1
|
Zaidi SEZ, Zaheer R, Zovoilis A, McAllister TA. Enterococci as a One Health indicator of antimicrobial resistance. Can J Microbiol 2024; 70:303-335. [PMID: 38696839 DOI: 10.1139/cjm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
2
|
Sengupta M, Sarkar R, Sarkar S, Sengupta M, Ghosh S, Banerjee P. Vancomycin and Linezolid-Resistant Enterococcus Isolates from a Tertiary Care Center in India. Diagnostics (Basel) 2023; 13:diagnostics13050945. [PMID: 36900089 PMCID: PMC10001185 DOI: 10.3390/diagnostics13050945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION There is increasing development of antibiotic resistance among the Enterococcus species. OBJECTIVES This study was performed to determine prevalence and characterize the vancomycin-resistant and linezolid-resistant enterococcus isolates from a tertiary care center. Moreover, the antimicrobial susceptibility pattern of these isolates was also determined. MATERIALS AND METHODS A prospective study was performed in Medical College, Kolkata, India, over a period of two years (from January 2018 to December 2019). After obtaining clearance from the Institutional Ethics Committee, Enterococcus isolates from various samples were included in the present investigation. In addition to the various conventional biochemical tests, the VITEK 2 Compact system was used to identify the Enterococcus species. The isolates were tested for antimicrobial susceptibility to different antibiotics using the Kirby-Bauer disk diffusion method and VITEK 2 Compact to determine the minimum inhibitory concentration (MIC). The Clinical and Laboratory Standards Institute (CLSI) 2017 guidelines were used to interpret susceptibility. Multiplex PCR was performed for genetic characterization of the vancomycin-resistant Enterococcus isolates and sequencing was performed for characterization of the linezolid-resistant Enterococcus isolates. RESULTS During the period of two years, 371 isolates of Enterococcus spp. were obtained from 4934 clinical isolates showing a prevalence of 7.52%. Among these isolates, 239 (64.42%) were Enterococcus faecalis, 114 (30.72%) Enterococcus faecium, and others were Enterococcus durans, Enterococcus casseliflavus, Enterococcus gallinarum, and Enterococcus avium. Among these, 24 (6.47%) were VRE (Vancomycin-Resistant Enterococcus) of which 18 isolates were Van A type and six isolates of Enterococcus casseliflavus and Enterococcus gallinarum were resistant VanC type. There were two linezolid-resistant Enterococcus, and they were found to have the G2576T mutation. Among the 371 isolates, 252 (67.92%) were multi-drug resistant. CONCLUSION This study found an increasing prevalence of vancomycin-resistant Enterococcus isolates. There is also an alarming prevalence of multidrug resistance among these isolates.
Collapse
Affiliation(s)
- Mallika Sengupta
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
- Correspondence:
| | - Riya Sarkar
- Vijaya Diagnostics Laboratory, Hyderabad 500029, India
| | - Soma Sarkar
- Department of Microbiology, NRS Medical College, Kolkata 700014, India
| | | | - Sougata Ghosh
- Department of Microbiology, Medical College, Kolkata 700073, India
| | | |
Collapse
|
3
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
4
|
Wangchinda W, Rattanaumpawan P. JMM Profile: Fosfomycin: a potential antibiotic for multi- and extensively resistant bacteria. J Med Microbiol 2022; 71. [PMID: 35951643 DOI: 10.1099/jmm.0.001573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fosfomycin (FOF) is the first antimicrobial of the epoxide class. It is commercially available in oral and parenteral formulations. Oral FOF is widely used to treat uncomplicated cystitis in women, while parenteral FOF is extensively utilized for upper urinary tract infections. FOF has a broad-spectrum bactericidal activity with a low risk of cross-resistance to other antimicrobial classes. Therefore, parenteral FOF is increasingly prescribed adjunctive therapy to treat extra-urinary tract infections caused by multidrug-resistant, Gram-negative bacteria.
Collapse
Affiliation(s)
- Walaiporn Wangchinda
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Rd, Bangkoknoi, Bangkok 10700, Thailand
| | - Pinyo Rattanaumpawan
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Rd, Bangkoknoi, Bangkok 10700, Thailand
| |
Collapse
|
5
|
Chen T, Zhao L, Liu Y, Wang Y, Jian Y, Zhao N, Yang Z, Wang X, Liu Q, Li M. Mechanisms of high-level fosfomycin resistance in Staphylococcus aureus epidemic lineage ST5. J Antimicrob Chemother 2022; 77:2816-2826. [PMID: 35848785 PMCID: PMC9525092 DOI: 10.1093/jac/dkac236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Fosfomycin resistance has become a clinical concern. In this study, we analysed the dynamic change of fosfomycin MIC in the epidemic Staphylococcus aureus lineages in a teaching hospital in Shanghai for 12 years and sought to elucidate the major underlying mechanisms. Methods MLST was conducted for 4580 S. aureus isolates recovered from 2008 to 2019. Fosfomycin MIC was determined by the agar dilution method. The genome data of 230 S. aureus epidemic lineage isolates were acquired from a next-generation sequencing (NGS) platform. Gene deletion and corresponding complementation mutants were constructed to confirm the mechanism of fosfomycin resistance. Results The predominant S. aureus lineages during the past 12 years were ST5 and ST239 (45.6%; 2090/4580). However, ST5 has been spreading clinically, while ST239 has gradually disappeared recently. Consistent with epidemic trends, fosfomycin-resistant ST5 increased from 19.5% to 67.3%. Most fosfomycin-resistant ST5 isolates (92.7%; 647/698) possessed high-level resistance (MIC > 1024 mg/L) with combined mutations mainly in glpT and uhpT. In contrast, fosfomycin-resistant ST239 isolates (76.8%; 149/194) mainly acquired low-level resistance (MIC = 64–128 mg/L) with mutation primarily in hptA. Deletion of a single resistant gene merely resulted in low-level fosfomycin resistance, while double-gene mutants ΔglpTΔuhpT, ΔglpTΔhptA and ΔglpTΔhptR acquired high-level fosfomycin resistance. Conclusions The high-level fosfomycin resistance of S. aureus epidemic lineage ST5 is mainly due to the accumulation of mutations in the resistant genes related to membrane transporter systems, and partly contributes to its persistent prevalence under clinical antibiotic pressure.
Collapse
Affiliation(s)
- Tianchi Chen
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lin Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yao Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ya'nan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Na Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ziyu Yang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xi Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Evolution of Enterococcus faecium in Response to a Combination of Daptomycin and Fosfomycin Reveals Distinct and Diverse Adaptive Strategies. Antimicrob Agents Chemother 2022; 66:e0233321. [PMID: 35543524 PMCID: PMC9211409 DOI: 10.1128/aac.02333-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Infections caused by vancomycin-resistant Enterococcus faecium (VREfm) are an important public health threat. VREfm isolates have become increasingly resistant to the front-line antibiotic daptomycin (DAP). As such, the use of DAP combination therapies with other antibiotics like fosfomycin (FOS) has received increased attention. Antibiotic combinations could extend the efficacy of currently available antibiotics and potentially delay the onset of further resistance. We investigated the potential for E. faecium HOU503, a clinical VREfm isolate that is DAP and FOS susceptible, to develop resistance to a DAP-FOS combination. Of particular interest was whether the genetic drivers for DAP-FOS resistance might be epistatic and, thus, potentially decrease the efficacy of a combinatorial approach in either inhibiting VREfm or in delaying the onset of resistance. We show that resistance to DAP-FOS could be achieved by independent mutations to proteins responsible for cell wall synthesis for FOS and in altering membrane dynamics for DAP. However, we did not observe genetic drivers that exhibited substantial cross-drug epistasis that could undermine the DAP-FOS combination. Of interest was that FOS resistance in HOU503 was largely mediated by changes in phosphoenolpyruvate (PEP) flux as a result of mutations in pyruvate kinase (pyk). Increasing PEP flux could be a readily accessible mechanism for FOS resistance in many pathogens. Importantly, we show that HOU503 was able to develop DAP resistance through a variety of biochemical mechanisms and was able to employ different adaptive strategies. Finally, we showed that the addition of FOS can prolong the efficacy of DAP and slow down DAP resistance in vitro.
Collapse
|
7
|
Wiltsie V, Travis S, Shay MR, Simmons Z, Frantom P, Thompson MK. Structural and functional characterization of fosfomycin resistance conferred by FosB from Enterococcus faecium. Protein Sci 2022; 31:580-590. [PMID: 34882867 PMCID: PMC8862413 DOI: 10.1002/pro.4253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022]
Abstract
The Gram-positive pathogen Enterococcus faecium is one of the leading causes of hospital-acquired vancomycin resistant enterococci (VRE) infections. E. faecium has extensive multidrug resistance and accounts for more than two million infections in the United States each year. FosB is a fosfomycin resistance enzyme found in Gram-positive pathogens like E. faecium. Typically, the FosB enzymes are Mn2+ -dependent bacillithiol (BSH) transferases that inactivate fosfomycin through nucleophilic addition of the thiol to the antibiotic. However, our kinetic analysis of FosBEf shows that the enzyme does not utilize BSH as a thiol substrate, unlike the other well characterized FosB enzymes. Here we report that FosBEf is a Mn2+ -dependent L-cys transferase. In addition, we have determined the three-dimensional X-ray crystal structure of FosBEf in complex with fosfomycin at a resolution of 2.0 Å. A sequence similarity network (SSN) was generated for the FosB family to investigate the unexpected substrate selectivity. Three non-conserved residues were identified in the SSN that may contribute to the substrate selectivity differences in the family of enzymes. Our structural and functional characterization of FosBEf establishes the enzyme as a potential target and may prove useful for future structure-based development of FosB inhibitors to increase the efficacy of fosfomycin.
Collapse
Affiliation(s)
- Vanessa Wiltsie
- Department of Chemistry & BiochemistryThe University of AlabamaTuscaloosaAlabamaUSA
| | - Skye Travis
- Department of Chemistry & BiochemistryThe University of AlabamaTuscaloosaAlabamaUSA
| | - Madeline R. Shay
- Department of Chemistry & BiochemistryThe University of AlabamaTuscaloosaAlabamaUSA
| | - Zachary Simmons
- Department of Chemistry & BiochemistryThe University of AlabamaTuscaloosaAlabamaUSA
| | - Patrick Frantom
- Department of Chemistry & BiochemistryThe University of AlabamaTuscaloosaAlabamaUSA
| | - Matthew K. Thompson
- Department of Chemistry & BiochemistryThe University of AlabamaTuscaloosaAlabamaUSA
| |
Collapse
|
8
|
Wang X, Gao Y, Liu X, Sun N, Huang J, Wang L. First Report of the Plasmid-mediated fosB Gene in Enterococcus faecalis from Pigs. Genes (Basel) 2021; 12:genes12111684. [PMID: 34828290 PMCID: PMC8624268 DOI: 10.3390/genes12111684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmid-mediated fosfomycin determinants is a global public health concern due to the increasing dissemination of fosfomycin resistance and limited clinical treatment options. Information about the fosfomycin resistant and molecular genetic among Enterococcus spp. is still lacking. In this study, we found the first plasmid-medieted fosB in Enterococcus faecalis from pigs, and all the fosfomycin resistant Enterococcus spp. (FRE) isolates were multi-drug resistant. S1-PFGE, Southern blot and conjugation experiments indicated that the fosB gene located on ~54.7 kb transferable plasmids. Relative competition assay confirmed that the fosB-carrying plasmid impaired fitness in recipient E. faecalis JH2-2. Illumina and the MinION sequencing data revealed that both E. faecalis ES-1 and ES-2 isolates belonged to novel ST (ST964), and had 71 SNPs difference. WGS showed that the genetic environments of fosB were diverse among different species, and the linezolid resistance gene optrA was found in the fosB-carrying strains. To summarize, for the first time, we reported plasmid-mediated fosB in E. faecalis from pigs. And, the co-occurrence of fosB and optrA pose a serious threat to public health.
Collapse
|
9
|
Emergence of a multidrug-resistant ST 27 Escherichia coli co-harboring bla NDM-1, mcr-1, and fosA3 from a patient in China. J Antibiot (Tokyo) 2020; 73:636-641. [PMID: 32341508 DOI: 10.1038/s41429-020-0306-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/05/2023]
Abstract
In this study, we report a clinical isolate of a carbapenem-, colistin-, and fosfomycin-resistant Escherichia coli isolate DC-3737 co-harboring blaNDM-1, mcr-1, and fosA3 from an inpatient in China. Antimicrobial susceptibility testing, polymerase chain reaction, multi-locus sequence typing, conjugation experiment, and Southern blot hybridization were performed on E. coli DC-3737 isolated from the wound. Plasmid analysis is presented and the locations of blaNDM-1, mcr-1, fosA3, and other resistance genes were identified as well. E. coli DC-3737 was resistant to ampicillin, ceftriaxone, ceftazidime, ciprofloxacin, levofloxacin, gentamicin, tobramycin, trimethoprim-sulfamethoxazole, imipenem, meropenem, ertapenem, fosfomycin and colistin, and with intermediate susceptibility to amikacin. It was typed as sequence type 27. The isolate possessed blaNDM-1, mcr-1, fosA3, blaCTX-M-9, blaTEM-1, aac (6')-Ib-cr and sul1 simultaneously. In addition, the mutations in quinolone resistance-determinant regions (QRDRs) such as Ser83Leu and Asp87Asn in gyrA, and Ser80Ile in parC were detected. Conjugation assays revealed that blaNDM-1, fosA3, sul1, mcr-1, and blaCTX-M-9 genes could successfully transfer their resistance phenotype to E. coli strain J53. Plasmid analysis and Southern hybridization showed that DC-3737 possessed Z-type self-transmissible plasmid bearing blaNDM-1, fosA3, and sul1. Moreover, mcr-1, blaCTX-M-9, and blaTEM-1 were located on a ~60-kb IncFIB type self-transmissible plasmid. This is the first report of blaNDM-1, mcr-1 and fosA3 co-harboring in E. coli in China. Moreover, it is also the first description of the co-harboring of blaNDM and fosA3 in a single Z plasmid in Enterobacteriaceae species. The identification of E. coli DC-3737 co-harboring blaNDM-1, mcr-1, and fosA3 in this study highlights the need to increase epidemiologic surveillance and the need for new classes of antibiotics to address multidrug-resistant bacteria.
Collapse
|
10
|
Zhang X, Bi W, Chen L, Zhang Y, Fang R, Cao J, Zhou T. Molecular mechanisms and epidemiology of fosfomycin resistance in enterococci isolated from patients at a teaching hospital in China, 2013-2016. J Glob Antimicrob Resist 2019; 20:191-196. [PMID: 31422238 DOI: 10.1016/j.jgar.2019.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the mechanisms of fosfomycin resistance and epidemiological characteristics in fosfomycin-resistant enterococci in China. METHODS A collection of 761 enterococcal clinical isolates from a teaching hospital in Wenzhou, China were studied. The fosfomycin susceptibility of the isolates was investigated by the agar dilution method. The isolates were also analysed for mechanisms of re fosfomycin resistance by PCR and quantitative real-time PCR. Furthermore, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to analyse the molecular epidemiological characteristics of the fosfomycin-resistant isolates. RESULTS In this study, 0.3% (1/372) of Enterococcus faecalis and 4.9% (19/389) of Enterococcus faecium clinical isolates were found to be resistant to fosfomycin. Among the 20 fosfomycin-resistant isolates, 5 harboured the fosB gene, 10 carried multiple amino acid substitutions in MurA, and 6 showed high-level expression of the fosX gene; of note, 1 isolate simultaneously carried fosB and amino acid mutation in MurA. Furthermore, a high degree of homology in the fosfomycin-resistant enterococci was confirmed using MLST and PFGE. CONCLUSION These finding demonstrate that the fosB gene, mutations in the fosfomycin target enzyme MurA, and a high expression level of fosX were the resistance mechanisms in these fosfomycin-resistant enterococci.
Collapse
Affiliation(s)
- Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenzi Bi
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yizhi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Aghamali M, Sedighi M, Zahedi Bialvaei A, Mohammadzadeh N, Abbasian S, Ghafouri Z, Kouhsari E. Fosfomycin: mechanisms and the increasing prevalence of resistance. J Med Microbiol 2019; 68:11-25. [PMID: 30431421 DOI: 10.1099/jmm.0.000874] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There are challenges regarding increased global rates of microbial resistance and the emergence of new mechanisms that result in microorganisms becoming resistant to antimicrobial drugs. Fosfomycin is a broad-spectrum bactericidal antibiotic effective against Gram-negative and certain Gram-positive bacteria, such as Staphylococci, that interfere with cell wall synthesis. During the last 40 years, fosfomycin has been evaluated in a wide range of applications and fields. Although numerous studies have been done in this area, there remains limited information regarding the prevalence of resistance. Therefore, in this review, we focus on the available data concerning the mechanisms and increasing resistance regarding fosfomycin.
Collapse
Affiliation(s)
- Mina Aghamali
- 1Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Sedighi
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi Bialvaei
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Mohammadzadeh
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Abbasian
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghafouri
- 3Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Kouhsari
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Falagas ME, Athanasaki F, Voulgaris GL, Triarides NA, Vardakas KZ. Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int J Antimicrob Agents 2018; 53:22-28. [PMID: 30268576 DOI: 10.1016/j.ijantimicag.2018.09.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
Fosfomycin has been used for the treatment of infections due to susceptible and multidrug-resistant (MDR) bacteria. It inhibits bacterial cell wall synthesis through a unique mechanism of action at a step prior to that inhibited by β-lactams. Fosfomycin enters the bacterium through membrane channels/transporters and inhibits MurA, which initiates peptidoglycan (PG) biosynthesis of the bacterial cell wall. Several bacteria display inherent resistance to fosfomycin mainly through MurA mutations. Acquired resistance involves, in order of decreasing frequency, modifications of membrane transporters that prevent fosfomycin from entering the bacterial cell, acquisition of plasmid-encoded genes that inactivate fosfomycin, and MurA mutations. Fosfomycin resistance develops readily in vitro but less so in vivo. Mutation frequency is higher among Pseudomonas aeruginosa and Klebsiella spp. compared with Escherichia coli and is associated with fosfomycin concentration. Mutations in cAMP regulators, fosfomycin transporters and MurA seem to be associated with higher biological cost in Enterobacteriaceae but not in Pseudomonas spp. The contribution of fosfomycin inactivating enzymes in emergence and spread of fosfomycin resistance currently seems low-to-moderate, but their presence in transferable plasmids may potentially provide the best means for the spread of fosfomycin resistance in the future. Their co-existence with genes conferring resistance to other antibiotic classes may increase the emergence of MDR strains. Although susceptibility rates vary, rates seem to increase in settings with higher fosfomycin use and among multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Matthew E Falagas
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece; Department of Medicine, Henry Dunant Hospital Center, Athens, Greece; Tufts University School of Medicine, Boston, Massachusetts, USA.
| | | | - Georgios L Voulgaris
- Laboratory of Pharmacokinetics and Toxicology, Department of Pharmacy, 401 General Military Hospital, Athens, Greece
| | - Nikolaos A Triarides
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece; Department of Medicine, Henry Dunant Hospital Center, Athens, Greece
| | - Konstantinos Z Vardakas
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece; Department of Medicine, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
13
|
Sun L, Zhang P, Qu T, Chen Y, Hua X, Shi K, Yu Y. Identification of Novel Conjugative Plasmids with Multiple Copies of fosB that Confer High-Level Fosfomycin Resistance to Vancomycin-Resistant Enterococci. Front Microbiol 2017; 8:1541. [PMID: 28861056 PMCID: PMC5559704 DOI: 10.3389/fmicb.2017.01541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022] Open
Abstract
To further characterize the fosB-carrying plasmids of 19 vancomycin-resistant enterococci, the complete sequences of the fosB- and vanA-containing plasmids of Enterococcus faecium (pEMA120) and E. avium (pEA19081) were obtained by single-molecule, real-time sequencing. We found that these two plasmids are essentially identical (99.99% nucleotide sequence identity), which proved the possibility of interspecies transmission. Comparative analysis of the plasmids revealed that the backbone of pEMA120 is 99% similar to a conjugative fosB-negative E. faecium plasmid, pZB18. There is a traE disrupted in the transfer region of pEMA120, in comparison to pZB18 with an intact traE. The difference of their transfer frequencies between pEMA120 and pZB18 suggests this interruption of traE might affect conjugative transfer. Two copies of the fosB gene linked to a tnpA gene, forming an ISL3-like transposon, were found at separate locations within pEMA120, which had not been reported previously. These two fosB-carrying transposons were confirmed to form circular intermediates by inverse PCR. The hybridization of plasmid DNA digested by BsaI, having restriction site within the fosB sequence, demonstrated that the presence of multiple copies of fosB per plasmid is common. The total copy number of the fosB gene as revealed by qRT-PCR did not correlate with fosfomycin MICs or growth rates at sub-MICs of fosfomycin in different transconjugants. From susceptibility tests, the fosB gene, regardless of the copy number, conferred high fosfomycin MICs that ranged from 16384 to 65536 μg/ml. This first complete nucleotide sequence of a plasmid carrying two copies of fosB in VRE suggests that the fosB gene can transfer to multiple loci of plasmids by the ISL3 family transposase TnpA, possibly in the form of circular intermediates, leading to the dissemination of high fosfomycin resistance in VRE.
Collapse
Affiliation(s)
- Lingyan Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Ping Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou, China
| |
Collapse
|
14
|
Abstract
The treatment of bacterial infections suffers from two major problems: spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) pathogens and lack of development of new antibiotics active against such MDR and XDR bacteria. As a result, physicians have turned to older antibiotics, such as polymyxins, tetracyclines, and aminoglycosides. Lately, due to development of resistance to these agents, fosfomycin has gained attention, as it has remained active against both Gram-positive and Gram-negative MDR and XDR bacteria. New data of higher quality have become available, and several issues were clarified further. In this review, we summarize the available fosfomycin data regarding pharmacokinetic and pharmacodynamic properties, the in vitro activity against susceptible and antibiotic-resistant bacteria, mechanisms of resistance and development of resistance during treatment, synergy and antagonism with other antibiotics, clinical effectiveness, and adverse events. Issues that need to be studied further are also discussed.
Collapse
|
15
|
Abriouel H, Lerma LL, Casado Muñoz MDC, Montoro BP, Kabisch J, Pichner R, Cho GS, Neve H, Fusco V, Franz CMAP, Gálvez A, Benomar N. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Front Microbiol 2015; 6:1197. [PMID: 26579103 PMCID: PMC4621295 DOI: 10.3389/fmicb.2015.01197] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022] Open
Abstract
Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database. Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins, and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screening unreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - María Del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Rohtraud Pichner
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy , Bari, Italy
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| |
Collapse
|