1
|
Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188. [PMID: 34234121 PMCID: PMC8263825 DOI: 10.1038/s41467-021-24448-3] [Citation(s) in RCA: 460] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is a leading cause of antimicrobial-resistant (AMR) healthcare-associated infections, neonatal sepsis and community-acquired liver abscess, and is associated with chronic intestinal diseases. Its diversity and complex population structure pose challenges for analysis and interpretation of K. pneumoniae genome data. Here we introduce Kleborate, a tool for analysing genomes of K. pneumoniae and its associated species complex, which consolidates interrogation of key features of proven clinical importance. Kleborate provides a framework to support genomic surveillance and epidemiology in research, clinical and public health settings. To demonstrate its utility we apply Kleborate to analyse publicly available Klebsiella genomes, including clinical isolates from a pan-European study of carbapenemase-producing Klebsiella, highlighting global trends in AMR and virulence as examples of what could be achieved by applying this genomic framework within more systematic genomic surveillance efforts. We also demonstrate the application of Kleborate to detect and type K. pneumoniae from gut metagenomes.
Collapse
Affiliation(s)
- Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stephen C Watts
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Louise T Cerdeira
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
2
|
Su M, Satola SW, Read TD. Genome-Based Prediction of Bacterial Antibiotic Resistance. J Clin Microbiol 2019; 57:e01405-18. [PMID: 30381421 PMCID: PMC6425178 DOI: 10.1128/jcm.01405-18] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023] Open
Abstract
Clinical microbiology has long relied on growing bacteria in culture to determine antimicrobial susceptibility profiles, but the use of whole-genome sequencing for antibiotic susceptibility testing (WGS-AST) is now a powerful alternative. This review discusses the technologies that made this possible and presents results from recent studies to predict resistance based on genome sequences. We examine differences between calling antibiotic resistance profiles by the simple presence or absence of previously known genes and single-nucleotide polymorphisms (SNPs) against approaches that deploy machine learning and statistical models. Often, the limitations to genome-based prediction arise from limitations of accuracy of culture-based AST in addition to an incomplete knowledge of the genetic basis of resistance. However, we need to maintain phenotypic testing even as genome-based prediction becomes more widespread to ensure that the results do not diverge over time. We argue that standardization of WGS-AST by challenge with consistently phenotyped strain sets of defined genetic diversity is necessary to compare the efficacy of methods of prediction of antibiotic resistance based on genome sequences.
Collapse
Affiliation(s)
- Michelle Su
- Department of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Antimicrobial Resistance and Therapeutic Discovery Training Program, Emory University, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| | - Sarah W Satola
- Department of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
- Emory Investigational Clinical Microbiology Laboratory, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
- Emory Investigational Clinical Microbiology Laboratory, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Shetty A, Macdonald SP, Keijzers G, Williams JM, Tang B, de Groot B, Thompson K, Fraser JF, Finfer S, Bellomo R, Iredell J. Review article: Sepsis in the emergency department - Part 2: Investigations and monitoring. Emerg Med Australas 2018; 30:4-12. [PMID: 29341498 DOI: 10.1111/1742-6723.12924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
Sepsis is characterised by organ dysfunction resulting from infection, with no reliable single objective test and current diagnosis based on clinical features and results of investigations. In the ED, investigations may be conducted to diagnose infection as the cause of the presenting illness, identify the source, distinguish sepsis from uncomplicated infection (i.e. without organ dysfunction) and/ or risk stratification. Appropriate sample collection for microbiological testing remains key for subsequent confirmation of diagnosis and rationalisation of antimicrobials. Routine laboratory investigations such as creatinine, bilirubin, platelet count and lactate are now critical elements in the diagnosis of sepsis and septic shock. With no biomarker sufficiently validated to rule out bacterial infection in the ED, there remains substantial interest in biomarkers representing various pathogenic pathways. New technologies for screening multiple genes and proteins are identifying unique network 'signatures' of clinical interest. Other future directions include rapid detection of bacterial DNA in blood, genes for antibiotic resistance and EMR-based computational biomarkers that collate multiple information sources. Reliable, cost-effective tests, validated in the ED to promptly and accurately identify sepsis, and to guide initial antibiotic choices, are important goals of current research efforts.
Collapse
Affiliation(s)
- Amith Shetty
- Emergency Department, Westmead Hospital, Sydney, New South Wales, Australia.,Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephen Pj Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Department of Emergency Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Division of Emergency Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Gerben Keijzers
- School of Medicine, Bond University, Gold Coast, Queensland, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Julian M Williams
- Department of Emergency Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin Tang
- Immunology Department, Westmead Millennium Institute for Medical Research, Sydney, New South Wales, Australia.,Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Bas de Groot
- Department of Emergency Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kelly Thompson
- Critical Care and Trauma Division, George Institute for Global Health, Sydney, New South Wales, Australia
| | - John F Fraser
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,Intensive Care Unit, St Andrew's War Memorial Hospital, Brisbane, Queensland, Australia
| | - Simon Finfer
- Division of Critical Care, George Institute for Global Health, Sydney, New South Wales, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia.,School of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan Iredell
- Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Infectious Diseases, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia.,Institute of Clinical Pathology and Medical Research, Pathology West, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Lam HS, Chan KYY, Ip M, Leung KT, Lo NWS, Wong RPO, Li K, Ng PC. Rapid Identification of Bacterial Antibiotic Resistance by qPCR in Infants with Gram-Negative Septicaemia: A Proof-of-Concept Study. Neonatology 2017; 111:145-152. [PMID: 27756063 DOI: 10.1159/000449279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/21/2016] [Accepted: 08/21/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neonatal sepsis remains an important cause of neonatal morbidity and mortality. Tools to rapidly predict antibiotic resistance in neonatal sepsis would be extremely valuable. OBJECTIVES To develop quantitative polymerase chain reaction (qPCR) primer/probe sets that can rapidly detect antibiotic resistance genes common to a neonatal unit, and to investigate the feasibility of direct detection of antibiotic resistance genes in whole blood of infants with Gram-negative septicaemia without first isolating the organism. METHODS Primer/probe sets were designed to detect genes that produce aminoglycoside-modifying enzymes or extended-spectrum β-lactamase. In phase 1, Gram-negative organisms isolated from neonatal clinical specimens within a 12-month period were analysed by qPCR to detect preselected genes. In phase 2, blood specimens of infants with Gram-negative septicaemia were subjected to qPCR analysis to detect antibiotic resistance genes for comparison against conventional antibiotic resistance profile results. RESULTS Two primer/probe sets showed promising diagnostic utilities for the prediction of antibiotic resistance; the diagnostic utilities (sensitivity, specificity, positive predictive value and negative predictive value) were 90.9, 96.4, 92.6 and 95.5%, respectively, for AAC3-2 [aac(3')-IIa/aacC3/aacC2, aac(3')-IIc/aacC2] to detect gentamicin resistance, and 59.3, 99.3, 94.1 and 92.6%, respectively, for BLA-C1 (blaCTX-M-9, blaCTX-M-14, blaCTX-M-24, blaCTX-M-27) to detect cephalosporin resistance. Twenty-six infants were tested in phase 2, and both gentamicin and cephalosporin resistance patterns were predicted with 100% sensitivity and 100% specificity by AAC3-2 and BLA-C1, respectively. CONCLUSIONS qPCR with appropriately designed primer/probe sets can predict antibiotic resistance directly from neonatal blood, and it can substantially reduce the turnaround time for antibiotic resistance results.
Collapse
Affiliation(s)
- Hugh Simon Lam
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MTG, Hopkins KL, Iredell J, Kahlmeter G, Köser CU, MacGowan A, Mevius D, Mulvey M, Naas T, Peto T, Rolain JM, Samuelsen Ø, Woodford N. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect 2016; 23:2-22. [PMID: 27890457 DOI: 10.1016/j.cmi.2016.11.012] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Whole genome sequencing (WGS) offers the potential to predict antimicrobial susceptibility from a single assay. The European Committee on Antimicrobial Susceptibility Testing established a subcommittee to review the current development status of WGS for bacterial antimicrobial susceptibility testing (AST). The published evidence for using WGS as a tool to infer antimicrobial susceptibility accurately is currently either poor or non-existent and the evidence / knowledge base requires significant expansion. The primary comparators for assessing genotypic-phenotypic concordance from WGS data should be changed to epidemiological cut-off values in order to improve differentiation of wild-type from non-wild-type isolates (harbouring an acquired resistance). Clinical breakpoints should be a secondary comparator. This assessment will reveal whether genetic predictions could also be used to guide clinical decision making. Internationally agreed principles and quality control (QC) metrics will facilitate early harmonization of analytical approaches and interpretive criteria for WGS-based predictive AST. Only data sets that pass agreed QC metrics should be used in AST predictions. Minimum performance standards should exist and comparative accuracies across different WGS laboratories and processes should be measured. To facilitate comparisons, a single public database of all known resistance loci should be established, regularly updated and strictly curated using minimum standards for the inclusion of resistance loci. For most bacterial species the major limitations to widespread adoption for WGS-based AST in clinical laboratories remain the current high-cost and limited speed of inferring antimicrobial susceptibility from WGS data as well as the dependency on previous culture because analysis directly on specimens remains challenging. For most bacterial species there is currently insufficient evidence to support the use of WGS-inferred AST to guide clinical decision making. WGS-AST should be a funding priority if it is to become a rival to phenotypic AST. This report will be updated as the available evidence increases.
Collapse
Affiliation(s)
- M J Ellington
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - O Ekelund
- Department of Clinical Microbiology and the EUCAST Development Laboratory, Kronoberg Region, Central Hospital, Växjö, Sweden
| | - F M Aarestrup
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - R Canton
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - M Doumith
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - C Giske
- Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - H Grundman
- University Medical Centre Freiburg, Infection Prevention and Hospital Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H Hasman
- Statens Serum Institute, Department of Microbiology and Infection Control, Copenhagen, Denmark
| | - M T G Holden
- School of Medicine, Medical & Biological Sciences, North Haugh, University of St Andrews, UK
| | - K L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - J Iredell
- Westmead Institute for Medical Research, University of Sydney and Marie Bashir Institute, Sydney, NSW, Australia
| | - G Kahlmeter
- Department of Clinical Microbiology and the EUCAST Development Laboratory, Kronoberg Region, Central Hospital, Växjö, Sweden
| | - C U Köser
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - A MacGowan
- Department of Medical Microbiology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - D Mevius
- Central Veterinary Institute (CVI) part of Wageningen University and Research Centre (WUR), Lelystad, The Netherlands; Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - M Mulvey
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - T Naas
- French National Reference Centre for Antibiotic Resistance, Bacteriology-Hygiene unit, Hôpital Bicêtre, APHP, LabEx LERMIT, University Paris Sud, Le Kremlin-Bicêtre, France
| | - T Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - J-M Rolain
- PU-PH des Disciplines Pharmaceutiques, 1-URMITE CNRS IRD UMR 6236, IHU Méditerranée Infection, Valorization and Transfer, Aix Marseille Université, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Ø Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Department of Microbiology and Infection Control, Tromsø, Norway
| | - N Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK.
| |
Collapse
|
6
|
Predictability of Phenotype in Relation to Common β-Lactam Resistance Mechanisms in Escherichia coli and Klebsiella pneumoniae. J Clin Microbiol 2016; 54:1243-50. [PMID: 26912748 DOI: 10.1128/jcm.02153-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2015] [Accepted: 02/01/2016] [Indexed: 12/26/2022] Open
Abstract
The minimal concentration of antibiotic required to inhibit the growth of different isolates of a given species with no acquired resistance mechanisms has a normal distribution. We have previously shown that the presence or absence of transmissible antibiotic resistance genes has excellent predictive power for phenotype. In this study, we analyzed the distribution of six β-lactam antibiotic susceptibility phenotypes associated with commonly acquired resistance genes in Enterobacteriaceae in Sydney, Australia. Escherichia coli (n = 200) and Klebsiella pneumoniae (n = 178) clinical isolates, with relevant transmissible resistance genes (blaTEM, n = 33; plasmid AmpC, n = 69; extended-spectrum β-lactamase [ESBL], n = 116; and carbapenemase, n = 100), were characterized. A group of 60 isolates with no phenotypic resistance to any antibiotics tested and carrying none of the important β-lactamase genes served as comparators. The MICs for all drug-bacterium combinations had a normal distribution, varying only in the presence of additional genes relevant to the phenotype or, for ertapenem resistance in K. pneumoniae, with a loss or change in the outer membrane porin protein OmpK36. We demonstrated mutations in ompK36 or absence of OmpK36 in all isolates in which reduced susceptibility to ertapenem (MIC, >1 mg/liter) was evident. Ertapenem nonsusceptibility in K. pneumoniae was most common in the context of an OmpK36 variant with an ESBL or AmpC gene. Surveillance strategies to define appropriate antimicrobial therapies should include genotype-phenotype relationships for all major transmissible resistance genes and the characterization of mutations in relevant porins in organisms, like K. pneumoniae.
Collapse
|
7
|
Agyekum A, Fajardo-Lubián A, Ansong D, Partridge SR, Agbenyega T, Iredell JR. blaCTX-M-15 carried by IncF-type plasmids is the dominant ESBL gene in Escherichia coli and Klebsiella pneumoniae at a hospital in Ghana. Diagn Microbiol Infect Dis 2015; 84:328-33. [PMID: 26830052 DOI: 10.1016/j.diagmicrobio.2015.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases (ESBLs) are among the most multidrug-resistant pathogens in hospitals and are spreading worldwide. Horizontal gene transfer and spread of high-risk clones are involved in ESBL dissemination. Investigation of the resistance phenotypes of 101 consecutive clinical E. coli (n=58) and K. pneumoniae (n=43) isolated at the Komfo Anokye Teaching Hospital in Ghana over 3 months revealed 63 (62%) with an ESBL phenotype. All 63 had a blaCTX-M gene, and sequence analysis showed that 62 of these were blaCTX-M-15. blaCTX-M-15 was linked to ISEcp1 and orf477Δ in all isolates, and most isolates also carried blaTEM, aac(3)-II, aacA4cr, and/or blaOXA-30 genes on IncF plasmids. XbaI/pulsed-field electrophoresis showed heterogeneity among isolates of both species, suggesting that blaCTX-M-15 dissemination is caused by horizontal gene transfer rather than clonal spread of these species in Ghana.
Collapse
Affiliation(s)
- Alex Agyekum
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Malaria Research Centre, Agogo Presbyterian Hospital, Komfo Anokye Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alicia Fajardo-Lubián
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Daniel Ansong
- Malaria Research Centre, Agogo Presbyterian Hospital, Komfo Anokye Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Tsiri Agbenyega
- Malaria Research Centre, Agogo Presbyterian Hospital, Komfo Anokye Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia.
| |
Collapse
|
8
|
Abstract
Real-time PCR is the traditional face of nucleic acid detection in the diagnostic microbiology laboratory and is now generally regarded as robust enough to be widely adopted. Methods based on nucleic acid detection of this type are bringing increased accuracy to diagnosis in areas where culture is difficult and/or expensive, and these methods are often effective partners to other rapid molecular diagnostic tools such as matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS). This change in practice has particularly affected the recognition of viruses and fastidious or antibiotic-exposed bacteria, but has been also shown to be effective in the recognition of troublesome or specialised phenotypes such as antiviral resistance and transmissible antibiotic resistance in the Enterobacteriaceae. Quantitation and high-intensity sequencing (of multiple whole genomes) has brought new opportunities as well as new challenges to the microbiology community. Diagnostic microbiologists currently training might be expected to deal less with the culture-based techniques of the last half-century than with the high-volume data and complex analyses of the next.
Collapse
|