1
|
Dulyayangkul P, Sealey JE, Lee WWY, Satapoomin N, Reding C, Heesom KJ, Williams PB, Avison MB. Improving nitrofurantoin resistance prediction in Escherichia coli from whole-genome sequence by integrating NfsA/B enzyme assays. Antimicrob Agents Chemother 2024; 68:e0024224. [PMID: 38767379 PMCID: PMC11232377 DOI: 10.1128/aac.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/13/2024] [Indexed: 05/22/2024] Open
Abstract
Nitrofurantoin resistance in Escherichia coli is primarily caused by mutations damaging two enzymes, NfsA and NfsB. Studies based on small isolate collections with defined nitrofurantoin MICs have found significant random genetic drift in nfsA and nfsB, making it extremely difficult to predict nitrofurantoin resistance from whole-genome sequence (WGS) where both genes are not obviously disrupted by nonsense or frameshift mutations or insertional inactivation. Here, we report a WGS survey of 200 oqxAB-negative E. coli from community urine samples, of which 34 were nitrofurantoin resistant. We characterized individual non-synonymous mutations seen in nfsA and nfsB among this collection using complementation cloning and NfsA/B enzyme assays in cell extracts. We definitively identified R203C, H11Y, W212R, A112E, and A112T in NfsA and R121C, Q142H, F84S, P163H, W46R, K57E, and V191G in NfsB as amino acid substitutions that reduce enzyme activity sufficiently to cause resistance. In contrast, E58D, I117T, K141E, L157F, A172S, G187D, and A188V in NfsA and G66D, M75I, V93A, and A174E in NfsB are functionally silent in this context. We identified that 9/166 (5.4%) nitrofurantoin-susceptible isolates were "pre-resistant," defined as having loss of function mutations in nfsA or nfsB. Finally, using NfsA/B enzyme assays and proteomics, we demonstrated that 9/34 (26.5%) ribE wild-type nitrofurantoin-resistant isolates also carried functionally wild-type nfsB or nfsB/nfsA. In these cases, NfsA/B activity was reduced through downregulated gene expression. Our biological understanding of nitrofurantoin resistance is greatly improved by this analysis but is still insufficient to allow its reliable prediction from WGS data.
Collapse
Affiliation(s)
- Punyawee Dulyayangkul
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Jordan E Sealey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Winnie W Y Lee
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Naphat Satapoomin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Carlos Reding
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- University of Bristol Proteomics Facility, Bristol, United Kingdom
| | - Philip B Williams
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Matthew B Avison
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Rahman Z, McLaws M, Thomas T. Genomic characterization of extended-spectrum beta-lactamase-producing and carbapenem-resistant Escherichia coli from urban wastewater in Australia. Microbiologyopen 2024; 13:e1403. [PMID: 38488803 PMCID: PMC10941799 DOI: 10.1002/mbo3.1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
This study investigates extended-spectrum beta-lactamase-producing and carbapenem-resistant Escherichia coli isolates from Sydney's wastewater. These isolates exhibit resistance to critical antibiotics and harbor novel resistance mechanisms. The findings highlight the importance of wastewater-based surveillance in monitoring resistance beyond the clinical setting.
Collapse
Affiliation(s)
- Zillur Rahman
- School of Biological, Earth and Environmental Sciences, Centre for Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
| | - Mary‐Louise McLaws
- School of Population HealthUNSW SydneySydneyNew South WalesAustralia
- UNSW Global Water InstituteUNSW SydneySydneyNew South WalesAustralia
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, Centre for Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Abad-Fau A, Sevilla E, Oro A, Martín-Burriel I, Moreno B, Morales M, Bolea R. Multidrug resistance in pathogenic Escherichia coli isolates from urinary tract infections in dogs, Spain. Front Vet Sci 2024; 11:1325072. [PMID: 38585298 PMCID: PMC10996866 DOI: 10.3389/fvets.2024.1325072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Escherichia coli (E. coli) is a pathogen frequently isolated in cases of urinary tract infections (UTIs) in both humans and dogs and evidence exists that dogs are reservoirs for human infections. In addition, E. coli is associated to increasing antimicrobial resistance rates. This study focuses on the analysis of antimicrobial resistance and the presence of selected virulence genes in E. coli isolates from a Spanish dog population suffering from UTI. This collection of isolates showed an extremely high level of phenotypic resistance to 1st-3rd generation cephalosporins, followed by penicillins, fluoroquinolones and amphenicols. Apart from that, 13.46% of them were considered extended-spectrum beta-lactamase producers. An alarmingly high percentage (71.15%) of multidrug resistant isolates were also detected. There was a good correlation between the antimicrobial resistance genes found and the phenotypic resistance expressed. Most of the isolates were classified as extraintestinal pathogenic E. coli, and two others harbored virulence factors related to diarrheagenic pathotypes. A significant relationship between low antibiotic resistance and high virulence factor carriage was found, but the mechanisms behind it are still poorly understood. The detection of high antimicrobial resistance rates to first-choice treatments highlights the need of constant antimicrobial resistance surveillance, as well as continuous revision of therapeutic guidelines for canine UTI to adapt them to changes in antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Eloisa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Ainara Oro
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon, Universidad de Zaragoza, Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Mariano Morales
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Albéitar Laboratories, Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Vallée M, Harding C, Hall J, Aldridge PD, TAN A. Exploring the in situ evolution of nitrofurantoin resistance in clinically derived uropathogenic Escherichia coli isolates. J Antimicrob Chemother 2022; 78:373-379. [PMID: 36480295 PMCID: PMC9890214 DOI: 10.1093/jac/dkac398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nitrofurantoin has been re-introduced as a first-choice antibiotic to treat uncomplicated acute urinary tract infections in England and Wales. Highly effective against common uropathogens such as Escherichia coli, its use is accompanied by a low incidence (<10%) of antimicrobial resistance. Resistance to nitrofurantoin is predominantly via the acquisition of loss-of-function, step-wise mutations in the nitroreductase genes nfsA and nfsB. OBJECTIVE To explore the in situ evolution of NitR in E. coli isolates from 17 patients participating in AnTIC, a 12-month open label randomized controlled trial assessing the efficacy of antibiotic prophylaxis in reducing urinary tract infections (UTIs) incidence in clean intermittent self-catheterizing patients. METHODS The investigation of NitR evolution in E. coli used general microbiology techniques and genetics to model known NitR mutations in NitSE. coli strains. RESULTS Growth rate analysis identified a 2%-10% slower doubling time for nitrofurantoin resistant strains: NitS: 20.8 ± 0.7 min compared to NitR: 23 ± 0.8 min. Statistically, these data indicated no fitness advantage of evolved strains compared to the sensitive predecessor (P-value = 0.13). Genetic manipulation of E. coli to mimic NitR evolution, supported no fitness advantage (P-value = 0.22). In contrast, data argued that a first-step mutant gained a selective advantage, at sub-MIC (4-8 mg/L) nitrofurantoin concentrations. CONCLUSION Correlation of these findings to nitrofurantoin pharmacokinetic data suggests that the low incidence of E. coli NitR, within the community, is driven by urine-based nitrofurantoin concentrations that selectively inhibit the growth of E. coli strains carrying the key first-step loss-of-function mutation.
Collapse
Affiliation(s)
| | - Chris Harding
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
- Urology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Judith Hall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | | | - Aaron TAN
- Current address: SCELSE, Nanyang Technological University, SBS-01N-27, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
5
|
Paranos P, Vourli S, Pournaras S, Meletiadis J. Assessing Clinical Potential of Old Antibiotics against Severe Infections by Multi-Drug-Resistant Gram-Negative Bacteria Using In Silico Modelling. Pharmaceuticals (Basel) 2022; 15:1501. [PMID: 36558952 PMCID: PMC9781251 DOI: 10.3390/ph15121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
In the light of increasing antimicrobial resistance among gram-negative bacteria and the lack of new more potent antimicrobial agents, new strategies have been explored. Old antibiotics, such as colistin, temocillin, fosfomycin, mecillinam, nitrofurantoin, minocycline, and chloramphenicol, have attracted the attention since they often exhibit in vitro activity against multi-drug-resistant (MDR) gram-negative bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. The current review provides a summary of the in vitro activity, pharmacokinetics and PK/PD characteristics of old antibiotics. In silico modelling was then performed using Monte Carlo simulation in order to combine all preclinical data with human pharmacokinetics and determine the probability of target (1-log kill in thigh/lung infection animal models) attainment (PTA) of different dosing regimens. The potential of clinical efficacy of a drug against severe infections by MDR gram-negative bacteria was considered when PTA was >95% at the epidemiological cutoff values of corresponding species. In vitro potent activity against MDR gram-negative pathogens has been shown for colistin, polymyxin B, temocillin (against E. coli and K. pneumoniae), fosfomycin (against E. coli), mecillinam (against E. coli), minocycline (against E. coli, K. pneumoniae, A. baumannii), and chloramphenicol (against E. coli) with ECOFF or MIC90 ≤ 16 mg/L. When preclinical PK/PD targets were combined with human pharmacokinetics, Monte Carlo analysis showed that among the old antibiotics analyzed, there is clinical potential for polymyxin B against E. coli, K. pneumoniae, and A. baumannii; for temocillin against K. pneumoniae and E. coli; for fosfomycin against E. coli and K. pneumoniae; and for mecillinam against E. coli. Clinical studies are needed to verify the potential of those antibiotics to effectively treat infections by multi-drug resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Sophia Vourli
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
6
|
Silva BR, Queiroz PA, Amaral PHRD, Freitas BCD, Stocco AF, Sampiron EG, Vandresen F, Tognim MCB, Caleffi-Ferracioli KR, Scodro RBDL, Cardoso RF, La Porta FDA, Siqueira VLD. Polymyxin B Activity Rescue by (−)-Camphene-Based Thiosemicarbazide Against Carbapenem-Resistant Enterobacterales. Microb Drug Resist 2022; 28:962-971. [PMID: 36256860 DOI: 10.1089/mdr.2021.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Due to the significant shortage of therapeutic options for carbapenem-resistant Enterobacterales (CRE) infections, new drugs or therapeutic combinations are urgently required. We show in this study that (-)-camphene-based thiosemicarbazide (TSC) may act synergistically with polymyxin B (PMB) against CRE, rescuing the activity of this antimicrobial. With the specific aim of a better molecular understanding of this effect caused by the presence of TSC, theoretical calculations were also performed in this study. Based on these findings, it is concluded that the presence of TSC moieties contributes to significant changes in the hydrogen atom charge of PMB structure, which trend more positives for the PMB/TSC system studied. This could lead to the formation of stronger hydrogen bonds in the Enterobacterales active site and, thus contribute to a molecular understanding of the PMB rescue of activity promoted by the presence of TSC moiety. As such, the clinical potential of these drug combinations requires further evaluation.
Collapse
Affiliation(s)
- Bruna Renata Silva
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
| | - Paula Assis Queiroz
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
| | - Pedro Henrique Rodrigues do Amaral
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Beatriz Cardoso de Freitas
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
| | - Alison Fernando Stocco
- Department of Chemistry, Federal Technological University of Parana, Londrina, Parana, Brazil
| | - Eloisa Gibin Sampiron
- Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, Brazil
| | - Fábio Vandresen
- Department of Chemistry, Federal Technological University of Parana, Londrina, Parana, Brazil
| | | | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Regiane Bertin de Lima Scodro
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
- Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | | | - Vera Lucia Dias Siqueira
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| |
Collapse
|
7
|
Wan Y, Mills E, Leung RC, Vieira A, Zhi X, Croucher NJ, Woodford N, Jauneikaite E, Ellington MJ, Sriskandan S. Alterations in chromosomal genes nfsA, nfsB, and ribE are associated with nitrofurantoin resistance in Escherichia coli from the United Kingdom. Microb Genom 2021; 7:000702. [PMID: 34860151 PMCID: PMC8767348 DOI: 10.1099/mgen.0.000702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance in enteric or urinary Escherichia coli is a risk factor for invasive E. coli infections. Due to widespread trimethoprim resistance amongst urinary E. coli and increased bacteraemia incidence, a national recommendation to prescribe nitrofurantoin for uncomplicated urinary tract infection was made in 2014. Nitrofurantoin resistance is reported in <6% urinary E. coli isolates in the UK, however, mechanisms underpinning nitrofurantoin resistance in these isolates remain unknown. This study aimed to identify the genetic basis of nitrofurantoin resistance in urinary E. coli isolates collected from north west London and then elucidate resistance-associated genetic alterations in available UK E. coli genomes. As a result, an algorithm was developed to predict nitrofurantoin susceptibility. Deleterious mutations and gene-inactivating insertion sequences in chromosomal nitroreductase genes nfsA and/or nfsB were identified in genomes of nine confirmed nitrofurantoin-resistant urinary E. coli isolates and additional 11 E. coli isolates that were highlighted by the prediction algorithm and subsequently validated to be nitrofurantoin-resistant. Eight categories of allelic changes in nfsA , nfsB , and the associated gene ribE were detected in 12412 E. coli genomes from the UK. Evolutionary analysis of these three genes revealed homoplasic mutations and explained the previously reported order of stepwise mutations. The mobile gene complex oqxAB , which is associated with reduced nitrofurantoin susceptibility, was identified in only one of the 12412 genomes. In conclusion, mutations and insertion sequences in nfsA and nfsB were leading causes of nitrofurantoin resistance in UK E. coli . As nitrofurantoin exposure increases in human populations, the prevalence of nitrofurantoin resistance in carriage E. coli isolates and those from urinary and bloodstream infections should be monitored.
Collapse
Affiliation(s)
- Yu Wan
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ewurabena Mills
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rhoda C.Y. Leung
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Present address: Department of Microbiology, Queen Mary Hospital, Hong Kong S.A.R., PR China
| | - Ana Vieira
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Xiangyun Zhi
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthew J. Ellington
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Shiranee Sriskandan
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Research on the drug resistance mechanism of foodborne pathogens. Microb Pathog 2021; 162:105306. [PMID: 34822970 DOI: 10.1016/j.micpath.2021.105306] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 12/30/2022]
Abstract
Foodborne diseases caused by foodborne pathogens are one of the main problems threatening human health and safety. The emergence of multi-drug resistant strains due to the abuse of antibiotics has increased the difficulty of clinical treatment. Research on the drug resistance mechanism of foodborne pathogens has become an effective method to solve multi-drug resistant strains. In this paper, the four main drug resistance mechanisms, including reduced cell membrane permeability, efflux pump mechanism, target site mutation mechanism, and enzymatic hydrolysis, were used to systematically analyze the drug resistance of Salmonella, Listeria monocytogenes, and Escherichia coli. And the new methods were discussed that may be used to solve the drug resistance of foodborne pathogens such as CRISPR and bacteriophages. This review provided a certain theoretical basis for the treatment of foodborne diseases.
Collapse
|
9
|
Khamari B, Adak S, Chanakya PP, Lama M, Peketi ASK, Gurung SA, Chettri S, Kumar P, Bulagonda EP. Prediction of nitrofurantoin resistance among Enterobacteriaceae and mutational landscape of in vitro selected resistant E. coli. Res Microbiol 2021; 173:103889. [PMID: 34718096 DOI: 10.1016/j.resmic.2021.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022]
Abstract
Nitrofurantoin (NIT) has long been a drug of choice in the treatment of lower urinary tract infections. Recent emergence of NIT resistant Enterobacteriaceae is a global concern. An ordinal logistic regression model based on PCR amplification patterns of five genes associated with NIT resistance (nfsA, nfsB, ribE, oqxA, and oqxB) among 100 clinical Enterobacteriaceae suggested that a combination of oqxB, nfsB, ribE, and oqxA is ideal for NIT resistance prediction. In addition, four Escherichia coli NIT-resistant mutants were in vitro generated by exposing an NIT-susceptible E. coli to varying concentrations of NIT. The in vitro selected NIT resistant mutants (NI2, NI3, NI4 and NI5) were found to have mutations resulting in frameshifts, premature/lost stop codons or failed amplification of nfsA and/or nfsB genes. The in vitro selected NI5 and the transductant colonies with reconstructed NI5 genotype exhibited reduced fitness compared to their parent strain NS30, while growth of a resistant clinical isolate (NR42) was found to be unaffected in the absence of NIT. These results emphasize the importance of strict adherence to prescribed antibiotic treatment regimens and dosage duration. If left unchecked, these resistant bacteria may thrive at sub-therapeutic concentrations of NIT and spread in the community.
Collapse
Affiliation(s)
- Balaram Khamari
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Sudeshna Adak
- OmiX Research and Diagnostic Laboratories Private Limited, Bengaluru, India
| | - Pachi Pulusu Chanakya
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Manmath Lama
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Arun Sai Kumar Peketi
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Saurav Anand Gurung
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Sushil Chettri
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Prakash Kumar
- Department of Microbiology, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, India
| | | |
Collapse
|
10
|
Zhang Y, Wang L, Zhou C, Lin Y, Liu S, Zeng W, Yu K, Zhou T, Cao J. Unraveling Mechanisms and Epidemic Characteristics of Nitrofurantoin Resistance in Uropathogenic Enterococcus faecium Clinical Isolates. Infect Drug Resist 2021; 14:1601-1611. [PMID: 33911884 PMCID: PMC8075312 DOI: 10.2147/idr.s301802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Multidrug-resistant (MDR) Enterococcus faecium is an important nosocomial pathogen causing urinary tract infection, and the reapplication of nitrofurantoin (NIT) in the clinic has attracted great attention. This study aims to explore the NIT resistance mechanisms and epidemiological characteristics of E. faecium clinical isolates. Patients and Methods A total of 633 E. faecium clinical isolates was obtained from urine samples in a clinical teaching hospital during 2017–2018. Among them, 40 NIT-resistant strains, and a similar number of -intermediate and -susceptible strains were isolated. The minimum inhibitory concentrations (MICs) of NIT were detected by agar dilution method. The prevalence and mutations of nitroreductase-encoding genes ef0404 and ef0648 were explored by polymerase chain reaction (PCR), followed by efflux pump inhibition test and quantitative real-time PCR (qRT-PCR) to investigate the resistance mechanisms of NIT. Furthermore, the epidemiological characteristics were detected by multilocus sequence typing (MLST). Results The carrying rates of nitroreductase in NIT-susceptible, -intermediate, and -resistant isolates were 100%, 50%, and 20%, respectively. After exposure to the efflux pump inhibitor, the MIC of 12 E. faecium decreased by ≥4-fold. However, the efflux pump genes efrAB, emeA, and oqxAB were not overexpressed in NIT-resistant E. faecium isolates. Moreover, MLST analysis revealed that all the NIT-resistant isolates belonged to CC17, of which 30 (75%) were associated with ST78. Conclusion This study has established for the first time that the absence of EF0404 and EF0648 is the main mechanism of NIT resistance in E. faecium. Our findings are likely to fill the knowledge gap pertaining to the NIT resistance mechanism in E. faecium and provide important insights for molecular epidemiological characteristics analysis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Yishuai Lin
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Weiliang Zeng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Kaihang Yu
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| |
Collapse
|
11
|
Edowik Y, Caspari T, Williams HM. The Amino Acid Changes T55A, A273P and R277C in the Beta-Lactamase CTX-M-14 Render E. coli Resistant to the Antibiotic Nitrofurantoin, a First-Line Treatment of Urinary Tract Infections. Microorganisms 2020; 8:microorganisms8121983. [PMID: 33322113 PMCID: PMC7763680 DOI: 10.3390/microorganisms8121983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022] Open
Abstract
The antibiotic nitrofurantoin is a furan flanked by a nitro group and a hydantoin ring. It is used to treat lower urinary tract infections (UTIs) that have a lifetime incidence of 50−60% in adult women. UTIs are typically caused by uropathogenic Escherichia coli (UPEC), which are increasingly expressing extended-spectrum beta-lactamases (ESBL), rendering them multi-drug resistant. Nitrofurantoin is a first-line treatment for gram-negative ESBL-positive UTI patients, given that resistance to it is still rare (0% to 4.4%). Multiplex PCR of β-lactamase genes of the blaCTX-M groups 1, 2, 9 and 8/25 from ESBL-positive UTI patients treated at three referral hospitals in North Wales (UK) revealed the presence of a novel CTX-M-14-like gene harbouring the missense mutations T55A, A273P and R277C. While R277 is close to the active site, T55 and A273 are both located in external loops. Recombinant expression of CTX-M-14 and the mutated CTX-M-14 in the periplasm of E. coli revealed a significant increase in the Minimum Inhibitory Concentration (MIC) for nitrofurantoin from ≥6 μg/mL (CTX-M-14) to ≥512 μg/mL (mutated CTX-M-14). Consistent with this finding, the mutated CTX-M protein hydrolysed nitrofurantoin in a cell-free assay. Detection of a novel nitrofurantoin resistance gene indicates an emerging clinical problem in the treatment of gram-negative ESBL-positive UTI patients.
Collapse
Affiliation(s)
- Yasir Edowik
- School of Medical Sciences, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd, Wales LL57 2AS, UK;
| | - Thomas Caspari
- School of Medical Sciences, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd, Wales LL57 2AS, UK;
- Faculty of Medicine, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
- Correspondence: (T.C.); (H.M.W.)
| | - Hugh Merfyn Williams
- School of Medical Sciences, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd, Wales LL57 2AS, UK;
- Correspondence: (T.C.); (H.M.W.)
| |
Collapse
|
12
|
Sorlozano-Puerto A, Lopez-Machado I, Albertuz-Crespo M, Martinez-Gonzalez LJ, Gutierrez-Fernandez J. Characterization of Fosfomycin and Nitrofurantoin Resistance Mechanisms in Escherichia coli Isolated in Clinical Urine Samples. Antibiotics (Basel) 2020; 9:antibiotics9090534. [PMID: 32847131 PMCID: PMC7558542 DOI: 10.3390/antibiotics9090534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/29/2023] Open
Abstract
Fosfomycin and nitrofurantoin are antibiotics of choice to orally treat non-complicated urinary tract infections (UTIs) of community origin because they remain active against bacteria resistant to other antibiotics. However, epidemiologic surveillance studies have detected a reduced susceptibility to these drugs. The objective of this study was to determine possible mechanisms of resistance to these antibiotics in clinical isolates of fosfomycin- and/or nitrofurantoin-resistant UTI-producing Escherichia coli. We amplified and sequenced murA, glpT, uhpT, uhpA, ptsI, cyaA, nfsA, nfsB, and ribE genes, and screened plasmid-borne fosfomycin-resistance genes fosA3, fosA4, fosA5, fosA6, and fosC2 and nitrofurantoin-resistance genes oqxA and oqxB by polymerase chain reaction. Among 29 isolates studied, 22 were resistant to fosfomycin due to deletion of uhpT and/or uhpA genes, and 2 also possessed the fosA3 gene. Some modifications detected in sequences of NfsA (His11Tyr, Ser33Arg, Gln67Leu, Cys80Arg, Gly126Arg, Gly154Glu, Arg203Cys), NfsB (Gln44His, Phe84Ser, Arg107Cys, Gly192Ser, Arg207His), and RibE (Pro55His), and the production of truncated NfsA (Gln67 and Gln147) and NfsB (Glu54), were associated with nitrofurantoin resistance in 15/29 isolates; however, the presence of oqxAB plasmid genes was not detected in any isolate. Resistance to fosfomycin was associated with the absence of transporter UhpT expression and/or the presence of antibiotic-modifying enzymes encoded by fosA3 plasmid-mediated gene. Resistance to nitrofurantoin was associated with modifications of NfsA, NfsB, and RibE proteins. The emergence and spread of these resistance mechanisms, including transferable resistance, could compromise the future usefulness of fosfomycin and nitrofurantoin against UTIs. Furthermore, knowledge of the genetic mechanisms underlying resistance may lead to rapid DNA-based testing for resistance.
Collapse
Affiliation(s)
- Antonio Sorlozano-Puerto
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
| | - Isaac Lopez-Machado
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
| | - Maria Albertuz-Crespo
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
| | - Luis Javier Martinez-Gonzalez
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), 18016 Granada, Spain;
| | - Jose Gutierrez-Fernandez
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
- Laboratory of Microbiology, Virgen de las Nieves University Hospital-ibs, 18014 Granada, Spain
- Correspondence:
| |
Collapse
|
13
|
Tian X, Wang Q, Perlaza-Jiménez L, Zheng X, Zhao Y, Dhanasekaran V, Fang R, Li J, Wang C, Liu H, Lithgow T, Cao J, Zhou T. First description of antimicrobial resistance in carbapenem-susceptible Klebsiella pneumoniae after imipenem treatment, driven by outer membrane remodeling. BMC Microbiol 2020; 20:218. [PMID: 32689945 PMCID: PMC7372807 DOI: 10.1186/s12866-020-01898-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a looming threat to human health. Although there are numerous studies regarding porin alteration in association with the production of ESBLs and/or AmpC β-lactamase, a systematic study on the treatment-emergence of porins alteration in antibiotic resistance does not yet exist. The aim of this study was to investigate the underlying mechanism of resistance of K. pneumoniae during carbapenem treatment. RESULTS Here, we report three strains (FK-2624, FK-2723 and FK-2820) isolated from one patient before and after imipenem treatment during hospitalization. Antibiotic susceptibility testing indicated that that the first isolate, FK-2624, was susceptible to almost all tested antimicrobials, being resistant only to fosfomycin. The subsequent isolates FK-2723 and FK-2820 were multidrug resistant (MDR). After imipenem therapy, FK-2820 was found to be carbapenem-resistant. PCR and Genome Sequencing analysis indicated that oqxA, and fosA5, were identified in all three strains. In addition, FK-2624 also harbored blaSHV-187 and blaTEM-116. The blaSHV-187 and blaTEM-116 genes were not detected in FK-2723 and FK-2820. blaDHA-1, qnrB4, aac (6')-IIc, and blaSHV-12, EreA2, CatA2, SulI, and tetD, were identified in both FK-2723 and FK-2820. Moreover, the genes blaDHA-1, qnrB4, aac (6')-IIc were co-harbored on a plasmid. Of the virulence factors found in this study, ybtA, ICEKp6, mrkD, entB, iroN, rmpA2-6, wzi16 and capsular serotype K57 were found in the three isolates. The results of pairwise comparisons, multi-locus sequencing typing (MLST) and pulsed-field gel electrophoresis (PFGE) revealed high homology among the isolates. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that isolate FK-2820 lacked OmpK36, with genome sequence data validating that there was a premature stop codon in the ompK36 gene and real-time RT-PCR suggesting high turnover of the ompK36 non-sense transcript in FK-2820, with the steady-state mRNA level 0.007 relative to the initial isolate. CONCLUSION This study in China highlight that the alteration of outer membrane porins due to the 14-day use of imipenem play a potential role in leading to clinical presentation of carbapenem-resistance. This is the first description of increased resistance developing from a carbapenem-susceptible K. pneumoniae with imipenem treatment driven by outer membrane remodeling.
Collapse
Affiliation(s)
- Xuebin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiongdan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Laura Perlaza-Jiménez
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Xiangkuo Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yajie Zhao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Vijay Dhanasekaran
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiyang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia.
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
Lu X, Zhang Z, Xu Y, Lu J, Tang W, Zhang J. Effect of new carbonyl cyanide aromatic hydrazones on biofilm inhibition against methicillin resistant Staphylococcus aureus. RSC Adv 2020; 10:17854-17861. [PMID: 35515581 PMCID: PMC9053579 DOI: 10.1039/d0ra03124k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 12/03/2022] Open
Abstract
Carbonyl cyanide m-chlorophenylhydrazone (CCCP), as a protonophore, in combination with antibiotics exhibited potentiating antibacterial activity. To improve CCCP's potency and toxicity, a series of aromatic hydrazones were synthesized and their antimicrobial activity was evaluated; amongst them, compounds 2e and 2j with a strong para-electron-withdrawing substituent (–NO2 and –CF3) at the phenyl ring had the lowest MICs against both S. aureus and methicillin resistant Staphylococcus aureus (1.56 and 1.56 μM, respectively). Some compounds in combination with antibiotics exhibited potentiate Gram-positive antibacterial activity; compound 2e was found to display unaided or synergistic efficacy against MRSA. In particular, when compound 2e is combined with ofloxacin, it has a good synergistic effect against MRSA. Moreover, electron microscopy revealed that compound 2e inhibits biofilm formation and effectively eradicates preformed biofilm. MTT assay showed that compound 2e displays as low toxicity as CCCP. Overall, our data showed that the aromatic hydrazone is a promising scaffold for anti-staphylococcal drug development. 2e and 2j with strong p-NO2 and p-CF3 at phenyl ring had the lowest MICs against S. aureus and MRSA. 2e displayed unaided or synergistic efficacy against MRSA, especially combined with ofloxacin. EM revealed that 2e destroys biofilms and cell membranes.![]()
Collapse
Affiliation(s)
- Xueer Lu
- School of Medicine, Anhui University of Science and Technology Huainan 232001 China.,Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital Hefei 230041 China
| | - Ziwen Zhang
- School of Pharmacy, Anhui Medical University Hefei 230032 China
| | - Yingying Xu
- School of Pharmacy, Anhui Medical University Hefei 230032 China
| | - Jun Lu
- School of Medicine, Anhui University of Science and Technology Huainan 232001 China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University Hefei 230032 China
| | - Jing Zhang
- School of Medicine, Anhui University of Science and Technology Huainan 232001 China.,Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital Hefei 230041 China
| |
Collapse
|
15
|
Tian X, Zheng X, Sun Y, Fang R, Zhang S, Zhang X, Lin J, Cao J, Zhou T. Molecular Mechanisms and Epidemiology of Carbapenem-Resistant Escherichia coli Isolated from Chinese Patients During 2002-2017. Infect Drug Resist 2020; 13:501-512. [PMID: 32110061 PMCID: PMC7035005 DOI: 10.2147/idr.s232010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/30/2020] [Indexed: 01/04/2023] Open
Abstract
Background The emergence and spread of carbapenem-resistant Escherichia coli (E. coli) pose a serious threat to human health worldwide. This study aimed to investigate the molecular mechanisms underlying carbapenem resistance and their prevalence among E. coli in China. Methods A collection of 5796 E. coli clinical isolates were collected from the First Affiliated Hospital of Wenzhou Medical University from 2002 to 2017. Sensitivity to antibiotics was determined using the agar dilution method. The detection of carbapenemases production and the prevalence of resistance-associated genes were investigated through modified carbapenem inactivation method (mCIM), PCR and sequencing. The mutations in outer membrane porins genes (ompC and ompF) were also analyzed by PCR and sequencing assays. The effect of efflux pump mechanism on carbapenem resistance was also tested. E. coli were typed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Results A total of 58 strains (1.0%) of carbapenem-resistant E. coli were identified. The strains carrying blaKPC-2 and blaNDM accounted for 22.4% (13/58) and 51.7% (30/58), respectively. Among blaNDM- positive strains, 27 blaNDM genes were assigned to blaNDM-5, while the remaining three strains were blaNDM-1, whereas blaVIM, blaIMP, blaOXA-48, and blaSHV were not found. The CTX-M-type β-lactamase genes accounted for 96.6% (56/58). In addition, blaTEM-1 genes were identified in 58.6% of tested strains. In carbapenem-resistant isolates, mutations in OmpC (the majority of mutated sites were D192G and Q104_F141del, accounting for 54.5%) and OmpF (large deletions S75_V127del, W83_D135del and Q88_D135del) were detected. Of note, the antibiotic resistance was not associated with overexpression of efflux pump. Moreover, MLST categorized the 58 carbapenem-resistant isolates into 19 different sequence types. PFGE analysis revealed that homology among the carbapenem-resistant isolates was low and sporadic. Conclusion The blaNDM was the principal resistance mechanism of carbapenem-resistant E. coli in the hospital. blaNDM-5 is becoming a new threat to public health and the alteration of outer membrane porins might help further increase the MIC of carbapenem.
Collapse
Affiliation(s)
- Xuebin Tian
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yao Sun
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Renchi Fang
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Siqin Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiucai Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jie Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
16
|
Novel 5-Nitrofuran-Activating Reductase in Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.00868-19. [PMID: 31481448 DOI: 10.1128/aac.00868-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
The global spread of multidrug-resistant enterobacteria warrants new strategies to combat these pathogens. One possible approach is the reconsideration of "old" antimicrobials, which remain effective after decades of use. Synthetic 5-nitrofurans such as furazolidone, nitrofurantoin, and nitrofurazone are such a class of antimicrobial drugs. Recent epidemiological data showed a very low prevalence of resistance to this antimicrobial class among clinical Escherichia coli isolates in various parts of the world, forecasting the increasing importance of its uses to battle antibiotic-resistant enterobacteria. However, although they have had a long history of clinical use, a detailed understanding of the 5-nitrofurans' mechanisms of action remains limited. Nitrofurans are known as prodrugs that are activated in E. coli by reduction catalyzed by two redundant nitroreductases, NfsA and NfsB. Furazolidone, nevertheless, retains relatively significant antibacterial activity in the nitroreductase-deficient ΔnfsA ΔnfsB E. coli strain, indicating the presence of additional activating enzymes and/or antibacterial activity of the unreduced form. Using genome sequencing, genetic, biochemical, and bioinformatic approaches, we discovered a novel 5-nitrofuran-activating enzyme, AhpF, in E. coli The discovery of a new nitrofuran-reducing enzyme opens new avenues for overcoming 5-nitrofuran resistance, such as designing nitrofuran analogues with higher affinity for AhpF or screening for adjuvants that enhance AhpF expression.
Collapse
|
17
|
Mottaghizadeh F, Mohajjel Shoja H, Haeili M, Darban-Sarokhalil D. Molecular epidemiology and nitrofurantoin resistance determinants of nitrofurantoin-non-susceptible Escherichia coli isolated from urinary tract infections. J Glob Antimicrob Resist 2019; 21:335-339. [PMID: 31627025 DOI: 10.1016/j.jgar.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES The worldwide emergence of multidrug-resistant uropathogens has resulted in the revival of old antibiotics such as nitrofurantoin (NIT) for the treatment of uncomplicated urinary tract infections (UTIs). This study aimed to identify determinants of NIT resistance and to investigate the genetic diversity of NIT-resistant (NIT-R) Escherichia coli isolates. METHODS Six NIT-R and three NIT-susceptible clinical E. coli isolates from patients with UTI were studied. The susceptibility of the isolates to various classes of antibiotics was evaluated by disk diffusion. The presence of plasmid-encoded efflux pump genes (oqxA and oqxB) was investigated by PCR. Nucleotide sequences of the nfsA, nfsB and ribE genes were determined. The genetic relatedness of the NIT-R isolates was evaluated by multilocus sequence typing (MLST). RESULTS All six NIT-R isolates were characterised with high-level NIT resistance (MIC ≥ 512 mg/L) and they belonged to five distinct STs including ST131 (n = 2), ST73, ST405, ST10 and ST354 (n = 1 each). Amikacin, carbapenems, minocycline, tigecycline and fosfomycin were the most active agents against the studied uropathogens. The oqxA and oqxB genes were not detected in any isolate. All NIT-R isolates harboured inactivating genetic alterations in nfsA and nfsB [NfsA H11Y, S33N, S38Y, W212R substitutions, Δg638 (frameshift), Δa64-g73 (frameshift) and NfsB F84S, P45S, W94Stop, E197Stop substitutions, ΔnfsB locus]. The ribE gene of most isolates was unaffected, except for one isolate co-harbouring a deleterious RibE G85C substitution and NfsA/B alterations. CONCLUSION NIT resistance in the studied E. coli isolates was mainly mediated by nfsA and nfsB alterations.
Collapse
Affiliation(s)
- Fatemeh Mottaghizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hanieh Mohajjel Shoja
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Zhang X, Bi W, Chen L, Zhang Y, Fang R, Cao J, Zhou T. Molecular mechanisms and epidemiology of fosfomycin resistance in enterococci isolated from patients at a teaching hospital in China, 2013-2016. J Glob Antimicrob Resist 2019; 20:191-196. [PMID: 31422238 DOI: 10.1016/j.jgar.2019.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the mechanisms of fosfomycin resistance and epidemiological characteristics in fosfomycin-resistant enterococci in China. METHODS A collection of 761 enterococcal clinical isolates from a teaching hospital in Wenzhou, China were studied. The fosfomycin susceptibility of the isolates was investigated by the agar dilution method. The isolates were also analysed for mechanisms of re fosfomycin resistance by PCR and quantitative real-time PCR. Furthermore, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to analyse the molecular epidemiological characteristics of the fosfomycin-resistant isolates. RESULTS In this study, 0.3% (1/372) of Enterococcus faecalis and 4.9% (19/389) of Enterococcus faecium clinical isolates were found to be resistant to fosfomycin. Among the 20 fosfomycin-resistant isolates, 5 harboured the fosB gene, 10 carried multiple amino acid substitutions in MurA, and 6 showed high-level expression of the fosX gene; of note, 1 isolate simultaneously carried fosB and amino acid mutation in MurA. Furthermore, a high degree of homology in the fosfomycin-resistant enterococci was confirmed using MLST and PFGE. CONCLUSION These finding demonstrate that the fosB gene, mutations in the fosfomycin target enzyme MurA, and a high expression level of fosX were the resistance mechanisms in these fosfomycin-resistant enterococci.
Collapse
Affiliation(s)
- Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenzi Bi
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yizhi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|