1
|
Antonello RM, Riccardi N, Saderi L, Sotgiu G. Synergistic properties of linezolid against Enterococcus spp. isolates: a systematic review from in vitro studies. Eur J Clin Microbiol Infect Dis 2024; 43:17-31. [PMID: 37975976 DOI: 10.1007/s10096-023-04704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Vancomycin-resistant enterococci (VRE) are a leading cause of hospital-acquired infections with limited therapeutic options. Combination of at least two antimicrobials is a possible strategy to obtain rapid and sustained bactericidal effects and overcome the emergence of resistance. We revised the literature on linezolid synergistic properties from in vitro studies to assess its activity in combination with molecules belonging to other antibiotic classes against Enterococcus spp. METHODS We performed a systematic review of the literature from three peer-reviewed databases including papers evaluating linezolid synergistic properties in vitro against Enterococcus spp. isolates. RESULTS We included 206 Enterococcus spp. isolates (92 E. faecalis, 90 E. faecium, 2 E. gallinarum, 3 E. casseliflavus, 19 Enterococcus spp.) from 24 studies. When an isolate was tested with different combinations, each combination was considered independently for further analysis. The most frequent interaction was indifferent effect (247/343, 72% of total interactions). The highest synergism rates were observed when linezolid was tested in combination with rifampin (10/49, 20.4% of interactions) and fosfomycin (16/84, 19.0%, of interactions). Antagonistic effect accounted for 7/343 (2.0%) of total interactions. CONCLUSION Our study reported overall limited synergistic in vitro properties of linezolid with other antibiotics when tested against Enterococcus spp. The clinical choice of linezolid in combination with other antibiotics should be guided by reasoned empiric therapy in the suspicion of a polymicrobial infection or targeted therapy on microbiological results, rather than on an intended synergistic effect of the linezolid-based combination.
Collapse
Affiliation(s)
| | - Niccolò Riccardi
- StopTB Italia ODV, Milan, Italy
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Laura Saderi
- StopTB Italia ODV, Milan, Italy
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- StopTB Italia ODV, Milan, Italy
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
2
|
Jo J, Lee JY, Cho H, Ko KS. Treatment of Colistin Dependence-Developing Acinetobacter baumannii with Antibiotic Combinations at Subinhibitory Concentrations. Microb Drug Resist 2023; 29:448-455. [PMID: 37379479 DOI: 10.1089/mdr.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Recent studies have revealed that colistin dependence frequently develops in colistin-susceptible Acinetobacter baumannii isolates. Despite resistance in parental strains, colistin-dependent mutants showed increased susceptibility to several antibiotics, which suggests the possibility of developing strategies to eliminate multidrug-resistant (MDR) A. baumannii. We investigated in vitro and in vivo efficacy of combinations of colistin and other antibiotics using MDR A. baumannii strains H08-391, H06-855, and H09-94, which are colistin-susceptible but develops colistin dependence upon exposure to colistin. An in vitro time-killing assay, a checkerboard assay, and an antibiotic treatment assay using Galleria mellonella larvae were performed. Although a single treatment of colistin at a high concentration did not prevent colistin dependence, combinations of colistin with other antibiotics at subinhibitory concentrations, especially amikacin, eradicated the strains by inhibiting the development of colistin dependence, in the in vitro time-killing assay. Only 40% of G. mellonella larvae infected by A. baumannii survived with colistin treatment alone; however, all or most of them survived following treatment with the combination of colistin and other antibiotics (amikacin, ceftriaxone, and tetracycline). Our results suggest the possibility of the combination of colistin and amikacin or other antibiotics as one of therapeutic options against A. baumannii infections by eliminating colistin-dependent mutants.
Collapse
Affiliation(s)
- Jeongwoo Jo
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Lee
- Research Institute for Future Medical Science, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
3
|
André C, Islam MM, Paschalis E, Bispo PJM. Comparative In Vitro Activity of New Lipoglycopeptides and Vancomycin Against Ocular Staphylococci and Their Toxicity on the Human Corneal Epithelium. Cornea 2023; 42:615-623. [PMID: 36455096 PMCID: PMC10060036 DOI: 10.1097/ico.0000000000003197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE The purpose of this study was to assess the potential of new lipoglycopeptides as novel topical therapies for improved treatment of recalcitrant ocular infections. We evaluated the in vitro antimicrobial activity of oritavancin, dalbavancin, and telavancin compared with vancomycin (VAN) against a large collection of ocular staphylococcal isolates and their cytotoxicity on human corneal epithelial cells (HCECs). METHODS Antimicrobial susceptibility testing was performed by broth microdilution against 223 Staphylococcus spp. clinical isolates. Time-kill kinetics were determined for methicillin-resistant strains of Staphylococcus aureus (MRSA) (n = 2) and Staphylococcus epidermidis (MRSE) (n = 1). In vitro cytotoxicity assays were performed with AlamarBlue and live/dead staining on HCECs. RESULTS All new lipoglycopeptides showed strong in vitro potency against ocular staphylococci, including multidrug-resistant MRSA strains, with dalbavancin showing a slightly higher potency overall [minimum inhibitory concentration (MIC) 90 0.06 μg/mL] compared with telavancin and oritavancin (MIC 90 0.12 μg/mL), whereas VAN had the lowest potency (MIC 90 2 μg/mL). Oritavancin exerted rapid bactericidal activity within 1 h for MRSA and 2 h for MRSE. All other drugs were bactericidal within 24 h. At a concentration commonly used for topical preparations (25 mg/mL), cytotoxicity was observed for VAN after 5 min of incubation, whereas reduction in HCEC viability was not seen for telavancin and was less affected by oritavancin and dalbavancin. Cytotoxicity at 25 mg/mL was seen for all drugs at 30 and 60 min but was significantly reduced or undetected for lower concentrations. CONCLUSIONS Our study demonstrates that new lipoglycopeptides have substantially better in vitro antimicrobial activity against ocular staphylococcal isolates compared with VAN, with a similar or improved toxicity profile on HCECs.
Collapse
Affiliation(s)
- Camille André
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA; and
| | - Mohammad Mirazul Islam
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Eleftherios Paschalis
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Paulo J. M. Bispo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA; and
| |
Collapse
|
4
|
Serrano I, Verdial C, Tavares L, Oliveira M. The Virtuous Galleria mellonella Model for Scientific Experimentation. Antibiotics (Basel) 2023; 12:505. [PMID: 36978373 PMCID: PMC10044286 DOI: 10.3390/antibiotics12030505] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The first research on the insect Galleria mellonella was published 85 years ago, and the larva is now widely used as a model to study infections caused by bacterial and fungal pathogens, for screening new antimicrobials, to study the adjacent immune response in co-infections or in host-pathogen interaction, as well as in a toxicity model. The immune system of the G. mellonella model shows remarkable similarities with mammals. Furthermore, results from G. mellonella correlate positively with mammalian models and with other invertebrate models. Unlike other invertebrate models, G. mellonella can withstand temperatures of 37 °C, and its handling and experimental procedures are simpler. Despite having some disadvantages, G. mellonella is a virtuous in vivo model to be used in preclinical studies, as an intermediate model between in vitro and mammalian in vivo studies, and is a great example on how to apply the bioethics principle of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation. This review aims to discuss the progress of the G. mellonella model, highlighting the key aspects of its use, including experimental design considerations and the necessity to standardize them. A different score in the "cocoon" category included in the G. mellonella Health Index Scoring System is also proposed.
Collapse
Affiliation(s)
- Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Verdial
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
5
|
Lagatolla C, Mehat JW, La Ragione RM, Luzzati R, Di Bella S. In Vitro and In Vivo Studies of Oritavancin and Fosfomycin Synergism against Vancomycin-Resistant Enterococcus faecium. Antibiotics (Basel) 2022; 11:antibiotics11101334. [PMID: 36289992 PMCID: PMC9598191 DOI: 10.3390/antibiotics11101334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic options for infections caused by vancomycin-resistant enterococci are currently suboptimal. Combination regimens where fosfomycin is used alongside existing treatments are emerging given the proven synergistic potential and PK/PD properties. In the studies presented here, we tested five vanA and five vanB clinical isolates of Enterococcus faecium using a combination of oritavancin + fosfomycin both in vitro (checkerboard, time killing) and in vivo (Galleria mellonella). The combination of oritavancin and fosfomycin increased drug susceptibility, showing a synergistic effect in 80% of isolates and an additive effect in the remaining isolates. The combination restored fosfomycin susceptibility in 85% of fosfomycin-resistant isolates. Time killing on four selected isolates demonstrated that the combination of oritavancin and fosfomycin provided a CFU/mL reduction > 2 log10 compared with the most effective drug alone and prevented the bacterial regrowth seen after 8−24 h at sub-inhibitory drug concentrations. In addition, the combination was also tested in a biofilm assay with two isolates, and a strong synergistic effect was observed in one isolate and an additive effect in the other. Finally, we demonstrated in vivo (Galleria mellonella) a higher survival rate of the larvae treated with the combination therapy compared to monotherapy (fosfomycin or oritavancin alone). Our study provides preclinical evidence to support trials combining oritavancin and fosfomycin for VRE BSI in humans, even when biofilm is involved.
Collapse
Affiliation(s)
| | - Jai W. Mehat
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Roberto Marcello La Ragione
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy
- Correspondence:
| |
Collapse
|
6
|
Göethel G, Augsten LV, das Neves GM, Gonçalves IL, de Souza JPS, Garcia SC, Eifler-Lima VL. The role of alternative toxicological trials in drug discovery programs: The case of Caenorhabditis elegans and other methods. Curr Med Chem 2022; 29:5270-5288. [PMID: 35352642 DOI: 10.2174/0929867329666220329190825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The discovery of a new drug requires over a billion dollars and around 12 years of research efforts, and toxicity is the leading reason for failure to approve candidate drugs. Many alternative methods have been validated to detect toxicity as early as possible to diminish the waste of resources and efforts in medicinal chemistry research, and in vivo alternative methods are especially valuable for the amount of information they can give at little cost and in a short time. In this work, we present a review of the literature published between the years 2000 and 2021 of in vivo alternative methods of toxicity screening employed in medicinal chemistry, which we believe will be useful because, in addition to shortening research times, these studies provide much additional information aside from the toxicity of drug candidate compounds. These in vivo models include zebrafish, Artemia salina, Galleria mellonella, Drosophila melanogaster, planarians, and Caenorhabditis elegans as highlights. The most published ones in the last decade were zebrafish, D. melanogaster and C. elegans due to their reliability, ease and cost-effectiveness of implementation and flexibility. Special attention is given to C. elegans because of its rising popularity, a wide range of uses including toxicity screening, and active effects measurement, from antioxidant effects to anthelmintic and antimicrobial activities, and its fast and reliable results. Over time, C. elegans also became a viable high-throughput (HTS) automated drug screening option. Additionally, this manuscript lists briefly the other screening methods used for the initial toxicological analyses and the role of alternative in vivo methods in these scenarios, classifying them as in silico, in vitro and alternative in vivo models, the latter of which have been receiving a growing increase in interest in recent years.
Collapse
Affiliation(s)
- Gabriela Göethel
- Laboratório de Toxicologia (LATOX). Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - Lucas Volnei Augsten
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - Gustavo Machado das Neves
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - Itamar Luís Gonçalves
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - João Pedro Silveira de Souza
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX). Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| |
Collapse
|
7
|
Ménard G, Rouillon A, Cattoir V, Donnio PY. Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Front Cell Infect Microbiol 2022; 11:782733. [PMID: 35004350 PMCID: PMC8727906 DOI: 10.3389/fcimb.2021.782733] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing interest for Galleria mellonella larvae as an infection model is evidenced by the number of papers reporting its use, which increases exponentially since the early 2010s. This popularity was initially linked to limitation of conventional animal models due to financial, technical and ethical aspects. In comparison, alternative models (e.g. models using Caenorhabditis elegans, Drosophila melanogaster or G. mellonella) were cheap, simple to use and not limited by ethical regulation. Since then, similar results have been established with G. mellonella model comparatively to vertebrates, and it is more and more often used as a robust model per se, not only as an alternative to the murine model. This review attempts to summarize the current knowledge supporting the development of this model, both on immunological and microbiological aspects. For that, we focus on investigation of virulence and new therapies for the most important pathogenic bacteria. We also discuss points out directions for standardization, as well as recent advances and new perspectives for monitoring host-pathogen interactions.
Collapse
Affiliation(s)
- Guillaume Ménard
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Astrid Rouillon
- Univ Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, France
| | - Vincent Cattoir
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Pierre-Yves Donnio
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| |
Collapse
|
8
|
Wang S, Liu H, Mao J, Peng Y, Yan Y, Li Y, Zhang N, Jiang L, Liu Y, Li J, Huang X. Pharmacodynamics of Linezolid Plus Fosfomycin Against Vancomycin-Resistant Enterococcus faecium in a Hollow Fiber Infection Model. Front Microbiol 2022; 12:779885. [PMID: 34970238 PMCID: PMC8714187 DOI: 10.3389/fmicb.2021.779885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
The optimal therapy for severe infections caused by vancomycin-resistant Enterococcus faecium (VREfm) remains unclear, but the combination of linezolid and fosfomycin may be a good choice. The 24-h static-concentration time-kill study (SCTK) was used to preliminarily explore the pharmacodynamics of linezolid combined with fosfomycin against three clinical isolates. Subsequently, a hollow-fibre infection model (HFIM) was used for the first time to further investigate the pharmacodynamic activity of the co-administration regimen against selected isolates over 72 h. To further quantify the relationship between fosfomycin resistance and bacterial virulence in VREfm, the Galleria mellonella infection model and virulence genes expression experiments were also performed. The results of SCTK showed that the combination of linezolid and fosfomycin had additive effect on all strains. In the HFIM, the dosage regimen of linezolid (12 mg/L, steady-state concentration) combined with fosfomycin (8 g administered intravenously every 8 h as a 1 h infusion) not only produced a sustained bactericidal effect of 3∼4 log10 CFU/mL over 72 h, but also completely eradicated the resistant subpopulations. The expression of virulence genes was down-regulated to at least 0.222-fold in fosfomycin-resistant strains compared with baseline isolate, while survival rates of G. mellonella was increased (G. mellonella survival ≥45% at 72 h). For severe infections caused by VREfm, neither linezolid nor fosfomycin monotherapy regimens inhibited amplification of the resistant subpopulations, and the development of fosfomycin resistance was at the expense of the virulence of VREfm. The combination of linezolid with fosfomycin produced a sustained bactericidal effect and completely eradicated the resistant subpopulations. Linezolid plus Fosfomycin is a promising combination for therapy of severe infections caused by VREfm.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Huiping Liu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Mao
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yu Peng
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yisong Yan
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yaowen Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Na Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lifang Jiang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Alternatives to Fight Vancomycin-Resistant Staphylococci and Enterococci. Antibiotics (Basel) 2021; 10:antibiotics10091116. [PMID: 34572698 PMCID: PMC8471638 DOI: 10.3390/antibiotics10091116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Gram positive pathogens are a significant cause of healthcare-associated infections, with Staphylococci and Enterococci being the most prevalent ones. Vancomycin, a last resort glycopeptide, is used to fight these bacteria but the emergence of resistance against this drug leaves some patients with few therapeutic options. To counter this issue, new generations of antibiotics have been developed but resistance has already been reported. In this article, we review the strategies in place or in development to counter vancomycin-resistant pathogens. First, an overview of traditional antimicrobials already on the market or in the preclinical or clinical pipeline used individually or in combination is summarized. The second part focuses on the non-traditional antimicrobials, such as antimicrobial peptides, bacteriophages and nanoparticles. The conclusion is that there is hitherto no substitute equivalent to vancomycin. However, promising strategies based on drugs with multiple mechanisms of action and treatments based on bacteriophages possibly combined with conventional antibiotics are hoped to provide treatment options for vancomycin-resistant Gram-positive pathogens.
Collapse
|
10
|
Synergistic activity of fosfomycin and chloramphenicol against vancomycin-resistant Enterococcus faecium (VREfm) isolates from bloodstream infections. Diagn Microbiol Infect Dis 2020; 99:115241. [PMID: 33130503 DOI: 10.1016/j.diagmicrobio.2020.115241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022]
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) infections are increasing. Current anti-VREfm options (linezolid and daptomycin) are suboptimal. Fosfomycin maintains good efficacy against VREfm and chloramphenicol is active against ≥ 90% of VREfm. We tested chloramphenicol + fosfomycin (CAF+FOS) against 10 VREfm isolated from blood. MICs were 64 to 512 µg/mL for fosfomycin and 8 to 16 µg/mL for chloramphenicol. The combination decreased both MICs, with a synergic effect in 50% of the isolates and an additive effect in the remaining 50%. Time-kill assays performed on fractional inhibitory concentration index ≤ 0.5 strains confirmed the synergism. The antibiotic combination at ¼ of minimum inhibitory concentrations (MICs) caused a ≥ 2 log10 reduction compared to the two antibiotics alone. Finally, we provided a proof of concept of the in vitro efficacy of CAF+FOS in G. mellonella. The survival of G. mellonella larvae treated with the combination was significantly higher. The activity of fosfomycin and chloramphenicol against VREfm increases when they are used in combination.
Collapse
|
11
|
Piatek M, Sheehan G, Kavanagh K. UtilisingGalleria mellonella larvae for studying in vivo activity of conventional and novel antimicrobial agents. Pathog Dis 2020; 78:5917982. [DOI: 10.1093/femspd/ftaa059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
ABSTRACTThe immune response of insects displays many structural and functional similarities to the innate immune response of mammals. As a result of these conserved features, insects may be used for evaluating microbial virulence or for testing the in vivo efficacy and toxicity of antimicrobial compounds and results show strong similarities to those from mammals. Galleria mellonella larvae are widely used in this capacity and have the advantage of being easy to use, inexpensive to purchase and house, and being free from the ethical and legal restrictions that relate to the use of mammals in these tests. Galleria mellonella larvae may be used to assess the in vivo toxicity and efficacy of novel antimicrobial compounds. A wide range of antibacterial and antifungal therapies have been evaluated in G. mellonella larvae and results have informed subsequent experiments in mammals. While insect larvae are a convenient and reproducible model to use, care must be taken in their use to ensure accuracy of results. The objective of this review is to provide a comprehensive account of the use of G. mellonella larvae for assessing the in vivo toxicity and efficacy of a wide range of antibacterial and antifungal agents.
Collapse
Affiliation(s)
- Magdalena Piatek
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare W23 F2H6, Ireland
| | - Gerard Sheehan
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare W23 F2H6, Ireland
| |
Collapse
|
12
|
Borjan J, Meyer KA, Shields RK, Wenzler E. Activity of ceftazidime-avibactam alone and in combination with polymyxin B against carbapenem-resistant Klebsiella pneumoniae in a tandem in vitro time-kill/in vivo Galleria mellonella survival model analysis. Int J Antimicrob Agents 2019; 55:105852. [PMID: 31770627 DOI: 10.1016/j.ijantimicag.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
Ceftazidime-avibactam is used clinically in combination with a polymyxin for the treatment of carbapenem-resistant Gram-negative infections; however, there are limited data to support this practice. The objective of this study was to evaluate the activity of ceftazidime-avibactam and polymyxin B alone and in combination against Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae in a tandem in vitro time-kill/in vivo Galleria mellonella survival model assay. Three KPC-3-producing K. pneumoniae clinical isolates were used for all experiments. All isolates harbored mutations in ompk35 and one isolate in ompk36; two isolates were susceptible to both ceftazidime-avibactam and polymyxin B, and one was resistant to both. Ceftazidime-avibactam was bactericidal against 2 of 3 strains at ≥2x minimum inhibitory concentration (MIC) whereas polymyxin B was not bactericidal against any strain at any concentration. Combinations at 1/4x or 1/2x MIC were not bactericidal or synergistic against any of the 3 isolates. In survival experiments, ceftazidime-avibactam at 4x MIC significantly improved larval survival over the untreated control strain whereas polymyxin B at 4x MIC did not. Combining polymyxin B with ceftazidime-avibactam at 4x MIC did not improve survival compared to ceftazidime-avibactam alone. This work indicates there is no improvement in in vitro bactericidal activity or in vivo efficacy when polymyxin B is combined with ceftazidime-avibactam against KPC-producing K. pneumoniae. This combination should be avoided in lieu of ceftazidime-avibactam alone or other potentially more efficacious, less toxic combination regimens.
Collapse
Affiliation(s)
- Jovan Borjan
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Kevin A Meyer
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; XDR Pathogen Laboratory, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Wenzler
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|