1
|
Van Genechten W, Vergauwen R, Van Dijck P. The intricate link between iron, mitochondria and azoles in Candida species. FEBS J 2024; 291:3568-3580. [PMID: 37846606 DOI: 10.1111/febs.16977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Invasive fungal infections are rapidly increasing, and the opportunistic pathogenic Candida species are the fourth most common cause of nosocomial systemic infections. The current antifungal classes, of which azoles are the most widely used, all have shortcomings. Azoles are generally considered fungistatic rather than fungicidal, they do not actively kill fungal cells and therefore resistance against azoles can be rapidly acquired. Combination therapies with azoles provide an interesting therapeutic outlook and agents limiting iron are excellent candidates. We summarize how iron is acquired by the host and transported towards both storage and iron-utilizing organelles. We indicate whether these pathways alter azole susceptibility and/or tolerance, to finally link these transport mechanisms to mitochondrial iron availability. In this review, we highlight putative novel intracellular iron shuffling mechanisms and indicate that mitochondrial iron dynamics in relation to azole treatment and iron limitation is a significant knowledge gap.
Collapse
Affiliation(s)
- Wouter Van Genechten
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
| | - Rudy Vergauwen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Belgium
| |
Collapse
|
2
|
Mokhtari M, Amiri P, Miller D, Gresham D, Bloor SJ, Munkacsi AB. Chemical genomic analysis reveals the interplay between iron chelation, zinc homeostasis, and retromer function in the bioactivity of an ethanol adduct of the feijoa fruit-derived ellagitannin vescalagin. G3 (BETHESDA, MD.) 2024; 14:jkae098. [PMID: 38805688 PMCID: PMC11228861 DOI: 10.1093/g3journal/jkae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Nature has been a rich source of pharmaceutical compounds, producing 80% of our currently prescribed drugs. The feijoa plant, Acca sellowiana, is classified in the family Myrtaceae, native to South America, and currently grown worldwide to produce feijoa fruit. Feijoa is a rich source of bioactive compounds with anticancer, anti-inflammatory, antibacterial, and antifungal activities; however, the mechanism of action of these compounds is largely not known. Here, we used chemical genetic analyses in the model organism Saccharomyces cerevisiae to investigate the mechanism of action of a feijoa-derived ethanol adduct of vescalagin (EtOH-vescalagin). Genome-wide barcode sequencing analysis revealed yeast strains lacking genes in iron metabolism, zinc metabolism, retromer function, or mitochondrial function were hypersensitive to 0.3 µM EtOH-vescalagin. This treatment increased expression of iron uptake proteins at the plasma membrane, which was a compensatory response to reduced intracellular iron. Likewise, EtOH-vescalagin increased expression of the Cot1 protein in the vacuolar membrane that transports zinc into the vacuole to prevent cytoplasmic accumulation of zinc. Each individual subunit in the retromer complex was required for the iron homeostatic mechanism of EtOH-vescalagin, while only the cargo recognition component in the retromer complex was required for the zinc homeostatic mechanism. Overexpression of either retromer subunits or high-affinity iron transporters suppressed EtOH-vescalagin bioactivity in a zinc-replete condition, while overexpression of only retromer subunits increased EtOH-vescalagin bioactivity in a zinc-deficient condition. Together, these results indicate that EtOH-vescalagin bioactivity begins with extracellular iron chelation and proceeds with intracellular transport of zinc via the retromer complex. More broadly, this is the first report of a bioactive compound to further characterize the poorly understood interaction between zinc metabolism and retromer function.
Collapse
Affiliation(s)
- Mona Mokhtari
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Pegah Amiri
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Darach Miller
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | | | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
3
|
Krupińska AM, Bogucki Z. Lactoferrin as a potential therapeutic for the treatment of Candida-associated denture stomatitis. J Oral Biosci 2024; 66:308-313. [PMID: 38777122 DOI: 10.1016/j.job.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The use of prostheses in the oral cavity creates favorable conditions for Candida colonization, which may subsequently lead to Candida-associated denture stomatitis (CADS). Due to its many contributing factors and frequent relapses, CADS is difficult to manage. Given the rise in drug resistance among fungal species, it is critical to develop new therapeutic approaches, reduce the required dosage of medications, and minimize the toxicity and side effects of therapy. HIGHLIGHT Salivary lactoferrin, a multifunctional glycoprotein, is thought to be the first line of defense against microbial invasion of mucosal surfaces. CONCLUSION Current research emphasizes the capability of lactoferrin and its derivatives to eliminate a broad spectrum of Candida species. It may be an appealing option for use in monotherapy or in combination with common medications for oral stomatitis treatment. This review provides an overview of the current understanding of lactoferrin's anti-fungal effects in oral candidiasis.
Collapse
Affiliation(s)
| | - Zdzisław Bogucki
- Department and Division of Dental Prosthetics, Wroclaw Medical University, Wyb. Ludwika Pasteura 1, 50-367, Wrocław, Poland
| |
Collapse
|
4
|
Zheng H, Wu T, Lin Z, Wang D, Zhang J, Zeng T, Liu L, Shen J, Zhao M, Li JD, Yang M. Targeting BMAL1 reverses drug resistance of acute myeloid leukemia cells and promotes ferroptosis through HMGB1-GPX4 signaling pathway. J Cancer Res Clin Oncol 2024; 150:231. [PMID: 38703241 PMCID: PMC11069489 DOI: 10.1007/s00432-024-05753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Acute myeloid leukemia (AML) is a refractory hematologic malignancy that poses a serious threat to human health. Exploring alternative therapeutic strategies capable of inducing alternative modes of cell death, such as ferroptosis, holds great promise as a viable and effective intervention. METHODS We analyzed online database data and collected clinical samples to verify the expression and function of BMAL1 in AML. We conducted experiments on AML cell proliferation, cell cycle, ferroptosis, and chemotherapy resistance by overexpressing/knocking down BMAL1 and using assays such as MDA detection and BODIPY 581/591 C11 staining. We validated the transcriptional regulation of HMGB1 by BMAL1 through ChIP assay, luciferase assay, RNA level detection, and western blotting. Finally, we confirmed the results of our cell experiments at the animal level. RESULTS BMAL1 up-regulation is an observed phenomenon in AML patients. Furthermore, there existed a strong correlation between elevated levels of BMAL1 expression and inferior prognosis in individuals with AML. We found that knocking down BMAL1 inhibited AML cell growth by blocking the cell cycle. Conversely, overexpressing BMAL1 promoted AML cell proliferation. Moreover, our research results revealed that BMAL1 inhibited ferroptosis in AML cells through BMAL1-HMGB1-GPX4 pathway. Finally, knocking down BMAL1 can enhance the efficacy of certain first-line cancer therapeutic drugs, including venetoclax, dasatinib, and sorafenib. CONCLUSION Our research results suggest that BMAL1 plays a crucial regulatory role in AML cell proliferation, drug resistance, and ferroptosis. BMAL1 could be a potential important therapeutic target for AML.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Ferroptosis/drug effects
- HMGB1 Protein/metabolism
- HMGB1 Protein/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Mice, Nude
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Prognosis
- Signal Transduction
- Sulfonamides/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pediatrics, The Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ting Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Dan Wang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jing Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Ting Zeng
- Department of Pediatrics, The Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jie Shen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
5
|
Ni T, Chi X, Wu H, Xie F, Bao J, Wang J, Ji Z, Li L, Wang X, Yan L, Hao Y, Zhang D, Jiang Y. Design, synthesis and evaluation of novel deferasirox derivatives with high antifungal potency in vitro and in vivo. Eur J Med Chem 2024; 264:116026. [PMID: 38070429 DOI: 10.1016/j.ejmech.2023.116026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Here we designed and synthesized 58 deferasirox derivatives with the aim of discovering novel antifungal agents. Most compounds exhibited moderate to excellent in vitro antifungal activities against Cryptococcus neoformans H99 with MIC values ranging from 0.25 μg/mL to 16 μg/mL, including ten compounds with MIC values less than 1 μg/mL that were further screened against an additional six pathogenic fungi. This class of compounds showed high potency against Candida glabrata with MIC values ranging from <0.125 μg/mL to 1 μg/mL. We identified that compound 54 has high potency against 14 strains of Candida glabrata spp. and Cryptococcus spp. with MIC values ranging from <0.125 μg/mL to 1 μg/mL. In addition, compound 54 significantly reduced the CFU in a mouse model of disseminated infection with Cryptococcus neoformans H99 at a dose of 10 mg/kg, which is comparable to FLC. Further investigations on compound 54 are currently in progress.
Collapse
Affiliation(s)
- Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200092, China
| | - Xiaochen Chi
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200092, China; School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, No.110016, China
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200092, China
| | - Fei Xie
- School of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai, No.200433, China
| | - Junhe Bao
- School of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai, No.200433, China
| | - Jiayin Wang
- School of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai, No.200433, China; School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350112, China
| | - Zhe Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200092, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200092, China
| | - Xiaobo Wang
- The 967th Hospital of The Joint Logistic Support Force of PLA, Dalian, 116000, Liaoning, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai, No.200433, China
| | - Yumeng Hao
- School of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai, No.200433, China.
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200092, China; School of Pharmacy, Naval Medical University, No.325 Guohe Road, Shanghai, No.200433, China.
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
6
|
Choi D, Bedale W, Chetty S, Yu JH. Comprehensive review of clean-label antimicrobials used in dairy products. Compr Rev Food Sci Food Saf 2024; 23:e13263. [PMID: 38284580 DOI: 10.1111/1541-4337.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Consumers expect safe, healthy, natural, and sustainable food. Within the food industry, ingredient use is changing due to these consumer demands. While no single agreed-upon definition of clean label exists, a "clean label" in the context of food refers to a product that has a simplified and transparent ingredient list, with easily recognizable and commonly understood components to the general public. Clean-label products necessitate and foster a heightened level of transparency between companies and consumers. Dairy products are vulnerable to being contaminated by both pathogens and spoilage microorganisms. These microorganisms can be effectively controlled by replacing conventional antimicrobials with clean-label ingredients such as protective cultures or bacterial/fungal fermentates. This review summarizes the perspectives of consumers and the food industry regarding the definition of "clean label," and the current and potential future use of clean-label antimicrobials in dairy products. A key goal of this review is to make the concept of clean-label antimicrobial agents better understood by both manufacturers and researchers.
Collapse
Affiliation(s)
- Dasol Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wendy Bedale
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Suraj Chetty
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Kontoghiorghes GJ. The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases. Pharmaceuticals (Basel) 2023; 16:1016. [PMID: 37513928 PMCID: PMC10384919 DOI: 10.3390/ph16071016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The iron chelating orphan drug deferiprone (L1), discovered over 40 years ago, has been used daily by patients across the world at high doses (75-100 mg/kg) for more than 30 years with no serious toxicity. The level of safety and the simple, inexpensive synthesis are some of the many unique properties of L1, which played a major role in the contribution of the drug in the transition of thalassaemia from a fatal to a chronic disease. Other unique and valuable clinical properties of L1 in relation to pharmacology and metabolism include: oral effectiveness, which improved compliance compared to the prototype therapy with subcutaneous deferoxamine; highly effective iron removal from all iron-loaded organs, particularly the heart, which is the major target organ of iron toxicity and the cause of mortality in thalassaemic patients; an ability to achieve negative iron balance, completely remove all excess iron, and maintain normal iron stores in thalassaemic patients; rapid absorption from the stomach and rapid clearance from the body, allowing a greater frequency of repeated administration and overall increased efficacy of iron excretion, which is dependent on the dose used and also the concentration achieved at the site of drug action; and its ability to cross the blood-brain barrier and treat malignant, neurological, and microbial diseases affecting the brain. Some differential pharmacological activity by L1 among patients has been generally shown in relation to the absorption, distribution, metabolism, elimination, and toxicity (ADMET) of the drug. Unique properties exhibited by L1 in comparison to other drugs include specific protein interactions and antioxidant effects, such as iron removal from transferrin and lactoferrin; inhibition of iron and copper catalytic production of free radicals, ferroptosis, and cuproptosis; and inhibition of iron-containing proteins associated with different pathological conditions. The unique properties of L1 have attracted the interest of many investigators for drug repurposing and use in many pathological conditions, including cancer, neurodegenerative conditions, microbial conditions, renal conditions, free radical pathology, metal intoxication in relation to Fe, Cu, Al, Zn, Ga, In, U, and Pu, and other diseases. Similarly, the properties of L1 increase the prospects of its wider use in optimizing therapeutic efforts in many other fields of medicine, including synergies with other drugs.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
8
|
Artym J, Zimecki M. Colostrum and Lactoferrin Protect against Side Effects of Therapy with Antibiotics, Anti-inflammatory Drugs and Steroids, and Psychophysical Stress: A Comprehensive Review. Biomedicines 2023; 11:1015. [PMID: 37189633 PMCID: PMC10136316 DOI: 10.3390/biomedicines11041015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In this article, we review the benefits of applying bovine colostrum (BC) and lactoferrin (LF) in animal models and clinical trials that include corticosteroid application and psychic stress, treatment with non-steroid anti-inflammatory drugs (NSAIDs) and antibiotics. A majority of the reported investigations were performed with native bovine or recombinant human LF, applied alone or in combination with probiotics, as nutraceutics and diet supplements. Apart from reducing adverse side effects of the applied therapeutics, BC and LF augmented their efficacy and improved the wellness of patients. In conclusion, LF and complete native colostrum, preferably administered with probiotic bacteria, are highly recommended for inclusion in therapeutic protocols in NSAIDs and corticosteroid anti-inflammatory, as well as antibiotic, therapies. These colostrum-based products can also be of value for individuals subjected to prolonged psychophysical stress (mediated by endogenous corticosteroids), especially at high ambient temperatures (soldiers and emergency services), as well as physically active people and training athletes. They are also recommended for patients during recovery from trauma and surgery, which are always associated with severe psychophysical stress.
Collapse
Affiliation(s)
| | - Michał Zimecki
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12 Str., 53-114 Wroclaw, Poland
| |
Collapse
|
9
|
Genetic Engineering of Talaromyces marneffei to Enhance Siderophore Production and Preliminary Testing for Medical Application Potential. J Fungi (Basel) 2022; 8:jof8111183. [DOI: 10.3390/jof8111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Siderophores are compounds with low molecular weight with a high affinity and specificity for ferric iron, which is produced by bacteria and fungi. Fungal siderophores have been characterized and their feasibility for clinical applications has been investigated. Fungi may be limited in slow growth and low siderophore production; however, they have advantages of high diversity and affinity. Hence, the purpose of this study was to generate a genetically modified strain in Talaromyces marneffei that enhanced siderophore production and to identify the characteristics of siderophore to guide its medical application. SreA is a transcription factor that negatively controls iron acquisition mechanisms. Therefore, we deleted the sreA gene to enhance the siderophore production and found that the null mutant of sreA (ΔsreA) produced a high amount of extracellular siderophores. The produced siderophore was characterized using HPLC-MS, HPLC-DAD, FTIR, and 1H- and 13C-NMR techniques and identified as a coprogen B. The compound showed a powerful iron-binding activity and could reduce labile iron pool levels in iron-loaded hepatocellular carcinoma (Huh7) cells. In addition, the coprogen B showed no toxicity to the Huh7 cells, demonstrating its potential to serve as an ideal iron chelator. Moreover, it inhibits the growth of Candida albicans and Escherichia coli in a dose-dependent manner. Thus, we have generated the siderophore-enhancing strain of T. marneffei, and the coprogen B isolated from this strain could be useful in the development of a new iron-chelating agent or other medical applications.
Collapse
|
10
|
Role of Iron and Iron Overload in the Pathogenesis of Invasive Fungal Infections in Patients with Hematological Malignancies. J Clin Med 2022; 11:jcm11154457. [PMID: 35956074 PMCID: PMC9369168 DOI: 10.3390/jcm11154457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Iron is an essential trace metal necessary for the reproduction and survival of fungal pathogens. The latter have developed various mechanisms to acquire iron from their mammalian hosts, with whom they participate in a continuous struggle for dominance over iron. Invasive fungal infections are an important problem in the treatment of patients with hematological malignancies, and they are associated with significant morbidity and mortality. The diagnosis of invasive clinical infections in these patients is complex, and the treatment, which must occur as early as possible, is difficult. There are several studies that have shown a possible link between iron overload and an increased susceptibility to infections. This link is also relevant for patients with hematological malignancies and for those treated with allogeneic hematopoietic stem cell transplantation. The role of iron and its metabolism in the virulence and pathogenesis of various invasive fungal infections is intriguing, and so far, there is some evidence linking invasive fungal infections to iron or iron overload. Clarifying the possible association of iron and iron overload with susceptibility to invasive fungal infections could be important for a better prevention and treatment of these infections in patients with hematological malignancies.
Collapse
|
11
|
Jordá T, Martínez-Martín A, Martínez-Pastor MT, Puig S. Modulation of yeast Erg1 expression and terbinafine susceptibility by iron bioavailability. Microb Biotechnol 2022; 15:2705-2716. [PMID: 35837730 PMCID: PMC9618313 DOI: 10.1111/1751-7915.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Ergosterol is a specific sterol component of yeast and fungal membranes. Its biosynthesis is one of the most effective targets for antifungal treatments. However, the emergent resistance to multiple sterol‐based antifungal drugs emphasizes the need for new therapeutic approaches. The allylamine terbinafine, which selectively inhibits squalene epoxidase Erg1 within the ergosterol biosynthetic pathway, is mainly used to treat dermatomycoses, whereas its effectiveness in other fungal infections is limited. Given that ergosterol biosynthesis depends on iron as an essential cofactor, in this report, we used the yeast Saccharomyces cerevisiae to investigate how iron bioavailability influences Erg1 expression and terbinafine susceptibility. We observed that both chemical and genetic depletion of iron decrease ERG1 expression, leading to an increase in terbinafine susceptibility. Deletion of either ROX1 transcriptional repressor or CTH1 and CTH2 post‐transcriptional repressors of ERG1 expression led to an increase in Erg1 protein levels and terbinafine resistance. On the contrary, overexpression of CTH2 led to the opposite effect, lowering Erg1 levels and increasing terbinafine susceptibility. Although strain‐specific particularities exist, opportunistic pathogenic strains of S. cerevisiae displayed a response similar to the laboratory strain. These data indicate that iron bioavailability and particular regulatory factors could be used to modulate susceptibility to terbinafine.
Collapse
Affiliation(s)
- Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Ana Martínez-Martín
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| |
Collapse
|
12
|
Biologia futura: combinatorial stress responses in fungi. Biol Futur 2022; 73:207-217. [DOI: 10.1007/s42977-022-00121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
AbstractIn the ever-changing fungal environment, fungi have to cope with a wide array of very different stresses. These stresses frequently act in combination rather than independently, i.e., they quickly follow one another or occur concomitantly. Combinatorial stress response studies revealed that the response of fungi to a stressor is highly dependent on the simultaneous action of other stressors or even on earlier stresses to which the fungi adapted. Several important phenomena were discovered, such as stress pathway interference, acquired stress tolerance, stress response memory or stress cross-protection/sensitization, which cannot be interpreted when we study the consequences of a single stressor alone. Due to the interactions between stressors and stress responses, a stress response that develops under a combined stress is not the simple summation of stress responses observed during single stress treatments. Based on the knowledge collected from single stress treatment experiments, we cannot predict how fungi will respond to a certain combination of stresses or even whether this combination will be more harmful than single stress treatments. This uncertainty warns us that if we want to understand how fungi adapt to a certain habitat (e.g., to the human body) to find a point of weakness in this adaptation, we must understand how the fungi cope with combinations of stresses, rather than with single stressors.
Collapse
|
13
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
14
|
A review on lactoferrin as a proton pump inhibitor. Int J Biol Macromol 2022; 202:309-317. [PMID: 35038474 DOI: 10.1016/j.ijbiomac.2022.01.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Lactoferrin (Lf) is a versatile natural milk-derived protein that exhibits multiple interesting biological activities. Since it is safe for human administration and currently manufactured using low cost and well-established large-scale processes, the Lf scientific community has been devoted at dissecting its mechanisms of action towards its more rational and efficient use for various applications. Emerging literature has identified proton pumping ATPases as molecular targets of Lf in different cellular models linked to distinct activities of this natural protein. Information on this subject has not been systematically analysed before, hence herein we review the current state of art on the effect of Lf on proton pumping ATPases. Though structurally different, we propose that Lf holds a proton pump inhibitor (PPI)-like activity based on the functional resemblance with the classical inhibitors of the stomach H+/K+-ATPase. The downstream events and outcomes of the PPI-like activity of Lf, as well as its impact for the development of improved Lf applications are also discussed.
Collapse
|
15
|
Valero C, Colabardini AC, de Castro PA, Silva LP, Ries LNA, Pardeshi L, Wang F, Rocha MC, Malavazi I, Silva RN, Martins C, Domingos P, Pereira-Silva C, Bromley MJ, Wong KH, Goldman GH. Aspergillus Fumigatus ZnfA, a Novel Zinc Finger Transcription Factor Involved in Calcium Metabolism and Caspofungin Tolerance. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:689900. [PMID: 37744107 PMCID: PMC10512341 DOI: 10.3389/ffunb.2021.689900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/16/2021] [Indexed: 09/26/2023]
Abstract
Invasive pulmonary aspergillosis is a life-threatening fungal infection especially in the immunocompromised patients. The low diversity of available antifungal drugs coupled with the emergence of antifungal resistance has become a worldwide clinical concern. The echinocandin Caspofungin (CSP) is recommended as a second-line therapy but resistance and tolerance mechanisms have been reported. However, how the fungal cell articulates the response to CSP is not completely understood. This work provides a detailed characterization of ZnfA, a transcription factor (TF) identified in previous screening studies that is involved in the A. fumigatus responses to calcium and CSP. This TF plays an important role in the regulation of iron homeostasis and cell wall organization in response to high CSP concentrations as revealed by Chromatin Immunoprecipitation coupled to DNA sequencing (ChIP-seq) analysis. Furthermore, ZnfA acts collaboratively with the key TF CrzA in modulating the response to calcium as well as cell wall and osmotic stresses. This study therefore describes the existence of an additional, previously unknown TF that bridges calcium signaling and the CSP cellular response and further exposes the complex connections that exist among different pathways which govern stress sensing and signaling in A. fumigatus.
Collapse
Affiliation(s)
- Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | | | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Patrícia Domingos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Cristina Pereira-Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Core Technology Facility, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China
- Faculty of Health Sciences, Institute of Translational Medicine, University of Macau, Macau, China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Ho FKH, Bolhuis A, Delgado-Charro MB. Prevention and Treatment of Fungal Skin Infections Using Cationic Polymeric Films. Pharmaceutics 2021; 13:pharmaceutics13081161. [PMID: 34452122 PMCID: PMC8398677 DOI: 10.3390/pharmaceutics13081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Dermatophytosis is a fungal infection of skin, nails and hair. Treatments can be long and infections are often recurrent, and novel treatments are desirable. Here we tested the use of polymeric films that can be sprayed on the skin for the prevention and treatment of dermatophytosis. The two polymers selected were ABIL T Quat 60 and Eudragit E100, which were tested ex vivo using a porcine skin model, and in vitro using microbiological and microscopy techniques. Acceptability of the polymeric films was tested on the skin of healthy volunteers. The results showed that ABIL and Eudragit films prevented and treated fungal skin infections. Whilst polymer films may provide a physical barrier that prevents fungal colonization, it was shown that both polymers are active antifungals ex vivo and in vitro and have intrinsic antifungal activity. For ABIL, we also established that this polymer binds essential nutrients such as metal ions and sugars, thereby restricting the growth of fungi. When applied to healthy subjects’ skin, the polymeric films neither modified the skin color nor increased trans-epidermal water loss, suggesting a low potential for skin irritation, and the approach was generally found to be acceptable for use by the volunteers. In conclusion, we developed a novel strategy for the potential prevention and treatment of dermatophytosis.
Collapse
|
17
|
Mok AC, Mody CH, Li SS. Immune Cell Degranulation in Fungal Host Defence. J Fungi (Basel) 2021; 7:484. [PMID: 34208679 PMCID: PMC8234259 DOI: 10.3390/jof7060484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Humans have developed complex immune systems that defend against invading microbes, including fungal pathogens. Many highly specialized cells of the immune system share the ability to store antimicrobial compounds in membrane bound organelles that can be immediately deployed to eradicate or inhibit growth of invading pathogens. These membrane-bound organelles consist of secretory vesicles or granules, which move to the surface of the cell, where they fuse with the plasma membrane to release their contents in the process of degranulation. Lymphocytes, macrophages, neutrophils, mast cells, eosinophils, and basophils all degranulate in fungal host defence. While anti-microbial secretory vesicles are shared among different immune cell types, information about each cell type has emerged independently leading to an uncoordinated and confusing classification of granules and incomplete description of the mechanism by which they are deployed. While there are important differences, there are many similarities in granule morphology, granule content, stimulus for degranulation, granule trafficking, and release of granules against fungal pathogens. In this review, we describe the similarities and differences in an attempt to translate knowledge from one immune cell to another that may facilitate further studies in the context of fungal host defence.
Collapse
Affiliation(s)
- Adley Ch Mok
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher H Mody
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shu Shun Li
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
18
|
Lin J, Zangi M, Kumar TVH, Shakar Reddy M, Reddy LVR, Sadhukhan SK, Bradley DP, Moreira-Walsh B, Edwards TC, O’Dea AT, Tavis JE, Meyers MJ, Donlin MJ. Synthetic Derivatives of Ciclopirox are Effective Inhibitors of Cryptococcus neoformans. ACS OMEGA 2021; 6:8477-8487. [PMID: 33817509 PMCID: PMC8015083 DOI: 10.1021/acsomega.1c00273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
Opportunistic fungal infections caused by Cryptococcus neoformans are a significant source of mortality in immunocompromised patients. They are challenging to treat because of a limited number of antifungal drugs, and novel and more effective anticryptococcal therapies are needed. Ciclopirox olamine, a N-hydroxypyridone, has been in use as an approved therapeutic agent for the treatment of topical fungal infections for more than two decades. It is a fungicide, with broad activity across multiple fungal species. We synthesized 10 N-hydroxypyridone derivatives to develop an initial structure-activity understanding relative to efficacy as a starting point for the development of systemic antifungals. We screened the derivatives for antifungal activity against C. neoformans and Cryptococcus gattii and counter-screened for specificity in Candida albicans and two Malassezia species. Eight of the ten show inhibition at 1-3 μM concentration (0.17-0.42 μg per mL) in both Cryptococcus species and in C. albicans, but poor activity in the Malassezia species. In C. neoformans, the N-hydroxypyridones are fungicides, are not antagonistic with either fluconazole or amphotericin B, and are synergistic with multiple inhibitors of the mitochondrial electron transport chain. They appear to function primarily by chelating iron within the active site of iron-dependent enzymes. This preliminary structure-activity relationship points to the need for a lipophilic functional group at position six of the N-hydroxypyridone ring and identifies positions four and six as sites where further substitution may be tolerated. These molecules provide a clear starting point for future optimization for efficacy and target identification.
Collapse
Affiliation(s)
- Jeffrey Lin
- Department
of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Maryam Zangi
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | | | - Makala Shakar Reddy
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Lingala Vijaya Raghava Reddy
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Subir Kumar Sadhukhan
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Daniel P. Bradley
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Brenda Moreira-Walsh
- Edward
A. Doisy Department of Biochemistry, Saint
Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United
States
| | - Tiffany C. Edwards
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Austin T. O’Dea
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - John E. Tavis
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Marvin J. Meyers
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Maureen J. Donlin
- Edward
A. Doisy Department of Biochemistry, Saint
Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United
States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
19
|
Denardi LB, Weiblen C, Ianiski LB, Stibbe PC, Santurio JM. Activity of MSI-78, h-Lf1-11 and cecropin B antimicrobial peptides alone and in combination with voriconazole and amphotericin B against clinical isolates of Fusarium solani. J Mycol Med 2021; 31:101119. [PMID: 33626413 DOI: 10.1016/j.mycmed.2021.101119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/07/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
Fusarium infections have been associated with high mortality rates due to the lack of definition of an ideal treatment strategy. Antimicrobial peptides (AMPs) have potential antifungal activity. Therefore, investigating the in vitro activity of these molecules alone and in association with conventional antifungals against clinical isolates of Fusarium was the aim of this study. Fusarium solani (n=10) strains were tested against the AMPs, MSI-78, h-Lf1-11 and cecropin B in accordance with CLSI protocol. Further, a checkerboard assay for its combination with amphotericin B or voriconazole, was carried out. MSI-78, h-Lf1-11 and cecropin B exhibited antifungal activity against F. solani strains tested with MICs ranging from 20 to 320mg/L. Satisfactory percentage of synergism was demonstrated for all evaluated combinations, ranging from 70 to 100%. The use of AMPs combined with amphotericin B and voriconazole antifungals has great synergistic potential and deserve to be evaluated in murine models of fusariosis.
Collapse
Affiliation(s)
- Laura Bedin Denardi
- Department of Microbiology and Parasitology, Federal University of Santa Maria (UFSM), Avenida Roraima, n(o) 1000, Prédio 20, sala 4139, CEP 97105-900, Santa Maria, RS, Brazil.
| | - Carla Weiblen
- Department of Microbiology and Parasitology, Federal University of Santa Maria (UFSM), Avenida Roraima, n(o) 1000, Prédio 20, sala 4139, CEP 97105-900, Santa Maria, RS, Brazil
| | - Lara Baccarin Ianiski
- Department of Microbiology and Parasitology, Federal University of Santa Maria (UFSM), Avenida Roraima, n(o) 1000, Prédio 20, sala 4139, CEP 97105-900, Santa Maria, RS, Brazil
| | - Paula Cristina Stibbe
- Department of Microbiology and Parasitology, Federal University of Santa Maria (UFSM), Avenida Roraima, n(o) 1000, Prédio 20, sala 4139, CEP 97105-900, Santa Maria, RS, Brazil
| | - Janio Morais Santurio
- Department of Microbiology and Parasitology, Federal University of Santa Maria (UFSM), Avenida Roraima, n(o) 1000, Prédio 20, sala 4139, CEP 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
20
|
The Antifungal and Synergistic Effect of Bisphosphonates in Cryptococcus. Antimicrob Agents Chemother 2021; 65:AAC.01753-20. [PMID: 33139289 DOI: 10.1128/aac.01753-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/24/2020] [Indexed: 01/04/2023] Open
Abstract
New treatment strategies are required for cryptococcosis, a leading mycosis in HIV-AIDS patients. Following the identification of Cryptococcus proteins differentially expressed in response to fluconazole, we targeted farnesyl pryrophosphate synthetase (FPPS), an enzyme in the squalene biosynthesis pathway, using nitrogenous bisphosphonates. We hypothesized that these would disrupt squalene synthesis and thereby produce synergy with fluconazole, which acts on a downstream pathway that requires squalene. The susceptibilities of 39 clinical isolates from 6 different species of Cryptococcus were assessed for bisphosphonates and fluconazole, used both independently and in combination. Effective fluconazole-bisphosphonate combinations were then assessed for fungicidal activity, efficacy against biofilms, and ability to resolve cryptococcosis in an invertebrate model. The nitrogenous bisphosphonates risedronate, alendronate, and zoledronate were antifungal against all strains tested. Zoledronate was the most effective (geometric mean MIC = 113.03 mg/liter; risedronate = 378.49 mg/liter; alendronate = 158.4 mg/liter) and was broadly synergistic when combined with fluconazole, with a fractional inhibitory concentration index (FICI) of ≤0.5 in 92% of isolates. Fluconazole and zoledronate in combination were fungicidal in a time-kill assay, inhibited Cryptococcus biofilms, prevented the development of fluconazole resistance, and resolved infection in a nematode model. Supplementation with squalene eliminated bisphosphonate-mediated synergy, demonstrating that synergy was due to the inhibition of squalene biosynthesis. This study demonstrates the utility of targeting squalene synthesis for improving the efficacy of azole-based antifungal drugs and suggests bisphosphonates are promising lead compounds for further antifungal development.
Collapse
|
21
|
Houshmandyar S, Eggleston IM, Bolhuis A. Biofilm-specific uptake of a 4-pyridone-based iron chelator by Pseudomonas aeruginosa. Biometals 2021; 34:315-328. [PMID: 33428087 PMCID: PMC7940164 DOI: 10.1007/s10534-020-00281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
Iron is an essential nutrient for virtually all microbes and limiting the concentration of available iron is a potential strategy to be used as an alternative to antibiotic treatment. In this study we analysed the antimicrobial activity of two chelators, specifically 3-hydroxy-1,2-dimethyl-4(1H)-pyridone (deferiprone, DFP), which is clinically approved for the treatment of iron overload disorders, and its 1,2-diethyl homologue, CP94. Both compounds showed moderate activity towards planktonically growing P. aeruginosa cells, and the mechanism of action of these chelators was indeed by limiting the amount of free iron. Surprisingly, the compounds behaved very differently when the cells were grown in biofilms. DFP also showed inhibitory effects on biofilm formation but in contrast, CP94 stimulated this process, in particular at high concentrations. We hypothesised that CP94 behaves as an iron carrier, which was confirmed by our observation that it had antimicrobial synergy with the toxic metals, gallium and copper. This suggests that P. aeruginosa produces a biofilm-specific transport protein that recognises CP94 but not the closely related compound DFP.
Collapse
Affiliation(s)
| | - Ian M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
22
|
Ethylenediaminetetraacetic Acid Disodium Salt Acts as an Antifungal Candidate Molecule against Fusarium
graminearum by Inhibiting DON Biosynthesis and Chitin Synthase Activity. Toxins (Basel) 2020; 13:toxins13010017. [PMID: 33375470 PMCID: PMC7823441 DOI: 10.3390/toxins13010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Fusarium fungi are the cause of an array of devastating diseases affecting yield losses and accumulating mycotoxins. Fungicides can be exploited against Fusarium and deoxynivalenol (DON) production. However, Fusarium resistance to common chemicals has become a therapeutic challenge worldwide, which indicates that new control agents carrying different mechanisms of action are desperately needed. Here, we found that a nonantibiotic drug, ethylenediaminetetraacetic acid disodium salt (EDTANa2), exhibited various antifungal activities against Fusarium species and DON biosynthesis. The infection of wheat seeding caused by F. graminearum was suppressed over 90% at 4 mM EDTANa2. A similar control effect was observed in field tests. Mycotoxin production assays showed DON production was significantly inhibited, 47% lower than the control, by 0.4 mM EDTANa2. In vitro experiments revealed a timely inhibition of H2O2 production as quickly as 4 h after amending cultures with EDTANa2 and the expression of several TRI genes significantly decreased. Chitin synthases of Fusarium were Mn2+-containing enzymes that were strongly inhibited by Mn2+ deficiency. EDTANa2 inhibited chitin synthesis and destroyed the cell wall and cytomembrane integrity of Fusarium, mainly via the chelation of Mn2+ by EDTANa2, and thus led to Mn deficiency in Fusarium cells. Taken together, these findings uncover the potential of EDTANa2 as a fungicide candidate to manage Fusarium head blight (FHB) and DON in agricultural production.
Collapse
|
23
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
24
|
da Silva Hellwig AH, Pagani DM, Rios IDS, Ribeiro AC, Zanette RA, Scroferneker ML. Influence of iron on growth and on susceptibility to itraconazole in Sporothrix spp. Med Mycol 2020; 59:400-403. [PMID: 33305309 DOI: 10.1093/mmy/myaa099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/23/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
We evaluated the growth and the susceptibility to oxidative stress of Sporothrix spp., exposed to different iron concentrations in culture medium, and the susceptibility of Sporothrix spp. to itraconazole, alone and in combination with to the iron chelator deferasirox. The results showed that the growth of S. brasiliensis isolates was more affected by iron availability in comparison to S. schenckii, but both fungal species conidia became more prone to oxidative stress when iron was added to culture medium. Conversely, the combination of itraconazole and deferasirox only resulted in synergism against a minority of S. schenckii isolates.
Collapse
Affiliation(s)
| | - Danielle Machado Pagani
- Postgraduate Program in Agricultural and Environmental Microbiology, UFRGS, Rio Grande do Sul, Brazil
| | - Iasmin da Silva Rios
- Department of Microbiology, Immunology and Parasitology, ICBS, UFRGS, Rio Grande do Sul, Brazil
| | - Amanda Carvalho Ribeiro
- Department of Microbiology, Immunology and Parasitology, ICBS, UFRGS, Rio Grande do Sul, Brazil
| | - Régis A Zanette
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil
| | - Maria Lúcia Scroferneker
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil.,Department of Microbiology, Immunology and Parasitology, ICBS, UFRGS, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serrano-Luna J, de la Garza M. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020; 25:E5763. [PMID: 33302377 PMCID: PMC7762604 DOI: 10.3390/molecules25245763] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.
Collapse
Affiliation(s)
- Daniela Zarzosa-Moreno
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Coyoacán 04510, CdMx, Mexico
| | - Luisa Sofía Ramírez-Texcalco
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Erick Torres-López
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Ricardo Ramírez-Mondragón
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Juan Omar Hernández-Ramírez
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| |
Collapse
|
26
|
Lombardo M, Espósito BP, Lourenço FR, Kaneko TM. The application of pharmaceutical quality by design concepts to evaluate the antioxidant and antimicrobial properties of a preservative system including desferrioxamine. Daru 2020; 28:635-646. [PMID: 32856238 PMCID: PMC7704847 DOI: 10.1007/s40199-020-00370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND The purpose of the present study was to investigate the antioxidant and antimicrobial activities of a conventional preservative system containing desferrioxamine mesylate (DFO) and optimize the composition of the system through mathematical models. METHODS Different combinations of ethylenediaminetetraacetic acid (EDTA), sodium metabisulfite (SM), DFO and methylparaben (MP) were prepared using factorial design of experiments. The systems were added to ascorbic acid (AA) solution and the AA content over time, at room temperature and at 40 °C was determined by volumetric assay. The systems were also evaluated for antioxidant activity by a fluorescence-based assay. Antimicrobial activity was assessed by microdilution technique and photometric detection against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus brasiliensis. A multi-criteria decision approach was adopted to optimize all responses by desirability functions. RESULTS DFO did not extend the stability of AA over time, but displayed a better ability than EDTA to block the pro-oxidant activity of iron. DFO had a positive interaction with MP in microbial growth inhibition. The mathematical models showed adequate capacity to predict the responses. Statistical optimization aiming to meet the quality specifications of the ascorbic acid solution indicated that the presence of DFO in the composition allows to decrease the concentrations of EDTA, SM and MP. CONCLUSION DFO was much more effective than EDTA in preventing iron-catalyzed oxidation. In addition, DFO improved the inhibitory response of most microorganisms tested. The Quality by Design concepts aided in predicting an optimized preservative system with reduced levels of conventional antioxidants and preservatives, suggesting DFO as a candidate for multifunctional excipient.
Collapse
Affiliation(s)
- Márcia Lombardo
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
- Center of Drugs, Cosmetics and Sanitizing Products, Adolfo Lutz Institute, São Paulo, Brazil.
| | - Breno Pannia Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Felipe Rebello Lourenço
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Telma Mary Kaneko
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Lactoferrin-Derived Peptide Lactofungin Is Potently Synergistic with Amphotericin B. Antimicrob Agents Chemother 2020; 64:AAC.00842-20. [PMID: 32690642 DOI: 10.1128/aac.00842-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/11/2020] [Indexed: 01/10/2023] Open
Abstract
Lactoferrin (LF) is an iron-binding glycoprotein with broad-spectrum antimicrobial activity. Previously, we discovered that LF synergistically enhanced the antifungal efficacy of amphotericin B (AMB) across a variety of yeast species and subsequently hypothesized that this synergy was enhanced by the presence of small peptides derived from the whole LF molecule. In this study, LF was digested with pepsin under a range of conditions. The resulting hydrolysates exhibited enhanced synergy with AMB compared to its synergy with undigested LF. Samples were analyzed using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, and 14 peptides were identified. The sequences of these peptides were predicted by matching their molecular weights to those of a virtual digest with pepsin. The relative intensities of predicted peptides in each hydrolysate were compared with the activity of the hydrolysate, and the structural and physicochemical properties of the peptides were assessed. From this, a 30-residue peptide was selected for synthesis and dubbed lactofungin (LFG). Pure LFG was highly synergistic with AMB, outperforming native LF in all fungal species tested. With potential for further structural and chemical improvements, LFG is an excellent lead for development as an antifungal adjuvant.
Collapse
|
28
|
Brilhante RSN, Costa ADC, Pereira VS, Fernandes MR, de Oliveira JS, Rodrigues AM, Camargo ZP, Pereira-Neto WDA, Sidrim JJC, Rocha MFG. Antifungal activity of deferiprone and EDTA against Sporothrix spp.: Effect on planktonic growth and biofilm formation. Med Mycol 2020; 59:myaa073. [PMID: 32838409 DOI: 10.1093/mmy/myaa073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 11/14/2022] Open
Abstract
The present study evaluated the antifungal activity of the chelators deferiprone (DFP) and ethylenediaminetetraacetic acid (EDTA) and their effect on biofilm formation of the S. schenckii complex. Eighteen strains of Sporothrix spp. (seven S. brasiliensis, three S. globosa, three S. mexicana and five Sporothrix schenckii sensu stricto) were used. Minimum inhibitory concentration (MIC) values for EDTA and DFP against filamentous forms of Sporothrix spp. ranged from 32 to 128 μg/ml. For antifungal drugs, MIC values ranged from 0.25 to 4 μg/ml for amphotericin B, from 0.25 to 4 μg/ml for itraconazole, and from 0.03 to 0.25 μg/ml for terbinafine. The chelators caused inhibition of Sporothrix spp. in yeast form at concentrations ranging from 16 to 64 μg/ml (for EDTA) and 8 to 32 μg/ml (for DFP). For antifungal drugs, MIC values observed against the yeast varied from 0.03 to 0.5 μg/ml for AMB, 0.03 to 1 μg/ml for ITC, and 0.03 to 0.13 μg/ml for TRB. Both DFP and EDTA presented synergistic interaction with antifungals against Sporothrix spp. in both filamentous and yeast form. Biofilms formed in the presence of the chelators (512 μg/ml) showed a reduction of 47% in biomass and 45% in metabolic activity. Our data reveal that DFP and EDTA reduced the growth of planktonic cells of Sporothrix spp., had synergistic interaction with antifungal drugs against this pathogen, and reduced biofilm formation of Sporothrix spp. LAY SUMMARY Our data reveal that iron chelators deferiprone and ethylenediaminetetraacetic acid reduced the growth of planktonic cells of Sporothrix spp. as well as had synergistic interaction with antifungal drugs against this pathogen and reduced biofilm formation of Sporothrix spp.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Anderson da Cunha Costa
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Vandbergue Santos Pereira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Mirele Rodrigues Fernandes
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Jonathas Sales de Oliveira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Anderson Messias Rodrigues
- Cellular Biology Division, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo. Rua Botucatu, 862, 6th floor, Medical Sciences Building, CEP: 04023-062, São Paulo, São Paulo, Brazil
| | - Zoilo Pires Camargo
- Cellular Biology Division, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo. Rua Botucatu, 862, 6th floor, Medical Sciences Building, CEP: 04023-062, São Paulo, São Paulo, Brazil
| | - Waldemiro de Aquino Pereira-Neto
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary Medicine, State University of Ceará. Av. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| |
Collapse
|
29
|
Superti F. Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients 2020; 12:nu12092562. [PMID: 32847014 PMCID: PMC7551115 DOI: 10.3390/nu12092562] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Lactoferrin (Lf), an iron-binding multifunctional glycoprotein belonging to the transferrin family, is present in most biological secretions and reaches particularly high concentrations in colostrum and breast milk. A key function of lactoferrin is non-immune defence and it is considered to be a mediator linking innate and adaptive immune responses. Lf from bovine milk (bLf), the main Lf used in human medicine because of its easy availability, has been designated by the United States Food and Drug Administration as a food additive that is generally recognized as safe (GRAS). Among the numerous protective activities exercised by this nutraceutical protein, the most important ones demonstrated after its oral administration are: Antianemic, anti-inflammatory, antimicrobial, immunomodulatory, antioxidant and anticancer activities. All these activities underline the significance in host defence of bLf, which represents an ideal nutraceutical product both for its economic production and for its tolerance after ingestion. The purpose of this review is to summarize the most important beneficial activities demonstrated following the oral administration of bLf, trying to identify potential perspectives on its prophylactic and therapeutic applications in the future.
Collapse
Affiliation(s)
- Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
30
|
Vargas‐Casanova Y, Carlos Villamil Poveda J, Jenny Rivera‐Monroy Z, Ceballos Garzón A, Fierro‐Medina R, Le Pape P, Eduardo García‐Castañeda J, Marcela Parra Giraldo C. Palindromic Peptide LfcinB (21‐25)
Pal
Exhibited Antifungal Activity against Multidrug‐Resistant
Candida. ChemistrySelect 2020. [DOI: 10.1002/slct.202001329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yerly Vargas‐Casanova
- Departamento de Microbiología-Pontificia Universidad Javeriana Carrera 7 No. 40–62 Bogotá Colombia
| | | | - Zuly Jenny Rivera‐Monroy
- Facultad de Ciencias-Universidad Nacional de Colombia Carrera 45 No 26–85, Building 451, office 134 Bogotá Colombia
| | - Andrés Ceballos Garzón
- Departamento de Microbiología-Pontificia Universidad Javeriana Carrera 7 No. 40–62 Bogotá Colombia
| | - Ricardo Fierro‐Medina
- Facultad de Ciencias-Universidad Nacional de Colombia Carrera 45 No 26–85, Building 451, office 134 Bogotá Colombia
| | - Patrice Le Pape
- Department of Parasitology and Medical MycologyFaculty of Pharmacy-University of Nantes Nantes Atlantique Universities Nantes France
| | | | | |
Collapse
|
31
|
Abstract
Aspergillus fumigatus, one of the most important human-pathogenic fungal species, is able to cause aspergillosis, a heterogeneous group of diseases that presents a wide range of clinical manifestations. Invasive pulmonary aspergillosis is the most serious pathology in terms of patient outcome and treatment, with a high mortality rate ranging from 50% to 95% primarily affecting immunocompromised patients. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, there were several reports of evolution of clinical azole resistance in the last decade. Caspofungin, a noncompetitive β-1,3-glucan synthase inhibitor, has been used against A. fumigatus, but it is fungistatic and is recommended as second-line therapy for invasive aspergillosis. More information about caspofungin tolerance and resistance is necessary in order to refine antifungal strategies that target the fungal cell wall. Here, we screened a transcription factor (TF) deletion library for TFs that can mediate caspofungin tolerance and resistance. We have identified 11 TFs that are important for caspofungin sensitivity and/or for the caspofungin paradoxical effect (CPE). These TFs encode proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism or cell wall remodeling, and mitochondrial respiratory function. The study of those genes regulated by TFs identified in this work will provide a better understanding of the signaling pathways that are important for caspofungin tolerance and resistance. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, in the last 10 years there have been several reports of azole resistance in A. fumigatus and new strategies are needed to combat invasive aspergillosis. Caspofungin is effective against other human-pathogenic fungal species, but it is fungistatic only against A. fumigatus. Resistance to caspofungin in A. fumigatus has been linked to mutations in the fksA gene that encodes the target enzyme of the drug β-1,3-glucan synthase. However, tolerance of high caspofungin concentrations, a phenomenon known as the caspofungin paradoxical effect (CPE), is also important for subsequent adaptation and drug resistance evolution. Here, we identified and characterized the transcription factors involved in the response to CPE by screening an A. fumigatus library of 484 null transcription factors (TFs) in CPE drug concentrations. We identified 11 TFs that had reduced CPE and that encoded proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism, and cell wall remodeling. One of these TFs, FhdA, was important for mitochondrial respiratory function and iron metabolism. The ΔfhdA mutant showed decreased growth when exposed to Congo red or to high temperature. Transcriptome sequencing (RNA-seq) analysis and further experimental validation indicated that the ΔfhdA mutant showed diminished respiratory capacity, probably affecting several pathways related to the caspofungin tolerance and resistance. Our results provide the foundation to understand signaling pathways that are important for caspofungin tolerance and resistance.
Collapse
|
32
|
Lactoferrin Is Broadly Active against Yeasts and Highly Synergistic with Amphotericin B. Antimicrob Agents Chemother 2020; 64:AAC.02284-19. [PMID: 32094132 PMCID: PMC7179636 DOI: 10.1128/aac.02284-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Lactoferrin (LF) is a multifunctional milk protein with antimicrobial activity against a range of pathogens. While numerous studies report that LF is active against fungi, there are considerable differences in the level of antifungal activity and the capacity of LF to interact with other drugs. Here we undertook a comprehensive evaluation of the antifungal spectrum of activity of three defined sources of LF across 22 yeast and 24 mold species and assessed its interactions with six widely used antifungal drugs. LF was broadly and consistently active against all yeast species tested (MICs, 8 to 64 μg/ml), with the extent of activity being strongly affected by iron saturation. LF was synergistic with amphotericin B (AMB) against 19 out of 22 yeast species tested, and synergy was unaffected by iron saturation but was affected by the extent of LF digestion. LF-AMB combination therapy significantly prolonged the survival of Galleria mellonella wax moth larvae infected with Candida albicans or Cryptococcus neoformans and decreased the fungal burden 12- to 25-fold. Evidence that LF directly interacts with the fungal cell surface was seen via scanning electron microscopy, which showed pore formation, hyphal thinning, and major cell collapse in response to LF-AMB synergy. Important virulence mechanisms were disrupted by LF-AMB treatment, which significantly prevented biofilms in C. albicans and C. glabrata, inhibited hyphal development in C. albicans, and reduced cell and capsule size and phenotypic diversity in Cryptococcus Our results demonstrate the potential of LF-AMB as an antifungal treatment that is broadly synergistic against important yeast pathogens, with the synergy being attributed to the presence of one or more LF peptides.
Collapse
|
33
|
Zhou YF, Liu P, Zhang CJ, Liao XP, Sun J, Liu YH. Colistin Combined With Tigecycline: A Promising Alternative Strategy to Combat Escherichia coli Harboring bla NDM- 5 and mcr-1. Front Microbiol 2020; 10:2957. [PMID: 31969868 PMCID: PMC6960404 DOI: 10.3389/fmicb.2019.02957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/09/2019] [Indexed: 01/20/2023] Open
Abstract
Infections due to carbapenem-resistant NDM-producing Escherichia coli represent a major therapeutic challenge, especially in situations of pre-existing colistin resistance. The aim of this study was to investigate combinatorial pharmacodynamics of colistin and tigecycline against E. coli harboring blaNDM–5 and mcr-1, with possible mechanisms explored as well. Colistin disrupted the bacterial outer-membrane and facilitated tigecycline uptake largely independent of mcr-1 expression, which allowed a potentiation of the tigecycline-colistin combination. A concentration-dependent decrease in colistin MIC and EC50 was observed with increasing tigecycline levels. Clinically relevant concentrations of colistin and tigecycline combination significantly decreased bacterial density of colistin-resistant E. coli by 3.9 to 6.1-log10 cfu/mL over 48 h at both inoculums of 106 and 108 cfu/mL, and were more active than each drug alone (P < 0.01). Importantly, colistin and tigecycline combination therapy was efficacious in the murine thigh infection model at clinically relevant doses, resulting in >2.0-log10cfu/thigh reduction in bacterial density compared to each monotherapy. These data suggest that the use of colistin and tigecycline combination can provide a therapeutic alternative for infection caused by multidrug-resistant E. coli that harbored both blaNDM–5 and mcr-1.
Collapse
Affiliation(s)
- Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ping Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Chuan-Jian Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Rocha LFD, Pippi B, Fuentefria AM, Mezzari A. Synergistic effect of ibuprofen with itraconazole and fluconazole against Cryptococcus neoformans. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Bruna Pippi
- Universidade Federal do Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
35
|
Krummenauer ME, Lopes W, Garcia AWA, Schrank A, Gnoatto SCB, Kawano DF, Vainstein MH. A Highly Active Triterpene Derivative Capable |of Biofilm Damage to Control Cryptococcus spp. Biomolecules 2019; 9:E831. [PMID: 31817559 PMCID: PMC6995603 DOI: 10.3390/biom9120831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated yeast responsible for more than 180,000 deaths per year. The standard therapeutic approach against cryptococcosis is a combination of amphotericin B with flucytosine. In countries where cryptococcosis is most prevalent, 5-fluorocytosine is rarely available, and amphotericin B requires intravenous administration. C. neoformans biofilm formation is related to increased drug resistance, which is an important outcome for hospitalized patients. Here, we describe new molecules with anti-cryptococcal activity. A collection of 66 semisynthetic derivatives of ursolic acid and betulinic acid was tested against mature biofilms of C. neoformans at 25 µM. Out of these, eight derivatives including terpenes, benzazoles, flavonoids, and quinolines were able to cause damage and eradicate mature biofilms. Four terpene compounds demonstrated significative growth inhibition of C. neoformans. Our study identified a pentacyclic triterpenoid derived from betulinic acid (LAFIS13) as a potential drug for anti-cryptococcal treatment. This compound appears to be highly active with low toxicity at minimal inhibitory concentration and capable of biofilm eradication.
Collapse
Affiliation(s)
- Maria E. Krummenauer
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; (M.E.K.); (W.L.); (A.W.A.G.); (A.S.)
| | - William Lopes
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; (M.E.K.); (W.L.); (A.W.A.G.); (A.S.)
| | - Ane W. A. Garcia
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; (M.E.K.); (W.L.); (A.W.A.G.); (A.S.)
| | - Augusto Schrank
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; (M.E.K.); (W.L.); (A.W.A.G.); (A.S.)
| | - Simone C. B. Gnoatto
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil;
| | - Daniel F. Kawano
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil;
| | - Marilene H. Vainstein
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil; (M.E.K.); (W.L.); (A.W.A.G.); (A.S.)
| |
Collapse
|
36
|
Chayakulkeeree M, Tangkoskul T, Waywa D, Tiengrim S, Pati N, Thamlikitkul V. Impact of iron chelators on growth and expression of iron-related genes of Cryptococcus species. J Mycol Med 2019; 30:100905. [PMID: 31706700 DOI: 10.1016/j.mycmed.2019.100905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/31/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Iron chelator has previously demonstrated fungicidal effects. This study aimed to investigate the antifungal activity of the iron chelators deferoxamine (DFO) and deferasirox (DSX) against Cryptococcus. MATERIALS AND METHODS Cryptococcus neoformans and Cryptococcus gattii were used to determine the minimal inhibitory concentrations (MICs) of DFO and DSX, and the fractional inhibitory concentration index (FICI) of DFO and DSX when combined with amphotericin B (AMB). Expression of cryptococcal CFT1, CFT2, and CIR1 genes was determined using real-time polymerase chain reaction (PCR). RESULTS Neither DFO nor DSX alone showed antifungal activity against Cryptococcus strains. When combined with AMB, the MICs of DFO and DSX decreased from>200μg/mL to 6.25 or 12.5μg/mL. The MIC of AMB decreased one-fold dilution in most strains when combined with iron chelators. The FICI of DFO+AMB and DSX+AMB was 0.5 and 1, respectively. C. neoformans showed significant growth retardation when incubated with a combination of sub-MIC concentrations of AMB and DFO; whereas, C. gattii demonstrated lesser growth retardation in DFO+AMB. No cryptococcal growth retardation was observed when DSX was combined with AMB. When C. neoformans was grown in DFO, the CFT1, CFT2, and CIR1 proteins were expressed 1.7, 2.0, and 0.9 times, respectively. When C. neoformans was grown in DSX, the CFT1, CFT2, and CIR1 genes were expressed 0.5, 0.6, and 0.3 times, respectively. CONCLUSION Synergistic antifungal activity of combination DFO and AMB was observed in Cryptococcus. Relatively increased CFT1 and CFT2 expression may be associated with the effect of DFO that inhibits the growth of fungi.
Collapse
Affiliation(s)
- M Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - T Tangkoskul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - D Waywa
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - S Tiengrim
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - N Pati
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - V Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
37
|
Lai YW, Pang CNI, Campbell LT, Chen SCA, Wilkins MR, Carter DA. Different Pathways Mediate Amphotericin-Lactoferrin Drug Synergy in Cryptococcus and Saccharomyces. Front Microbiol 2019; 10:2195. [PMID: 31632362 PMCID: PMC6779777 DOI: 10.3389/fmicb.2019.02195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
Fungal infections are an increasing cause of morbidity and mortality. Current antifungal drugs are limited in spectrum, few new drugs are in development, and resistance is an increasing issue. Drug synergy can enhance available drugs and extend their lifetime, however, few synergistic combinations are in clinical use and mechanistic data on how combinations work is lacking. The multifunctional glycoprotein lactoferrin (LF) acts synergistically with amphotericin B (AMB) in a range of fungal species. Whole LF binds and sequesters iron, and LF can also be digested enzymatically to produce cationic peptides with distinct antimicrobial functions. To understand how LF synergizes AMB, we previously undertook a transcriptomic analysis in Saccharomyces and found a paradoxical down-regulation of iron and stress response, suggesting stress pathway interference was dysregulating an appropriate response, resulting in cell death. To extend this to a fungal pathogen, we here perform the same analysis in Cryptococcus neoformans. While both fungi responded to AMB in a similar way, the addition of LF produced remarkably contrasting results, with the Cryptococcus transcriptome enriched for processes relating to cellular stress, up-regulation of endoplasmic-reticulum-associated protein degradation (ERAD), stress granule disassembly and protein folding, endoplasmic reticulum-Golgi-vacuole trafficking and autophagy, suggesting an overall disruption of protein and lipid biosynthesis. These studies demonstrate that the mechanism of LF-mediated synergy is species-specific, possibly due to differences in the way LF peptides are generated, bind to and enter cells and act on intracellular targets, illustrating how very different cellular processes can underlie what appears to be a similar phenotypic response.
Collapse
Affiliation(s)
- Yu-Wen Lai
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Leona T Campbell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sharon C A Chen
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Kovács R, Nagy F, Tóth Z, Bozó A, Balázs B, Majoros L. Synergistic effect of nikkomycin Z with caspofungin and micafungin against
Candida albicans
and
Candida parapsilosis
biofilms. Lett Appl Microbiol 2019; 69:271-278. [DOI: 10.1111/lam.13204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/11/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- R. Kovács
- Department of Medical Microbiology, Faculty of Medicine University of Debrecen Debrecen Hungary
- Faculty of Pharmacy University of Debrecen Debrecen Hungary
| | - F. Nagy
- Department of Medical Microbiology, Faculty of Medicine University of Debrecen Debrecen Hungary
| | - Z. Tóth
- Department of Medical Microbiology, Faculty of Medicine University of Debrecen Debrecen Hungary
| | - A. Bozó
- Department of Medical Microbiology, Faculty of Medicine University of Debrecen Debrecen Hungary
| | - B. Balázs
- Department of Medical Microbiology, Faculty of Medicine University of Debrecen Debrecen Hungary
| | - L. Majoros
- Department of Medical Microbiology, Faculty of Medicine University of Debrecen Debrecen Hungary
| |
Collapse
|
39
|
A Systematic Screen Reveals a Diverse Collection of Medications That Induce Antifungal Resistance in Candida Species. Antimicrob Agents Chemother 2019; 63:AAC.00054-19. [PMID: 30858206 DOI: 10.1128/aac.00054-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/07/2019] [Indexed: 01/16/2023] Open
Abstract
The increasing incidence of and high mortality rates associated with invasive fungal infections (IFIs) impose an enormous clinical, social, and economic burden on humankind. In addition to microbiological resistance to existing antifungal drugs, the large number of unexplained treatment failures is a serious concern. Due to the extremely limited therapeutic options available, it is critical to identify and understand the various causes of treatment failure if patient outcomes are to improve. In this study, we examined one potential source of treatment failure: antagonistic drug interactions. Using a simple screen, we systematically identified currently approved medications that undermine the antifungal activity of three major antifungal drugs-fluconazole, caspofungin, and amphotericin B-on four prevalent human fungal pathogens-Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis This revealed that a diverse collection of structurally distinct drugs exhibit antagonistic interactions with fluconazole. Several antagonistic agents selected for follow-up studies induce azole resistance through a mechanism that depends on Tac1p/Pdr1p zinc-cluster transcription factors, which activate the expression of drug efflux pumps belonging to the ABC-type transporter family. Few antagonistic interactions were identified with caspofungin or amphotericin B, possibly reflecting their cell surface mode of action that should not be affected by drug efflux mechanisms. Given that patients at greatest risk of IFIs usually receive a multitude of drugs to treat various underlying conditions, these studies suggest that chemically inducible azole resistance may be much more common and important than previously realized.
Collapse
|
40
|
Iron Chelator Deferasirox Reduces Candida albicans Invasion of Oral Epithelial Cells and Infection Levels in Murine Oropharyngeal Candidiasis. Antimicrob Agents Chemother 2019; 63:AAC.02152-18. [PMID: 30718249 DOI: 10.1128/aac.02152-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/25/2019] [Indexed: 12/24/2022] Open
Abstract
Candida albicans, the causative agent of mucosal infections, including oropharyngeal candidiasis (OPC), as well as bloodstream infections, is becoming increasingly resistant to existing treatment options. In the absence of novel drug candidates, drug repurposing aimed at using existing drugs to treat off-label diseases is a promising strategy. C. albicans requires environmental iron for survival and virulence, while host nutritional immunity deploys iron-binding proteins to sequester iron and reduce fungal growth. Here we evaluated the role of iron limitation using deferasirox (an FDA-approved iron chelator for the treatment of patients with iron overload) during murine OPC and assessed deferasirox-treated C. albicans for its interaction with human oral epithelial (OE) cells, neutrophils, and antimicrobial peptides. Therapeutic deferasirox treatment significantly reduced salivary iron levels, while a nonsignificant reduction in the fungal burden was observed. Preventive treatment that allowed for two additional days of drug administration in our murine model resulted in a significant reduction in the number of C. albicans CFU per gram of tongue tissue, a significant reduction in salivary iron levels, and significantly reduced neutrophil-mediated inflammation. C. albicans cells harvested from the tongues of animals undergoing preventive treatment had the differential expression of 106 genes, including those involved in iron metabolism, adhesion, and the response to host innate immunity. Moreover, deferasirox-treated C. albicans cells had a 2-fold reduction in survival in neutrophil phagosomes (with greater susceptibility to oxidative stress) and reduced adhesion to and invasion of OE cells in vitro Thus, deferasirox treatment has the potential to alleviate OPC by affecting C. albicans gene expression and reducing virulence.
Collapse
|
41
|
Herskovitz JE, Worobo RW, Goddard JM. The Role of Solid Support Bound Metal Chelators on System-Dependent Synergy and Antagonism with Nisin. J Food Sci 2019; 84:580-589. [PMID: 30714624 DOI: 10.1111/1750-3841.14444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 12/01/2022]
Abstract
Active packaging can enhance the performance of natural antimicrobials in controlling food spoilage and waste, while addressing consumer demands for cleaner labels. Yet, synergies are system dependent, with some conditions counterintuitively promoting antagonistic effects. In particular, metal chelators can improve performance of certain natural antimicrobials and have been incorporated in nonmigratory metal chelating active packaging technologies. However, the influence of chelating ligand chemistry on antimicrobial efficacy has not been investigated in microbial spoilage models. The effect of three commercial chelating resins on the growth of Alicyclobacillus acidoterrestris ATCC 49025, a thermoduric acidophilic spore-former, in growth media and apple juice was investigated. Dowex MAC-3, Chelex 100, and Lewatit TP260 were used as models for metal chelating active packaging containing carboxylic acid (CA), iminodiacetic acid (IDA), and aminomethylphosphonic acid (AMPA) ligands. Diameters (CA = 472.4 ± 117.2 μm, IDA = 132.93 ± 26.71 μm, and AMPA = 498.3 ± 29.24 μm), dissociation kinetics (CA = 6.44 ± 0.109, IDA = -0.977 ± 9.94, AMPA = 7.43 ± 0.193), and metal chelating capacities (CA = 1.16 × 10-4 mol/g, IDA = 1.52 × 10-3 mol/g, and AMPA = 4.67 × 10-4 mol/g) were used to distinguish differences in antimicrobial efficacies. Growth of A. acidoterrestris in acidified Potato Dextrose Broth over 24 hr with chelating resins indicated early death phase for CA and IDA resins and bactericidal for AMPA resin. However, viability in commercial apple juice with the inclusion of nisin and chelating resins was variable, with IDA resin significantly (P < 0.05) increasing viability while the effect of CA and AMPA resins remained elusive. This work emphasizes the importance of biological repeatability and correct statistical modeling in identifying conditions under which the antimicrobial intervention of nisin in real food systems, such as acidic beverages and juices, are synergistic or antagonistic. PRACTICAL APPLICATION: New technologies to control microbial food spoilage and waste need to be explored to address consumers on-going demands for reducing additive use. Solid support bound metal chelators can both promote and control microbial growth when used in conjunction with nisin, a natural antimicrobial. This work explores how system conditions can render a given technology either synergistic or antagonistic, and highlights the importance of sufficient biological replicates in experimental design.
Collapse
Affiliation(s)
| | - Randy W Worobo
- Dept. of Food Science, Cornell Univ., Ithaca, NY, 14853, U.S.A
| | - Julie M Goddard
- Dept. of Food Science, Cornell Univ., Ithaca, NY, 14853, U.S.A
| |
Collapse
|
42
|
Truong M, Monahan LG, Carter DA, Charles IG. Repurposing drugs to fast-track therapeutic agents for the treatment of cryptococcosis. PeerJ 2018; 6:e4761. [PMID: 29740519 PMCID: PMC5937474 DOI: 10.7717/peerj.4761] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/21/2018] [Indexed: 12/21/2022] Open
Abstract
Many infectious diseases disproportionately affect people in the developing world. Cryptococcal meningitis is one of the most common mycoses in HIV-AIDS patients, with the highest burden of disease in sub-Saharan Africa. Current best treatment regimens still result in unacceptably high mortality rates, and more effective antifungal agents are needed urgently. Drug development is hampered by the difficulty of developing effective antifungal agents that are not also toxic to human cells, and by a reluctance among pharmaceutical companies to invest in drugs that cannot guarantee a high financial return. Drug repurposing, where existing drugs are screened for alternative activities, is becoming an attractive approach in antimicrobial discovery programs, and various compound libraries are now commercially available. As these drugs have already undergone extensive optimisation and passed regulatory hurdles this can fast-track their progress to market for new uses. This study screened the Screen-Well Enzo library of 640 compounds for candidates that phenotypically inhibited the growth of Cryptococcus deuterogattii. The anthelminthic agent flubendazole, and L-type calcium channel blockers nifedipine, nisoldipine and felodipine, appeared particularly promising and were tested in additional strains and species. Flubendazole was very active against all pathogenic Cryptococcus species, with minimum inhibitory concentrations of 0.039-0.156 μg/mL, and was equally effective against isolates that were resistant to fluconazole. While nifedipine, nisoldipine and felodipine all inhibited Cryptococcus, nisoldipine was also effective against Candida, Saccharomyces and Aspergillus. This study validates repurposing as a rapid approach for finding new agents to treat neglected infectious diseases.
Collapse
Affiliation(s)
- Megan Truong
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Leigh G Monahan
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Ian G Charles
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia.,Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
43
|
Abstract
Cryptococcus is among the most common invasive fungal pathogens globally and is one of the leading causes of acquired immunodeficiency virus-related deaths. Cryptococcus neoformans and Cryptococcus gattii are the most clinically relevant species and account for most cryptococcal disease. Pulmonary manifestations can range from mild symptoms to life-threatening infection. Treatment is tailored based on the severity of pulmonary infection, the presence of disseminated or central nervous system disease, and patient immune status. Amphotericin B and flucytosine followed by fluconazole remain the standard agents for the treatment of severe cryptococcal infection.
Collapse
Affiliation(s)
- Kate Skolnik
- Division of Respirology, Department of Internal Medicine, Rockyview General Hospital, University of Calgary, Respirology Offices, 7007 14th Street Southwest, Calgary, Alberta T2V 1P9, Canada
| | - Shaunna Huston
- Department of Physiology and Pharmacology, Health Research Innovation Centre, University of Calgary, Room 4AA08, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada
| | - Christopher H Mody
- Department of Microbiology and Infectious Diseases, Health Research Innovation Centre, University of Calgary, Room 4AA14, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada; Department of Internal Medicine, Health Research Innovation Centre, University of Calgary, Room 4AA14, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
44
|
Abstract
The devastating infections that fungal pathogens cause in humans are underappreciated relative to viral, bacterial and parasitic diseases. In recent years, the contributions to virulence of reductive iron uptake, siderophore-mediated uptake and heme acquisition have been identified in the best studied and most life-threatening fungal pathogens: Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. In particular, exciting new work illustrates the importance of iron acquisition from heme and hemoglobin in the virulence of pathogenic yeasts. However, the challenge of establishing how these fungi gain access to hemoglobin in blood and to other sources of heme remains to be fully addressed. Recent studies are also expanding our knowledge of iron uptake in less-well studied fungal pathogens, including dimorphic fungi where new information reveals an integration of iron acquisition with morphogenesis and cell-surface properties for adhesion to host cells. Overall, the accumulating information provides opportunities to exploit iron acquisition for antifungal therapy, and new work highlights the development of specific inhibitors of siderophore biosynthesis and metal chelators for therapeutic use alone or in conjunction with existing antifungal drugs. It is clear that iron-related therapies will need to be customized for specific diseases because the emerging view is that fungal pathogens use different combinations of strategies for iron acquisition in the varied niches of vertebrate hosts.
Collapse
Affiliation(s)
- Gaurav Bairwa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
45
|
Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: Structure, function, denaturation and digestion. Crit Rev Food Sci Nutr 2017; 59:580-596. [DOI: 10.1080/10408398.2017.1381583] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bo Wang
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Yakindra Prasad Timilsena
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
- Materials Science and Engineering, CSIRO Manufacturing Flagship, Clayton South, VIC, Australia
| | - Ewan Blanch
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Benu Adhikari
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
- Materials Science and Engineering, CSIRO Manufacturing Flagship, Clayton South, VIC, Australia
| |
Collapse
|
46
|
Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. J Fungi (Basel) 2017; 3:E46. [PMID: 29371563 PMCID: PMC5715947 DOI: 10.3390/jof3030046] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections are associated with high mortality rates, despite appropriate antifungal therapy. Limited therapeutic options, resistance development and the high mortality of invasive fungal infections brought about more concern triggering the search for new compounds capable of interfering with fungal viability and virulence. In this context, peptides gained attention as promising candidates for the antimycotics development. Variety of structural and functional characteristics identified for various natural antifungal peptides makes them excellent starting points for design novel drug candidates. Current review provides a brief overview of natural and synthetic antifungal peptides.
Collapse
Affiliation(s)
- Małgorzata Bondaryk
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Paulina Zielińska
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | | |
Collapse
|
47
|
Khan H, Khan Z, Amin S, Mabkhot YN, Mubarak MS, Hadda TB, Maione F. Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review. Biomed Pharmacother 2017; 93:498-509. [PMID: 28675856 DOI: 10.1016/j.biopha.2017.06.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Despite therapeutic advancement in the treatment of fungal infections, morbidity and mortality caused by these infections are still very high. There are approximately 300 fungal species that are infectious and can cause a variety of diseases. At present, several synthetic antifungal drugs are in clinical practice, many of them, however, are vulnerable to multidrug-resistant strains of microbes, and thus compromising the overall treatment outcomes. Glycosides are naturally occurring plant secondary metabolites with important therapeutic potential and clinical utility. The aim of this review was to focus on the antifungal effects of glycosides in preclinical studies with possible mechanism(s) wherein described. Published research show significant susceptibility of different fungi towards phytoglycosides, mediated through multiple mechanisms. Further detailed studies are needed to explain the clinical applications and limitations of these glycosides.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Ziyad Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Surriya Amin
- Department of Botany, Islamia College University Peshawar, Pakistan
| | - Yahia Nasser Mabkhot
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh-11451, Saudi Arabia
| | | | - Taibi Ben Hadda
- LCM Laboratory, University of Mohammed 1st, Faculty of Sciences, Oujda 60000, Morocco
| | - Francesco Maione
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80031, Naples, Italy
| |
Collapse
|
48
|
Drago-Serrano ME, Campos-Rodríguez R, Carrero JC, de la Garza M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int J Mol Sci 2017; 18:E501. [PMID: 28257033 PMCID: PMC5372517 DOI: 10.3390/ijms18030501] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases.
Collapse
Affiliation(s)
- Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco (UAM-X), CdMx 04960, Mexico.
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (ESM-IPN), CdMx 11340, Mexico.
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), CdMx 70228, Mexico.
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CdMx 07360, Mexico.
| |
Collapse
|
49
|
Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol 2017; 8:36. [PMID: 28167935 PMCID: PMC5253656 DOI: 10.3389/fmicb.2017.00036] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Wanessa C M A de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline B Costa-Orlandi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| |
Collapse
|
50
|
Fernandes KE, Carter DA. The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens. Front Microbiol 2017; 8:2. [PMID: 28149293 PMCID: PMC5241296 DOI: 10.3389/fmicb.2017.00002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/03/2017] [Indexed: 11/13/2022] Open
Abstract
Lactoferrin is a multifunctional iron-binding glycoprotein belonging to the transferrin family. It is found abundantly in milk and is present as a major protein in human exocrine secretions where it plays a role in the innate immune response. Various antifungal functions of lactoferrin have been reported including a wide spectrum of activity across yeasts and molds and synergy with other antifungal drugs in combination therapy, and various modes of action have been proposed. Bioactive peptides derived from lactoferrin can also exhibit strong antifungal activity, with some surpassing the potency of the whole protein. This paper reviews current knowledge of the spectrum of activity, proposed mechanisms of action, and capacity for synergy of lactoferrin and its peptides, including the three most studied derivatives: lactoferricin, lactoferrampin, and Lf(1-11), as well as some lactoferrin-derived variants and modified peptides.
Collapse
Affiliation(s)
- Kenya E Fernandes
- School of Life and Environmental Sciences, University of Sydney Sydney, NSW, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney Sydney, NSW, Australia
| |
Collapse
|