disease in Indonesia. Reports of this infection in Indonesia are limited, although cases have been reported in Makassar, South Sulawesi. We report a case of cutaneous melioidosis caused by pan-drug-resistant, moderate biofilm-producer strain of B. pseudomallei in a diabetic patient. To the best of our knowledge, this is the first case of melioidosis caused by multidrug resistant and biofilm-former strain of B. pseudomallei being reported from Yogyakarta Province, Indonesia. The patient was successfully treated with abscess drainage and debridement, including total contact casting and no antibiotic treatment.
Collapse
Affiliation(s)
- Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia,
| | - Nusaibah Umaroh
- Pharmacy Installation of Dr. Kariadi General Hospital, Semarang, Center of Java, Indonesia
| | - Rizka Humardewayanti Asdie
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Sardjito Hospital, Yogyakarta, Indonesia
| | - Ika Puspita Sari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ahmad Musthafa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia,
| |
Collapse
|
16
|
Impact of nutritional stress on drug susceptibility and biofilm structures of Burkholderia pseudomallei and Burkholderia thailandensis grown in static and microfluidic systems. PLoS One 2018; 13:e0194946. [PMID: 29579106 PMCID: PMC5868842 DOI: 10.1371/journal.pone.0194946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/13/2018] [Indexed: 12/25/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis and regarded as a bioterrorism threat. It can adapt to the nutrient-limited environment as the bacteria can survive in triple distilled water for 16 years. Moreover, B. pseudomallei exhibits intrinsic resistance to diverse groups of antibiotics in particular while growing in biofilms. Recently, nutrient-limited condition influenced both biofilm formation and ceftazidime (CAZ) tolerance of B. pseudomallei were found. However, there is no information about how nutrient-limitation together with antibiotics used in melioidosis treatment affects the structure of the biofilm produced by B. pseudomallei. Moreover, no comparative study to investigate the biofilm architectures of B. pseudomallei and the related B. thailandensis under different nutrient concentrations has been reported. Therefore, this study aims to provide new information on the effects of four antibiotics used in melioidosis treatment, viz. ceftazidime (CAZ), imipenem (IMI), meropenem (MEM) and doxycycline (DOX) on biofilm architecture of B. pseudomallei and B. thailandensis with different nutrient concentrations under static and flow conditions using confocal laser scanning microscopy. Impact of nutritional stress on drug susceptibility of B. pseudomallei and B. thailandensis grown planktonically or as biofilm was also evaluated. The findings of this study indicate that nutrient-limited environment enhanced survival of B. pseudomallei in biofilm after exposure to the tested antibiotics. The shedding planktonic B. pseudomallei and B. thailandensis were also found to have increased CAZ tolerance in nutrient-limited environment. However, killing activities of MEM and IMI were stronger than CAZ and DOX on B. pseudomallei and B. thailandensis both in planktonic cells and in 2-day old biofilm. In addition, MEM and IMI were able to inhibit B. pseudomallei and B. thailandensis biofilm formation to a larger extend compared to CAZ and DOX. Differences in biofilm architecture were observed for biofilms grown under static and flow conditions. Under static conditions, biofilms grown in full strength modified Vogel and Bonner’s medium (MVBM) showed honeycomb-like architecture while a knitted-like structure was observed under limited nutrient condition (0.1×MVBM). Under flow conditions, biofilms grown in MVBM showed a multilayer structure while merely dispersed bacteria were found when grown in 0.1×MVBM. Altogether, this study provides more insight on the effect of four antibiotics against B. pseudomallei and B. thailandensis in biofilm under different nutrient and flow conditions. Since biofilm formation is believed to be involved in disease relapse, MEM and IMI may be better therapeutic options than CAZ for melioidosis treatment.
Collapse
|
17
|
Relationships Between Resistance and Virulence in Burkholderia pseudomallei. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Mangalea MR, Borlee GI, Borlee BR. The Current Status of Extracellular Polymeric Substances Produced by Burkholderia pseudomallei. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0118-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
de Aguiar Coletti TMSF, de Freitas LM, Almeida AMF, Fontana CR. Optimization of Antimicrobial Photodynamic Therapy in Biofilms by Inhibiting Efflux Pump. Photomed Laser Surg 2017. [DOI: 10.1089/pho.2016.4246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Laura Marise de Freitas
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco Almeida
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Araraquara, São Paulo, Brazil
| | - Carla Raquel Fontana
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Araraquara, São Paulo, Brazil
| |
Collapse
|
20
|
Khakhum N, Yordpratum U, Boonmee A, Tattawasart U, Rodrigues JLM, Sermswan RW. Cloning, expression, and characterization of a peptidoglycan hydrolase from the Burkholderia pseudomallei phage ST79. AMB Express 2016; 6:77. [PMID: 27637947 PMCID: PMC5025407 DOI: 10.1186/s13568-016-0251-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/08/2016] [Indexed: 01/28/2023] Open
Abstract
The lytic phage ST79 of Burkholderia pseudomallei can lyse a broad range of its host including antibiotic resistant isolates from within using a set of proteins, holin, lysB, lysC and endolysin, a peptidoglycan (PG) hydrolase enzyme. The phage ST79 endolysin gene identified as peptidase M15A was cloned, expressed and purified to evaluate its potential to lyse pathogenic bacteria. The molecular size of the purified enzyme is approximately 18 kDa and the in silico study cited here indicated the presence of a zinc-binding domain predicted to be a member of the subfamily A of a metallopeptidase. Its activity, however, was reduced by the presence of Zn2+. When Escherichia coli PG was used as a substrate and subjected to digestion for 5 min with 3 μg/ml of enzyme, the peptidase M15A showed 2 times higher in lysis efficiency when compared to the commercial lysozyme. The enzyme works in a broad alkaligenic pH range of 7.5–9.0 and temperatures from 25 to 42 °C. The enzyme was able to lyse 18 Gram-negative bacteria in which the outer membrane was permeabilized by chloroform treatment. Interestingly, it also lysed Enterococcus sp., but not other Gram-positive bacteria. In general, endolysin cannot lyse Gram-negative bacteria from outside, however, the cationic amphipathic C-terminal in some endolysins showed permeability to Gram-negative outer membranes. Genetically engineered ST79 peptidase M15A that showed a broad spectrum against Gram-negative bacterial PG or, in combination with an antibiotic the same way as combined drug methodology, could facilitate an effective treatment of severe or antibiotic resistant cases.
Collapse
|
21
|
Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. J Med Microbiol 2016; 65:1296-1306. [DOI: 10.1099/jmm.0.000358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Khoei NS, Andreolli M, Lampis S, Vallini G, Turner RJ. A comparison of the response of twoBurkholderia fungorumstrains grown as planktonic cells versus biofilm to dibenzothiophene and select polycyclic aromatic hydrocarbons. Can J Microbiol 2016; 62:851-860. [DOI: 10.1139/cjm-2016-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In natural environments, bacteria often exist in close association with surfaces and interfaces by establishing biofilms. Here, we report on the ability of Burkholderia fungorum strains DBT1 and 95 to survive in high concentrations of hydrocarbons, and we compare their growth as a biofilm vs. planktonic cells. The 2 compounds tested were dibenzothiophene (DBT) and a mixture of naphthalene, phenanthrene, and pyrene (5:2:1) as representative compounds of thiophenes and polycyclic aromatic hydrocarbons (PAHs), respectively. The results showed that both strains were able to degrade DBT and to survive in the presence of up to a 2000 mg·L−1concentration of this compound both as a biofilm and as free-living cells. Moreover, B. fungorum DBT1 showed reduced tolerance towards the mixed PAHs (2000 mg·L−1naphthalene, 800 mg·L−1phenanthrene, and 400 mg·L−1pyrene) both as a biofilm and as free-living cells. Conversely, biofilms of B. fungorum 95 enhanced resistance against these toxic compounds compared with planktonic cells (P < 0.05). Visual observation through confocal laser scanning microscopy showed that exposure of biofilms to DBT and PAHs altered their structure: high concentrations of DBT triggered an aggregation of biofilm cells. These findings provide new perspectives on the effectiveness of using DBT-degrading bacterial strains in bioremediation of hydrocarbon-contaminated sites.
Collapse
Affiliation(s)
- Nazanin Seyed Khoei
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Marco Andreolli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Raymond J. Turner
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
23
|
New Insight into Daptomycin Bioavailability and Localization in Staphylococcus aureus Biofilms by Dynamic Fluorescence Imaging. Antimicrob Agents Chemother 2016; 60:4983-90. [PMID: 27297479 DOI: 10.1128/aac.00735-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is one of the most frequent pathogens responsible for biofilm-associated infections (BAI), and the choice of antibiotics to treat these infections remains a challenge for the medical community. In particular, daptomycin has been reported to fail against implant-associated S. aureus infections in clinical practice, while its association with rifampin remains a good candidate for BAI treatment. To improve our understanding of such resistance/tolerance toward daptomycin, we took advantage of the dynamic fluorescence imaging tools (time-lapse imaging and fluorescence recovery after photobleaching [FRAP]) to locally and accurately assess the antibiotic diffusion reaction in methicillin-susceptible and methicillin-resistant S. aureus biofilms. To provide a realistic representation of daptomycin action, we optimized an in vitro model built on the basis of our recently published in vivo mouse model of prosthetic vascular graft infections. We demonstrated that at therapeutic concentrations, daptomycin was inefficient in eradicating biofilms, while the matrix was not a shield to antibiotic diffusion and to its interaction with its bacterial target. In the presence of rifampin, daptomycin was still present in the vicinity of the bacterial cells, allowing prevention of the emergence of rifampin-resistant mutants. Conclusions derived from this study strongly suggest that S. aureus biofilm resistance/tolerance toward daptomycin may be more likely to be related to a physiological change involving structural modifications of the membrane, which is a strain-dependent process.
Collapse
|
24
|
Lewis ERG, Torres AG. The art of persistence-the secrets to Burkholderia chronic infections. Pathog Dis 2016; 74:ftw070. [PMID: 27440810 DOI: 10.1093/femspd/ftw070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them.
Collapse
Affiliation(s)
- Eric R G Lewis
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA Department of Pathology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 7555-1070, USA
| |
Collapse
|
25
|
Mongkolrob R, Taweechaisupapong S, Tungpradabkul S. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains. Microbiol Immunol 2016; 59:653-63. [PMID: 26486518 DOI: 10.1111/1348-0421.12331] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
Burkholderia pseudomallei is the cause of melioidosis, a fatal tropical infectious disease, which has been reported to have a high rate of recurrence, even when an intensive dose of antibiotics is used. Biofilm formation is believed to be one of the possible causes of relapse because of its ability to increase drug resistance. EPS in biofilms have been reported to be related to the limitation of antibiotic penetration in B. pseudomallei. However, the mechanisms by which biofilms restrict the diffusion of antibiotics remain unclear. The present study presents a correlation between exopolysaccharide production in biofilm matrix and antibiotic resistance in B. pseudomallei using bpsI, ppk, and rpoS mutant strains. CLSM revealed a reduction in exopolysaccharide production and disabled micro-colony formation in B. pseudomallei mutants, which paralleled the antibiotic resistance. Different ratios of carbohydrate contents in the exopolysaccharides of the mutants were detected, although they have the same components, including glucose, galactose, mannose, and rhamnose, with the exception being that no detectable rhamnose peak was observed in the bpsI mutant. These results indicate that the correlation between these phenomena in the B. pseudomallei biofilm at least results from the exopolysaccharide, which may be under the regulation of bpsI, ppk, or rpoS genes.
Collapse
Affiliation(s)
- Rungrawee Mongkolrob
- Biochemistry Department, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Suwimol Taweechaisupapong
- Melioidosis Research Center and Biofilm research group, Faculty of Dentistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sumalee Tungpradabkul
- Biochemistry Department, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| |
Collapse
|
26
|
Ultrastructural effects and antibiofilm activity of LFchimera against Burkholderia pseudomallei. World J Microbiol Biotechnol 2016; 32:33. [DOI: 10.1007/s11274-015-1988-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/28/2015] [Indexed: 01/28/2023]
|
27
|
Zhou G, Shi QS, Huang XM, Xie XB. The Three Bacterial Lines of Defense against Antimicrobial Agents. Int J Mol Sci 2015; 16:21711-33. [PMID: 26370986 PMCID: PMC4613276 DOI: 10.3390/ijms160921711] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/21/2015] [Accepted: 08/31/2015] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances.
Collapse
Affiliation(s)
- Gang Zhou
- Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, Guangdong, China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, Guangdong, China.
| | - Qing-Shan Shi
- Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, Guangdong, China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, Guangdong, China.
| | - Xiao-Mo Huang
- Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, Guangdong, China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, Guangdong, China.
| | - Xiao-Bao Xie
- Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, Guangdong, China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, Guangdong, China.
| |
Collapse
|
28
|
Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, Rozali N, Koh SF, Hoh CC, Puthucheary SD, Nathan S. Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence. BMC Genomics 2015; 16:471. [PMID: 26092034 PMCID: PMC4474458 DOI: 10.1186/s12864-015-1692-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
Background Chronic bacterial infections occur as a result of the infecting pathogen’s ability to live within a biofilm, hence escaping the detrimental effects of antibiotics and the immune defense system. Burkholderia pseudomallei, a gram-negative facultative pathogen, is distinctive in its ability to survive within phagocytic and non-phagocytic cells, to persist in vivo for many years and subsequently leading to relapse as well as the development of chronic disease. The capacity to persist has been attributed to the pathogen’s ability to form biofilm. However, the underlying biology of B. pseudomallei biofilm development remains unresolved. Results We utilised RNA-Sequencing to identify genes that contribute to B. pseudomallei biofilm phenotype. Transcriptome analysis of a high and low biofilm producer identified 563 differentially regulated genes, implying that expression of ~9.5 % of the total B. pseudomallei gene content was altered during biofilm formation. Genes involved in surface-associated motility, surface composition and cell wall biogenesis were over-expressed and probably play a role in the initial attachment of biofilms. Up-regulation of genes related to two component signal transduction systems and a denitrification enzyme pathway suggest that the B. pseudomallei high biofilm producer is able to sense the surrounding environmental conditions and regulate the production of extracellular polymeric substance matrix, a hallmark of microbial biofilm formation. Conclusions The transcriptome profile described here provides the first comprehensive view of genes that contribute to the biofilm phenotype in B. pseudomallei. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1692-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chui-Yoke Chin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.,Present address: Emory Vaccine Centre, Emory University, Atlanta, Georgia, USA
| | - Yuka Hara
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.,Malaysia Genome Institute, Jalan Bangi, Kajang, Selangor D.E., Malaysia.,Present address: Centre for Traditional Chinese Medicine, INTI International University, Nilai, Selangor, Malaysia
| | | | - Soon-Joo Yap
- Codon Genomics SB, Seri Kembangan, Selangor D.E., Malaysia
| | - Cin Kong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Yee-Chin Wong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Naufal Rozali
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Seng-Fook Koh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Savithri D Puthucheary
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Present address: Medical Education, Research and Evaluation Department, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia. .,Malaysia Genome Institute, Jalan Bangi, Kajang, Selangor D.E., Malaysia.
| |
Collapse
|
29
|
Billings N, Birjiniuk A, Samad TS, Doyle PS, Ribbeck K. Material properties of biofilms-a review of methods for understanding permeability and mechanics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:036601. [PMID: 25719969 PMCID: PMC4504244 DOI: 10.1088/0034-4885/78/3/036601] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the 3D biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gases, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms.
Collapse
Affiliation(s)
- Nicole Billings
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
30
|
Comparison of the antibiotic activities of Daptomycin, Vancomycin, and the investigational Fluoroquinolone Delafloxacin against biofilms from Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother 2014; 58:6385-97. [PMID: 25114142 DOI: 10.1128/aac.03482-14] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biofilm-related infections remain a scourge. In an in vitro model of biofilms using Staphylococcus aureus reference strains, delafloxacin and daptomycin were found to be the most active among the antibiotics from 8 different pharmacological classes (J. Bauer, W. Siala, P. M. Tulkens, and F. Van Bambeke, Antimicrob. Agents Chemother. 57:2726-2737, 2013, doi:10.1128/AAC.00181-13). In this study, we compared delafloxacin to daptomycin and vancomycin using biofilms produced by 7 clinical strains (S. aureus epidemic clones CC5 and CC8) in order to rationalize the differences observed between the antibiotics and strains. The effects of the antibiotics on bacterial viability (resazurin reduction assay) and biomass (crystal violet staining) were measured and correlated with the proportion of polysaccharides in the matrix, the local microenvironmental pH (micro-pH), and the antibiotic penetration in the biofilm. At clinically meaningful concentrations, delafloxacin, daptomycin, and vancomycin caused a ≥25% reduction in viability against the biofilms formed by 5, 4, and 3 strains, respectively. The antibiotic penetration within the biofilms ranged from 0.6 to 52% for delafloxacin, 0.2 to 10% for daptomycin, and 0.2 to 1% for vancomycin; for delafloxacin, this was inversely related to the polysaccharide proportion in the matrix. Six biofilms were acidic, explaining the high potency of delafloxacin (lower MICs at acidic pH). Norspermidine and norspermine (disassembling the biofilm matrix) drastically increased delafloxacin potency and efficacy (50% reduction in viability for 6 biofilms at clinically meaningful concentrations) in direct correlation with its increased penetration within the biofilm, while they only modestly improved daptomycin efficacy (50% reduction in viability for 2 biofilms) and penetration, and they showed marginal effects with vancomycin. Delafloxacin potency and efficacy against biofilms are benefited by its penetration into the matrix and the local acidic micro-pH.
Collapse
|
31
|
Abstract
Melioidosis, infection with Burkholderia pseudomallei, is being recognised with increasing frequency and is probably more common than currently appreciated. Treatment recommendations are based on a series of clinical trials conducted in Thailand over the past 25 years. Treatment is usually divided into two phases: in the first, or acute phase, parenteral drugs are given for ≥10 days with the aim of preventing death from overwhelming sepsis; in the second, or eradication phase, oral drugs are given, usually to complete a total of 20 weeks, with the aim of preventing relapse. Specific treatment for individual patients needs to be tailored according to clinical manifestations and response, and there remain many unanswered questions. Some patients with very mild infections can probably be cured by oral agents alone. Ceftazidime is the mainstay of acute-phase treatment, with carbapenems reserved for severe infections or treatment failures and amoxicillin/clavulanic acid (co-amoxiclav) as second-line therapy. Trimethoprim/sulfamethoxazole (co-trimoxazole) is preferred for the eradication phase, with the alternative of co-amoxiclav. In addition, the best available supportive care is needed, along with drainage of abscesses whenever possible. Treatment for melioidosis is unaffordable for many in endemic areas of the developing world, but the relative costs have reduced over the past decade. Unfortunately there is no likelihood of any new or cheaper options becoming available in the immediate future. Recommendations for prophylaxis following exposure to B. pseudomallei have been made, but the evidence suggests that they would probably only delay rather than prevent the development of infection.
Collapse
Affiliation(s)
- David Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Functional characterization and evaluation of in vitro protective efficacy of murine monoclonal antibodies BURK24 and BURK37 against Burkholderia pseudomallei. PLoS One 2014; 9:e90930. [PMID: 24614539 PMCID: PMC3948747 DOI: 10.1371/journal.pone.0090930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/03/2014] [Indexed: 01/29/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis has been recognized by CDC as a category B select agent. Although substantial efforts have been made for development of vaccine molecules against the pathogen, significant hurdles still remain. With no licensed vaccines available and high relapse rate of the disease, there is a pressing need for development of alternate protection strategies. Antibody-mediated passive protection is promising in this regard and our primary interest was to unravel this frontier of specific mAbs against Burkholderia pseudomallei infections, as functional characterization of antibodies is a pre-requisite to demonstrate them as protective molecules. To achieve this, we designed our study on in vitro-based approach and assessed two mAbs, namely BURK24 and BURK37, reactive with outer membrane proteins and lipopolysaccharide of the pathogen respectively, for their ability to manifest inhibitory effects on the pathogenesis mechanisms of B. pseudomallei including biofilm formation, invasion and induction of apoptosis. The experiments were performed using B. pseudomallei standard strain NCTC 10274 and a clinical isolate, B. pseudomallei 621 recovered from a septicemia patient with diabetic ailment. The growth kinetic studies of the pathogen in presence of various concentrations of each individual mAb revealed their anti-bacterial properties. Minimal inhibitory concentration and minimal bactericidal concentration of both the mAbs were determined by using standards of Clinical and Laboratory Standards Institute (CLSI) and experiments were performed using individual mAbs at their respective bacteriostatic concentration. As an outcome, both mAbs exhibited significant anti-Burkholderia pseudomallei properties. They limited the formation of biofilm by the bacterium and completely crippled its invasion into human alveolar adenocarcinoma epithelial cells. Also, the mAbs were appreciably successful in preventing the bacterium to induce apoptosis in A549 cells. The present study design revealed the protection attributes possessed by BURK24 and BURK37 that has to be further substantiated by additional in vivo studies.
Collapse
|
33
|
Lazar Adler NR, Dean RE, Saint RJ, Stevens MP, Prior JL, Atkins TP, Galyov EE. Identification of a predicted trimeric autotransporter adhesin required for biofilm formation of Burkholderia pseudomallei. PLoS One 2013; 8:e79461. [PMID: 24223950 PMCID: PMC3818227 DOI: 10.1371/journal.pone.0079461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/23/2013] [Indexed: 01/25/2023] Open
Abstract
The autotransporters are a large and diverse family of bacterial secreted and outer membrane proteins, which are present in many Gram-negative bacterial pathogens and play a role in numerous environmental and virulence-associated interactions. As part of a larger systematic study on the autotransporters of Burkholderia pseudomallei, the causative agent of the severe tropical disease melioidosis, we have constructed an insertion mutant in the bpss1439 gene encoding an unstudied predicted trimeric autotransporter adhesin. The bpss1439 mutant demonstrated a significant reduction in biofilm formation at 48 hours in comparison to its parent 10276 wild-type strain. This phenotype was complemented to wild-type levels by the introduction of a full-length copy of the bpss1439 gene in trans. Examination of the wild-type and bpss1439 mutant strains under biofilm-inducing conditions by microscopy after 48 hours confirmed that the bpss1439 mutant produced less biofilm compared to wild-type. Additionally, it was observed that this phenotype was due to low levels of bacterial adhesion to the abiotic surface as well as reduced microcolony formation. In a murine melioidosis model, the bpss1439 mutant strain demonstrated a moderate attenuation for virulence compared to the wild-type strain. This attenuation was abrogated by in trans complementation, suggesting that bpss1439 plays a subtle role in the pathogenesis of B. pseudomallei. Taken together, these studies indicate that BPSS1439 is a novel predicted autotransporter involved in biofilm formation of B. pseudomallei; hence, this factor was named BbfA, Burkholderia biofilm factor A.
Collapse
Affiliation(s)
- Natalie R. Lazar Adler
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Rachel E. Dean
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
| | - Richard J. Saint
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - Joann L. Prior
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
| | - Timothy P. Atkins
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Edouard E. Galyov
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
In vitro activities of amoxicillin-clavulanate, doxycycline, ceftazidime, imipenem, and trimethoprim-sulfamethoxazole against biofilm of Brazilian strains of Burkholderia pseudomallei. Antimicrob Agents Chemother 2013; 57:5771-3. [PMID: 24002089 DOI: 10.1128/aac.00721-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed at investigating the in vitro activities of amoxicillin-clavulanate, doxycycline, ceftazidime, imipenem, and trimethoprim-sulfamethoxazole against Burkholderia pseudomallei in planktonic and biofilm forms, through broth microdilution and resazurin-based viability staining, respectively. In planktonic growth, the strains were susceptible to the drugs, while in biofilm growth, significantly higher antimicrobial concentrations were required, especially for ceftazidime and imipenem, surpassing the resistance breakpoints. These results highlight the importance of the routine evaluation of biofilm antimicrobial susceptibility.
Collapse
|
35
|
Madhongsa K, Pasan S, Phophetleb O, Nasompag S, Thammasirirak S, Daduang S, Taweechaisupapong S, Lomize AL, Patramanon R. Antimicrobial action of the cyclic peptide bactenecin on Burkholderia pseudomallei correlates with efficient membrane permeabilization. PLoS Negl Trop Dis 2013; 7:e2267. [PMID: 23785532 PMCID: PMC3681726 DOI: 10.1371/journal.pntd.0002267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/01/2013] [Indexed: 01/05/2023] Open
Abstract
Burkholderia pseudomallei is a category B agent that causes Melioidosis, an acute and chronic disease with septicemia. The current treatment regimen is a heavy dose of antibiotics such as ceftazidime (CAZ); however, the risk of a relapse is possible. Peptide antibiotics are an alternative to classical antibiotics as they exhibit rapid action and are less likely to result in the development of resistance. The aim of this study was to determine the bactericidal activity against B. pseudomallei and examine the membrane disrupting abilities of the potent antimicrobial peptides: bactenecin, RTA3, BMAP-18 and CA-MA. All peptides exhibited >97% bactericidal activity at 20 µM, with bactenecin having slightly higher activity. Long term time-kill assays revealed a complete inhibition of cell growth at 50 µM bactenecin and CA-MA. All peptides inhibited biofilm formation comparable to CAZ, but exhibited faster kinetics (within 1 h). Bactenecin exhibited stronger binding to LPS and induced perturbation of the inner membrane of live cells. Interaction of bactenecin with model membranes resulted in changes in membrane fluidity and permeability, leading to leakage of dye across the membrane at levels two-fold greater than that of other peptides. Modeling of peptide binding on the membrane showed stable and deep insertion of bactenecin into the membrane (up to 9 Å). We propose that bactenecin is able to form dimers or large β-sheet structures in a concentration dependent manner and subsequently rapidly permeabilize the membrane, leading to cytosolic leakage and cell death in a shorter period of time compared to CAZ. Bactenecin might be considered as a potent antimicrobial agent for use against B. pseudomallei. Burkholderia pseudomallei is a category B agent that causes Melioidosis, an acute and chronic disease with septicemia. The current treatment regimen is a heavy dose of antibiotics such as ceftazidime (CAZ), however, the risk of a relapse is possible. In this study we demonstrate that bactenecin, CA-MA, RTA3 and BMAP-18 are able to inhibit the growth and biofilm formation of B. pseudomallei. The strong bactericidal activity of bactenecin is attributed to its greater ability to permeabilize the membrane. Computational modeling of these peptide-membrane interactions provide support for a model in which bactenecin is able to penetrate the membrane most effectively due to its cyclical structure. The peptide, bactenecin has the potential to act as a highly effective alternative to CAZ, or as a combination therapy with CAZ in the treatment of melioidosis. Furthermore, understanding the mechanism of bactenecin may help us better design more effective peptides therapeutics of choice for melioidosis.
Collapse
Affiliation(s)
- Kanjana Madhongsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Supaluk Pasan
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Onanong Phophetleb
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sawinee Nasompag
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sompong Thammasirirak
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Suwimol Taweechaisupapong
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
- Biofilm Research Group, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Andrei L. Lomize
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
36
|
Renslow R, Babauta J, Majors P, Beyenal H. DIFFUSION IN BIOFILMS RESPIRING ON ELECTRODES. ENERGY & ENVIRONMENTAL SCIENCE 2013; 6:595-607. [PMID: 23420623 PMCID: PMC3571104 DOI: 10.1039/c2ee23394k] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (D(e)) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed noninvasive, nondestructive, high spatial resolution in situ D(e) measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional D(e) heat maps and surface-averaged relative effective diffusion coefficient (D(rs)) depth profiles. We found that 1) D(rs) decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; 2) D(rs) at a given location decreases with G. sulfurreducens biofilm age; 3) average D(e) and D(rs) profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms-the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and 4) halting the respiration of a G. sulfurreducens biofilm decreases the D(e) values. Density, reflected by D(e), plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.
Collapse
Affiliation(s)
- Rs Renslow
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
37
|
Schweizer HP. Mechanisms of antibiotic resistance in Burkholderia pseudomallei: implications for treatment of melioidosis. Future Microbiol 2012; 7:1389-99. [PMID: 23231488 PMCID: PMC3568953 DOI: 10.2217/fmb.12.116] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Burkholderia pseudomallei is the etiologic agent of melioidosis. This multifaceted disease is difficult to treat, resulting in high morbidity and mortality. Treatment of B. pseudomallei infections is lengthy and necessitates an intensive phase (parenteral ceftazidime, amoxicillin-clavulanic acid or meropenem) and an eradication phase (oral trimethoprim-sulfamethoxazole). The main resistance mechanisms affecting these antibiotics include enzymatic inactivation, target deletion and efflux from the cell, and are mediated by chromosomally encoded genes. Overproduction and mutations in the class A PenA β-lactamase cause ceftazidime and amoxicillin-clavulanic acid resistance. Deletion of the penicillin binding protein 3 results in ceftazidime resistance. BpeEF-OprC efflux pump expression causes trimethoprim and trimethoprim-sulfamethoxazole resistance. Although resistance is still relatively rare, therapeutic efficacies may be compromised by resistance emergence due to increased use of antibiotics in endemic regions. Novel agents and therapeutic strategies are being tested and, in some instances, show promise as anti-B. pseudomallei infectives.
Collapse
Affiliation(s)
- Herbert P Schweizer
- Colorado State University, Department of Microbiology, Immunology & Pathology, IDRC at Foothills Campus, 0922 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|