1
|
Zhao W, Wu X, Huang S, Wang H, Fu H. Evaluation of therapeutic effect and prognostic value of 18F-FDG PET/CT in different treatment nodes of DLBCL patients. EJNMMI Res 2024; 14:20. [PMID: 38372908 PMCID: PMC10876506 DOI: 10.1186/s13550-024-01074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND In the present study, we aimed to investigate the role of baseline (B), interim (I) and end-of-treatment (Eot) 18F-FDG PET/CT in assessing the prognosis of diffuse large B cell lymphoma (DLBCL), so as to identify patients who need intensive treatment at an early stage. METHODS A total of 127 DLBCL patients (62 men; 65 women; median age 62 years) were retrospectively analyzed in this study. Baseline (n = 127), interim (n = 127, after 3-4 cycles) and end-of-treatment (n = 53, after 6-8 cycles) PET/CT images were re-evaluated; semi-quantitative parameters such as maximum standardized uptake value of lesion-to-liver ratio (SUVmax(LLR)) and lesion-to-mediastinum ratio (SUVmax(LMR)), total metabolic tumor volume (TMTV) and total metabolic tumor volume (TLG) were recorded. ΔTLG1 was the change of interim relative to baseline TLG (I to B), ΔTLG2 (Eot to B). ΔSUVmax and ΔTMTV were the same algorithm. The visual Deauville 5-point scale (D-5PS) has been adopted as the major criterion for PET evaluation. Visual analysis (VA) and semi-quantitative parameters were assessed for the ability to predict progression-free survival (PFS) and overall survival (OS) by using Kaplan-Meier method, cox regression and logistic regression analysis. When visual and semi-quantitative analysis are combined, the result is only positive if both are positive. RESULTS At a median follow-up of 34 months, the median PFS and OS were 20 and 32 months. The survival curve analysis showed that advanced stage and IPI score with poor prognosis, ΔSUVmax(LLR)1 < 89.2%, ΔTMTV1 < 91.8% and ΔTLG1 < 98.8%, ΔSUVmax(LLR)2 < 86.4% were significantly related to the shortening of PFS in patient (p < 0.05). ΔSUVmax(LLR)1 < 83.2% and ΔTLG1 < 97.6% were significantly correlated with the shortening of OS in patients (p < 0.05). Visual analysis showed that incomplete metabolic remission at I-PET and Eot-PET increased the risk of progress and death. In terms of predicting recurrence by I-PET, the combination of visual and semi-quantitative parameters showed higher positive predictive value (PPV) and specificity than a single index. CONCLUSION Three to four cycles of R-CHOP treatment may be a time point for early prediction of early recurrence/refractory (R/R) patients and active preemptive treatment. Combined visual analysis with semi-quantitative parameters of 18F-FDG PET/CT at interim can improve prognostic accuracy and may allow for more precise screening of patients requiring early intensive therapy.
Collapse
Affiliation(s)
- Wenyu Zhao
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaodong Wu
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Shuo Huang
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hongliang Fu
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Ventero MP, Haro-Moreno JM, Molina-Pardines C, Sánchez-Bautista A, García-Rivera C, Boix V, Merino E, López-Pérez M, Rodríguez JC. Role of Relebactam in the Antibiotic Resistance Acquisition in Pseudomonas aeruginosa: In Vitro Study. Antibiotics (Basel) 2023; 12:1619. [PMID: 37998821 PMCID: PMC10668777 DOI: 10.3390/antibiotics12111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa shows resistance to several antibiotics and often develops such resistance during patient treatment. OBJECTIVE Develop an in vitro model, using clinical isolates of P. aeruginosa, to compare the ability of the imipenem and imipenem/relebactam to generate resistant mutants to imipenem and to other antibiotics. Perform a genotypic analysis to detect how the selective pressure changes their genomes. METHODS The antibiotics resistance was studied by microdilution assays and e-test, and the genotypic study was performed by NGS. RESULTS The isolates acquired resistance to imipenem in an average of 6 days, and to imipenem/relebactam in 12 days (p value = 0.004). After 30 days of exposure, 75% of the isolates reached a MIC > 64 mg/L for imipenem and 37.5% for imipenem/relebactam (p value = 0.077). The 37.5% and the 12.5% imipenem/relebactam mutants developed resistance to piperacillin/tazobactam and ceftazidime, respectively, while the 87.5% and 37.5% of the imipenem mutants showed resistance to these drugs (p value = 0.003, p value = 0.015). The main biological processes altered by the SNPs were the glycosylation pathway, transcriptional regulation, histidine kinase response, porins, and efflux pumps. DISCUSSION The addition of relebactam delays the generation of resistance to imipenem and limits the cross-resistance to other beta-lactams. The clinical relevance of this phenomenon, which has the limitation that it has been performed in vitro, should be evaluated by stewardship programs in clinical practice, as it could be useful in controlling multi-drug resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Maria Paz Ventero
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Jose M. Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes, 38000 Grenoble, France
| | - Carmen Molina-Pardines
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| | - Antonia Sánchez-Bautista
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Celia García-Rivera
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Vicente Boix
- Infectious Diseases Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Esperanza Merino
- Infectious Diseases Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| |
Collapse
|
3
|
Torres A, Wible M, Tawadrous M, Irani P, Stone GG, Quintana A, Debabov D, Burroughs M, Bradford PA, Kollef M. Efficacy and safety of ceftazidime/avibactam in patients with infections caused by β-lactamase-producing Gram-negative pathogens: a pooled analysis from the Phase 3 clinical trial programme. J Antimicrob Chemother 2023; 78:2672-2682. [PMID: 37700689 PMCID: PMC11157139 DOI: 10.1093/jac/dkad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVES This post hoc pooled analysis evaluated clinical and microbiological outcomes and safety in patients with infections caused by β-lactamase-producing Gram-negative pathogens across five Phase 3, randomized, controlled, multicentre trials of ceftazidime/avibactam in adults with complicated intra-abdominal infection (cIAI), complicated urinary tract infection (cUTI)/pyelonephritis and nosocomial pneumonia (NP), including ventilator-associated pneumonia (VAP). METHODS In each trial, RECLAIM/RECLAIM 3 (cIAI), REPRISE (cIAI/cUTI), RECAPTURE (cUTI) and REPROVE (NP, including VAP) patients were randomized 1:1 to IV ceftazidime/avibactam (plus metronidazole for patients with cIAI) or comparators (carbapenems in >97% patients) for 5-21 days. Clinical and microbiological responses at the test-of-cure visit were assessed for patients with ESBLs, and/or plasmidic and/or overexpression of chromosomal AmpC, and/or serine carbapenemases without MBLs identified in baseline Gram-negative isolates by phenotypic screening and molecular characterization in the pooled microbiological modified ITT (mMITT) population. RESULTS In total, 813 patients (ceftazidime/avibactam, n = 389; comparator, n = 424) had ≥1 β-lactamase-producing baseline pathogen identified, amongst whom 792 patients (ceftazidime/avibactam, n = 379; comparator, n = 413) had no MBLs. The most frequent β-lactamase-producing pathogens across treatment groups were Escherichia coli (n = 381), Klebsiella pneumoniae (n = 261) and Pseudomonas aeruginosa (n = 53). Clinical cure rates in the pooled non-MBL β-lactamase-producing mMITT population were 88.1% (334/379) for ceftazidime/avibactam and 88.1% (364/413) for comparators; favourable microbiological response rates were 76.5% (290/379) and 68.8% (284/413), respectively. The safety profile of ceftazidime/avibactam was consistent with previous observations. CONCLUSIONS This analysis provides supportive evidence of the efficacy and safety of ceftazidime/avibactam in patients with infections caused by ESBLs, AmpC and serine carbapenemase-producing Gram-negative pathogens. TRIAL REGISTRATION NCT01499290; NCT01726023; NCT01644643; NCT01595438/NCT01599806; NCT01808092.
Collapse
Affiliation(s)
- Antoni Torres
- Servei de Pneumologia, Hospital Clinic, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | | | | | - Paurus Irani
- Hospital Business Unit, Pfizer, Tadworth, Surrey, UK
| | | | | | - Dmitri Debabov
- Non-clinical Development Microbiology, AbbVie, Irvine, CA, USA
| | | | | | - Marin Kollef
- Division of Pulmonary & Critical Care Medicine, Institute of Clinical and Translational Sciences, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
4
|
Abniki R, Tashakor A, Masoudi M, Mansury D. Global Resistance of Imipenem/Relebactam against Gram-Negative Bacilli: Systematic Review and Meta-Analysis. CURRENT THERAPEUTIC RESEARCH 2023; 100:100723. [PMID: 38174096 PMCID: PMC10758719 DOI: 10.1016/j.curtheres.2023.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024]
Abstract
Background Relebactam, previously known as MK-7655, is currently being tested in combination with imipenem as a class A and class C β-lactamase inhibitor, including KPC from Klebsiella pneumoniae. Objective The objective of the current study was to evaluate the activity of imipenem/relebactam against gram-negative bacilli. Methods After applying exclusion and inclusion criteria, 72 articles with full texts that describe the prevalence of imipenem/relebactam resistance were chosen for the meta-analysis and systematic review. Articles published between January 2015 and February 2023 were surveyed. The systematic literature search was conducted in PubMed, Web of Science, Google Scholar, and Scopus. Results The pooled estimation of 282,621 sample isolates revealed that the prevalence rate of imipenem/relebactam resistance is roughly 14.6% (95% CI, 0.116%-0.182%). Conclusions The findings of this analysis show that imipenem/relebactam resistance is rare in the majority of developed countries. Given that relebactam has proven to restore the activity of imipenem against current clinical isolates, further research into imipenem/relebactam is necessary.
Collapse
Affiliation(s)
- Reza Abniki
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Tashakor
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Melika Masoudi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Barbier F, Hraiech S, Kernéis S, Veluppillai N, Pajot O, Poissy J, Roux D, Zahar JR. Rationale and evidence for the use of new beta-lactam/beta-lactamase inhibitor combinations and cefiderocol in critically ill patients. Ann Intensive Care 2023; 13:65. [PMID: 37462830 DOI: 10.1186/s13613-023-01153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Healthcare-associated infections involving Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) phenotype are associated with impaired patient-centered outcomes and poses daily therapeutic challenges in most of intensive care units worldwide. Over the recent years, four innovative β-lactam/β-lactamase inhibitor (BL/BLI) combinations (ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam and meropenem-vaborbactam) and a new siderophore cephalosporin (cefiderocol) have been approved for the treatment of certain DTR-GNB infections. The literature addressing their microbiological spectrum, pharmacokinetics, clinical efficacy and safety was exhaustively audited by our group to support the recent guidelines of the French Intensive Care Society on their utilization in critically ill patients. This narrative review summarizes the available evidence and unanswered questions on these issues. METHODS A systematic search for English-language publications in PUBMED and the Cochrane Library database from inception to November 15, 2022. RESULTS These drugs have demonstrated relevant clinical success rates and a reduced renal risk in most of severe infections for whom polymyxin- and/or aminoglycoside-based regimen were historically used as last-resort strategies-namely, ceftazidime-avibactam for infections due to Klebsiella pneumoniae carbapenemase (KPC)- or OXA-48-like-producing Enterobacterales, meropenem-vaborbactam for KPC-producing Enterobacterales, ceftazidime-avibactam/aztreonam combination or cefiderocol for metallo-β-lactamase (MBL)-producing Enterobacterales, and ceftolozane-tazobactam, ceftazidime-avibactam and imipenem-relebactam for non-MBL-producing DTR Pseudomonas aeruginosa. However, limited clinical evidence exists in critically ill patients. Extended-infusion scheme (except for imipenem-relebactam) may be indicated for DTR-GNB with high minimal inhibitory concentrations and/or in case of augmented renal clearance. The potential benefit of combining these agents with other antimicrobials remains under-investigated, notably for the most severe presentations. Other important knowledge gaps include pharmacokinetic information in particular situations (e.g., pneumonia, other deep-seated infections, and renal replacement therapy), the hazard of treatment-emergent resistance and possible preventive measures, the safety of high-dose regimen, the potential usefulness of rapid molecular diagnostic tools to rationalize their empirical utilization, and optimal treatment durations. Comparative clinical, ecological, and medico-economic data are needed for infections in whom two or more of these agents exhibit in vitro activity against the causative pathogen. CONCLUSIONS New BL/BLI combinations and cefiderocol represent long-awaited options for improving the management of DTR-GNB infections. Several research axes must be explored to better define the positioning and appropriate administration scheme of these drugs in critically ill patients.
Collapse
Affiliation(s)
- François Barbier
- Médecine Intensive Réanimation, Centre Hospitalier Régional d'Orléans, 14, Avenue de l'Hôpital, 45000, Orléans, France.
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France.
| | - Sami Hraiech
- Médecine Intensive Réanimation, Hôpital Nord, Assistance Publique - Hôpitaux de Marseille, and Centre d'Études et de Recherche sur les Services de Santé et la Qualité de Vie, Université Aix-Marseille, Marseille, France
| | - Solen Kernéis
- Équipe de Prévention du Risque Infectieux, Hôpital Bichat-Claude Bernard, Assistance Publique - Hôpitaux de Paris, and INSERM/IAME, Université Paris Cité, Paris, France
| | - Nathanaël Veluppillai
- Équipe de Prévention du Risque Infectieux, Hôpital Bichat-Claude Bernard, Assistance Publique - Hôpitaux de Paris, and INSERM/IAME, Université Paris Cité, Paris, France
| | - Olivier Pajot
- Réanimation Polyvalente, Hôpital Victor Dupouy, Argenteuil, France
| | - Julien Poissy
- Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Lille, Inserm U1285, Université de Lille, and CNRS/UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Damien Roux
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France
- DMU ESPRIT, Médecine Intensive Réanimation, Hôpital Louis Mourier, Assistance Publique - Hôpitaux de Paris, Colombes, and INSERM/CNRS, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Jean-Ralph Zahar
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France
- Département de Microbiologie Clinique, Hôpital Avicenne, Assistance Publique - Hôpitaux de Paris, Bobigny and INSERM/IAME, Université de Paris, Paris, France
| |
Collapse
|
6
|
Venuti F, Romani L, De Luca M, Tripiciano C, Palma P, Chiriaco M, Finocchi A, Lancella L. Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review. Microorganisms 2023; 11:1798. [PMID: 37512970 PMCID: PMC10385558 DOI: 10.3390/microorganisms11071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Infections due to carbapenem-resistant Enterobacterales (CRE) are increasingly prevalent in children and are associated with poor clinical outcomes, especially in critically ill patients. Novel beta lactam antibiotics, including ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, and cefiderocol, have been released in recent years to face the emerging challenge of multidrug-resistant (MDR) Gram-negative bacteria. Nonetheless, several novel agents lack pediatric indications approved by the Food and Drug Administration (FDA) and the European Medicine Agency (EMA), leading to uncertain pediatric-specific treatment strategies and uncertain dosing regimens in the pediatric population. In this narrative review we have summarized the available clinical and pharmacological data, current limitations and future prospects of novel beta lactam antibiotics in the pediatric population.
Collapse
Affiliation(s)
- Francesco Venuti
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy
| | - Lorenza Romani
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Maia De Luca
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Costanza Tripiciano
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Paolo Palma
- Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Chiriaco
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Laura Lancella
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
7
|
Olney KB, Thomas JK, Johnson WM. Review of novel β-lactams and β-lactam/β-lactamase inhibitor combinations with implications for pediatric use. Pharmacotherapy 2023. [PMID: 36825478 DOI: 10.1002/phar.2782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/25/2023]
Abstract
Antimicrobial resistance continues to surmount increasing concern globally, and treatment of difficult-to-treat (DTR) Pseudomonas aeruginosa, carbapenem-resistant (CR) Acinetobacter baumannii (CRAB), and CR Enterobacterales (CRE) remains a challenge for clinicians. Although previously rare, the incidence of multidrug-resistant (MDR) and CR infections in pediatric patients has increased drastically in the last decade and is associated with increased morbidity and mortality. To combat this issue, 14 novel antibiotics, including three β-lactam/novel β-lactamase inhibitor combinations (βL-βLIs) and two novel β-lactams (βLs), have received approval from the United States Food and Drug Administration since 2010. Improving clinician understanding of the utility of these novel therapies is imperative to improve judicious decision-making and prevent societal regression to a pre-penicillin era. In this review, we summarize the pharmacokinetic/pharmacodynamic (PK/PD) properties, clinical efficacy and safety data, dosing considerations, and subsequent role in therapy for ceftazidime-avibactam (CAZ-AVI), meropenem-vaborbactam (MER-VAB), imipenem-cilastatin-relebactam (IMI-REL), ceftolozane-tazobactam (TOL-TAZ), and cefiderocol in pediatric patients.
Collapse
Affiliation(s)
- Katie B Olney
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, Kentucky, USA
| | - Jenni K Thomas
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, Kentucky, USA
| | - Wes M Johnson
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, Kentucky, USA
| |
Collapse
|
8
|
A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules 2023; 28:molecules28041762. [PMID: 36838752 PMCID: PMC9962477 DOI: 10.3390/molecules28041762] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Due to the overuse of antibiotics, bacterial resistance has markedly increased to become a global problem and a major threat to human health. Fortunately, in recent years, various new antibiotics have been developed through both improvements to traditional antibiotics and the discovery of antibiotics with novel mechanisms with the aim of addressing the decrease in the efficacy of traditional antibiotics. This manuscript reviews the antibiotics that have been approved for marketing in the last 20 years with an emphasis on the antibacterial properties, mechanisms, structure-activity relationships (SARs), and clinical safety of these antibiotics. Furthermore, the current deficiencies, opportunities for improvement, and prospects of antibiotics are thoroughly discussed to provide new insights for the design and development of safer and more potent antibiotics.
Collapse
|
9
|
Santos MA, Silva FL, Lira BOV, Cardozo Fh JL, Vasconcelos AG, Araujo AR, Murad AM, Garay AV, Freitas SM, Leite JRSA, Bloch C, Ramada MHS, de Oliveira AL, Brand GD. Probing human proteins for short encrypted antimicrobial peptides reveals Hs10, a peptide with selective activity for gram-negative bacteria. Biochim Biophys Acta Gen Subj 2023; 1867:130265. [PMID: 36280021 DOI: 10.1016/j.bbagen.2022.130265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Some cationic and amphiphilic α-helical segments of proteins adsorb to prokaryotic membranes when synthesized as individual polypeptide sequences, resulting in broad and potent antimicrobial activity. However, amphiphilicity, a determinant physicochemical property for peptide-membrane interactions, can also be observed in some β-sheets. METHODS The software Kamal was used to scan the human reference proteome for short (7-11 amino acid residues) cationic and amphiphilic protein segments with the characteristic periodicity of β-sheets. Some of the uncovered peptides were chemically synthesized, and antimicrobial assays were conducted. Biophysical techniques were used to probe the molecular interaction of one peptide with phospholipid vesicles, lipopolysaccharides (LPS) and the bacterium Escherichia coli. RESULTS Thousands of compatible segments were found in human proteins, five were synthesized, and three presented antimicrobial activity in the micromolar range. Hs10, a nonapeptide fragment of the Complement C3 protein, could inhibit only the growth of tested Gram-negative microorganisms, presenting also little cytotoxicity to human fibroblasts. Hs10 interacted with LPS while transitioning from an unstructured segment to a β-sheet and increased the hydrodynamic radius of LPS particles. This peptide also promoted morphological alterations in E. coli cells. CONCLUSIONS Data presented herein introduce yet another molecular template to probe proteins in search for encrypted membrane-active segments and demonstrates that, using this approach, short peptides with low cytotoxicity and high selectivity to prokaryotic cells might be obtained. GENERAL SIGNIFICANCE This work widens the biotechnological potential of the human proteome as a source of antimicrobial peptides with application in human health.
Collapse
Affiliation(s)
- Michele A Santos
- Laboratório de Ressonância Magnética Nuclear, LRMN, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Fernanda L Silva
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Bianca O V Lira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - José L Cardozo Fh
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Alyne R Araujo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, Parnaíba, PI, Brazil
| | - André M Murad
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Aisel V Garay
- Laboratório de Biofísica Molecular, Instituto de Biologia, Universidade de Brasília (IB-CEL/UnB), Campus Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - Sonia M Freitas
- Laboratório de Biofísica Molecular, Instituto de Biologia, Universidade de Brasília (IB-CEL/UnB), Campus Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Marcelo H S Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Aline Lima de Oliveira
- Laboratório de Ressonância Magnética Nuclear, LRMN, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
10
|
Chen YC, Chen WY, Hsu WY, Tang HJ, Chou Y, Chang YH, Chen CC, Chuang YC, Chang TH. Distribution of β-lactamases and emergence of carbapenemases co-occurring Enterobacterales isolates with high-level antibiotic resistance identified from patients with intra-abdominal infection in the Asia-Pacific region, 2015-2018. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1263-1272. [PMID: 34330663 DOI: 10.1016/j.jmii.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE In this study, we aimed to assess the geographic distribution and molecular characteristics of β-lactamases among Enterobacterales isolates causing intra-abdominal infections (IAIs) from 2015 to 2018 in the Asia-Pacific region. METHOD Isolates were investigated for extended-spectrum β-lactamases (ESBLs), AmpC β-lactamases, and carbapenemases using multiplex PCR assays and full-gene DNA sequencing. RESULT A total of 832 Enterobacterales isolates from 8 different countries with β-lactamase genes were analysed. Plasmid-mediated ESBLs and AmpC β-lactamases were encoded in 598 (71.9 %) and 314 (37.7 %) isolates, respectively. In 710 (85.3 %) carbapenemase-negative isolates, positivity for both AmpC β-lactamases and ESBLs was identified in 51 (8.5 %) Escherichia coli and 24 (3.4 %) Klebsiella pneumoniae isolates. The most prevalent countries were Taiwan and Vietnam, and the co-occurrence of CMY/CTX-M in E. coli and DHA-1/ESBLs in K. pneumoniae was predominant. All isolates showed high susceptibility to colistin, but susceptibility to carbapenems varied among different resistance mechanism combinations. Among 122 (14.7 %) isolates encoding carbapenemase, NDM (n = 67, including 64.2 % NDM-1) was the most common, followed by the OXA-48-type (n = 49), KPC (n = 24) and IMP (n = 4). The most prevalent country was Thailand (n = 44), followed by Vietnam (n = 35) and the Philippines (n = 21). Twenty-two isolates were found to encode multiple carbapenemases, 16 of which were collected from Thailand and harbored NDM-1, OXA-232 and CTX-M-15. Despite high susceptibility to amikacin, susceptibility to colistin was only 56 %. CONCLUSION The emergence of carbapenem-non-susceptible AmpC/ESBL co-occurring Enterobacterales and colistin non-susceptible carbapenemases co-occurring K. pneumoniae highlights potential therapeutic challenges in the Asia-Pacific region.
Collapse
Affiliation(s)
- Yu-Chin Chen
- Department of Pediatrics, Chi Mei Medical Center, Chiali, Tainan, Taiwan
| | - Wei-Yu Chen
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Wei-Yun Hsu
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yun Chou
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Yi-Hsin Chang
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan; Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Tu-Hsuan Chang
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
11
|
Abstract
Imipenem (IMI)/cilastatin/relebactam (REL) (I/R) is a novel β-lactam/β-lactamase inhibitor combination with expanded microbiologic activity against carbapenem-resistant non-Morganellaceae Enterobacterales (CR-NME) and difficult-to-treat (DTR) Pseudomonas aeruginosa. Relebactam, a bicyclic diazabicyclooctane, has no direct antimicrobial activity but provides reliable inhibition of many Ambler class A and class C enzymes. It is currently approved for the treatment of adult patients with hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP) and those with complicated urinary tract infections (cUTIs) and complicated intra-abdominal infections (cIAIs) when limited or no alternative treatments are available. Given the number of recently approved β-lactams with expanded activity against highly resistant Gram-negative pathogens, this review summarizes the published literature on I/R, with a focus on its similar and distinguishing characteristics relative to those of other recently approved agents. Overall, available data support its use for the treatment of patients with HABP/VABP, cUTI, and cIAI due to CR-NME and DTR P. aeruginosa. Data indicate that I/R retains some activity against CR-NME and DTR P. aeruginosa isolates that are resistant to the newer β-lactams and vice versa, suggesting that susceptibility testing be performed for all the newer agents to determine optimal treatment options for patients with CR-NME and DTR P. aeruginosa infections. Further comparative PK/PD and clinical studies are warranted to determine the optimal role of I/R, alone and in combination, for the treatment of patients with highly resistant Gram-negative infections. Until further data are available, I/R is a potential treatment for patients with CR-NME and DTR P. aeruginosa infections when the benefits outweigh the risks.
Collapse
|
12
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; 75:187-212. [PMID: 35439291 PMCID: PMC9890506 DOI: 10.1093/cid/ciac268] [Citation(s) in RCA: 228] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. The initial guidance document on infections caused by extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) was published on 17 September 2020. Over the past year, there have been a number of important publications furthering our understanding of the management of ESBL-E, CRE, and DTR-P. aeruginosa infections, prompting a rereview of the literature and this updated guidance document. METHODS A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections reviewed, updated, and expanded previously developed questions and recommendations about the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment recommendations are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Recommendations apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 24 October 2021. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Correspondence: P. D. Tamma, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA ()
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Titov I, Wunderink RG, Roquilly A, Rodríguez Gonzalez D, David-Wang A, Boucher HW, Kaye KS, Losada MC, Du J, Tipping R, Rizk ML, Patel M, Brown ML, Young K, Kartsonis NA, Butterton JR, Paschke A, Chen LF. A Randomized, Double-blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/Relebactam Versus Piperacillin/Tazobactam in Adults With Hospital-acquired or Ventilator-associated Bacterial Pneumonia (RESTORE-IMI 2 Study). Clin Infect Dis 2021; 73:e4539-e4548. [PMID: 32785589 PMCID: PMC8662781 DOI: 10.1093/cid/ciaa803] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/16/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Imipenem combined with the β-lactamase inhibitor relebactam has broad antibacterial activity, including against carbapenem-resistant gram-negative pathogens. We evaluated efficacy and safety of imipenem/cilastatin/relebactam in treating hospital-acquired/ventilator-associated bacterial pneumonia (HABP/VABP). METHODS This was a randomized, controlled, double-blind phase 3 trial. Adults with HABP/VABP were randomized 1:1 to imipenem/cilastatin/relebactam 500 mg/500 mg/250 mg or piperacillin/tazobactam 4 g/500 mg, intravenously every 6 hours for 7-14 days. The primary endpoint was day 28 all-cause mortality in the modified intent-to-treat (MITT) population (patients who received study therapy, excluding those with only gram-positive cocci at baseline). The key secondary endpoint was clinical response 7-14 days after completing therapy in the MITT population. RESULTS Of 537 randomized patients (from 113 hospitals in 27 countries), the MITT population comprised 264 imipenem/cilastatin/relebactam and 267 piperacillin/tazobactam patients; 48.6% had ventilated HABP/VABP, 47.5% APACHE II score ≥15, 24.7% moderate/severe renal impairment, 42.9% were ≥65 years old, and 66.1% were in the intensive care unit. The most common baseline pathogens were Klebsiella pneumoniae (25.6%) and Pseudomonas aeruginosa (18.9%). Imipenem/cilastatin/relebactam was noninferior (P < .001) to piperacillin/tazobactam for both endpoints: day 28 all-cause mortality was 15.9% with imipenem/cilastatin/relebactam and 21.3% with piperacillin/tazobactam (difference, -5.3% [95% confidence interval {CI}, -11.9% to 1.2%]), and favorable clinical response at early follow-up was 61.0% and 55.8%, respectively (difference, 5.0% [95% CI, -3.2% to 13.2%]). Serious adverse events (AEs) occurred in 26.7% of imipenem/cilastatin/relebactam and 32.0% of piperacillin/tazobactam patients; AEs leading to treatment discontinuation in 5.6% and 8.2%, respectively; and drug-related AEs (none fatal) in 11.7% and 9.7%, respectively. CONCLUSIONS Imipenem/cilastatin/relebactam is an appropriate treatment option for gram-negative HABP/VABP, including in critically ill, high-risk patients. CLINICAL TRIALS REGISTRATION NCT02493764.
Collapse
Affiliation(s)
- Ivan Titov
- Department of Anesthesiology and Intensive Care, Ivano-Frankivsk Regional Clinical Hospital, Ivano-Frankivsk, Ukraine
| | - Richard G Wunderink
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Antoine Roquilly
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université, de Nantes, Nantes, France
| | | | - Aileen David-Wang
- Department of Medicine & Philippine General Hospital, Division of Pulmonary Medicine, University of the Philippines, Manila, Philippines
| | - Helen W Boucher
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| | - Keith S Kaye
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Maria C Losada
- Merck Research Laboratories, Merck & Co, Inc, Kenilworth, New Jersey, USA
| | - Jiejun Du
- Merck Research Laboratories, Merck & Co, Inc, Kenilworth, New Jersey, USA
| | - Robert Tipping
- Merck Research Laboratories, Merck & Co, Inc, Kenilworth, New Jersey, USA
| | - Matthew L Rizk
- Merck Research Laboratories, Merck & Co, Inc, Kenilworth, New Jersey, USA
| | - Munjal Patel
- Merck Research Laboratories, Merck & Co, Inc, Kenilworth, New Jersey, USA
| | - Michelle L Brown
- Merck Research Laboratories, Merck & Co, Inc, Kenilworth, New Jersey, USA
| | - Katherine Young
- Merck Research Laboratories, Merck & Co, Inc, Kenilworth, New Jersey, USA
| | | | - Joan R Butterton
- Merck Research Laboratories, Merck & Co, Inc, Kenilworth, New Jersey, USA
| | - Amanda Paschke
- Merck Research Laboratories, Merck & Co, Inc, Kenilworth, New Jersey, USA
| | - Luke F Chen
- Merck Research Laboratories, Merck & Co, Inc, Kenilworth, New Jersey, USA
| |
Collapse
|
15
|
Bail L, Ito CAS, Arend LNVS, Nogueira KDS, Tuon FF. Activity of imipenem-relebactam and ceftolozane-tazobactam against carbapenem-resistant Pseudomonas aeruginosa and KPC-producing Enterobacterales. Diagn Microbiol Infect Dis 2021; 102:115568. [PMID: 34749296 DOI: 10.1016/j.diagmicrobio.2021.115568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Larissa Bail
- Division of Microbiology, Universidade Estadual de Ponta Grossa do Paraná; Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Carmen Antonia Sanches Ito
- Division of Microbiology, Universidade Estadual de Ponta Grossa do Paraná; Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Lavinia Nery Villa Stangler Arend
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil; Laboratório Central do Estado do Paraná - LACEN
| | - Keite da Silva Nogueira
- Hospital de Clínicas, Universidade Federal do Paraná; Basic Pathology Department, Universidade Federal do Paraná
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
16
|
Matteoli FP, Pedrosa-Silva F, Dutra-Silva L, Giachini AJ. The global population structure and beta-lactamase repertoire of the opportunistic pathogen Serratia marcescens. Genomics 2021; 113:3523-3532. [PMID: 34400240 DOI: 10.1016/j.ygeno.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
Serratia marcescens is a global spread nosocomial pathogen. This rod-shaped bacterium displays a broad host range and worldwide geographical distribution. Here we analyze an international collection of this multidrug-resistant, opportunistic pathogen from 35 countries to infer its population structure. We show that S. marcescens comprises 12 lineages; Sm1, Sm4, and Sm10 harbor 78.3% of the known environmental strains. Sm5, Sm6, and Sm7 comprise only human-associated strains which harbor smallest pangenomes, genomic fluidity and lowest levels of core recombination, indicating niche specialization. Sm7 and Sm9 lineages exhibit the most concerning resistome; blaKPC-2 plasmid is widespread in Sm7, whereas Sm9, also an anthropogenic-exclusive lineage, presents highest plasmid/lineage size ratio and plasmid-diversity encoding metallo-beta-lactamases comprising blaNDM-1. The heterogeneity of resistance patterns of S. marcescens lineages elucidated herein highlights the relevance of surveillance programs, using whole-genome sequencing, to provide insights into the molecular epidemiology of carbapenemase producing strains of this species.
Collapse
|
17
|
Walkty A, Karlowsky JA, Baxter MR, Adam HJ, Golden A, Lagace-Wiens P, Zhanel GG. In vitro activity of imipenem-relebactam against various resistance phenotypes/genotypes of Enterobacterales and Pseudomonas aeruginosa isolated from patients across Canada as part of the CANWARD study, 2016-2019. Diagn Microbiol Infect Dis 2021; 101:115418. [PMID: 34102373 DOI: 10.1016/j.diagmicrobio.2021.115418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Broth microdilution was used to determine the in vitro activities of imipenem-relebactam and comparators versus 4260 Enterobacterales and 1324 Pseudomonas aeruginosa clinical isolates. Excluding Serratia marcescens, 96.7% to 100% of Enterobacterales species were susceptible to imipenem-relebactam. Susceptibility of P. aeruginosa isolates to imipenem-relebactam and imipenem was 91.3% and 59.1%, respectively.
Collapse
Affiliation(s)
- Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Clinical Microbiology, Shared Health, Winnipeg, Canada.
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Clinical Microbiology, Shared Health, Winnipeg, Canada
| | - Melanie R Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Clinical Microbiology, Shared Health, Winnipeg, Canada
| | - Alyssa Golden
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Philippe Lagace-Wiens
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Clinical Microbiology, Shared Health, Winnipeg, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
18
|
Sahra S, Jahangir A, Hamadi R, Jahangir A, Glaser A. Clinical and Microbiologic Efficacy and Safety of Imipenem/Cilastatin/Relebactam in Complicated Infections: A Meta-analysis. Infect Chemother 2021; 53:271-283. [PMID: 34216121 PMCID: PMC8258290 DOI: 10.3947/ic.2021.0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Antimicrobial resistance is on the rise. The use of redundant and inappropriate antibiotics is contributing to recurrent infections and resistance. Newer antibiotics with more robust coverage for Gram-negative bacteria are in great demand for complicated urinary tract infections (cUTIs), complicated intra-abdominal infections (cIAIs), hospital-acquired bacterial pneumonia (HABP), and ventilator-associated bacterial pneumonia (VABP). MATERIALS AND METHODS We performed this meta-analysis to evaluate the efficacy and safety profile of a new antibiotic, Imipenem/cilastatin/relebactam, compared to other broad-spectrum antibiotics for complicated infections. We conducted a systemic review search on PubMed, Embase, and Central Cochrane Registry. We included randomized clinical trials-with the standard of care as comparator arm with Imipenem/cilastatin/relebactam as intervention arm. For continuous variables, the mean difference was used. For discrete variables, we used the odds ratio. For effect sizes, we used a confidence interval of 95%. A P-value of less than 0.05 was used for statistical significance. Analysis was done using a random-effects model irrespective of heterogeneity. Heterogeneity was evaluated using the I² statistic. RESULTS The authors observed similar efficacy at clinical and microbiologic response levels on early follow-up and late follow-up compared to the established standard of care. The incidence of drug-related adverse events, serious adverse events, and drug discontinuation due to adverse events were comparable across both groups. CONCLUSION Imipenem/cilastatin/relebactam has a non-inferior safety and efficacy profile compared to peer antibiotics to treat severe bacterial infections (cUTIs, cIAIs, HABP, VABP).
Collapse
Affiliation(s)
- Syeda Sahra
- Staten Island University Hospital, Staten Island, NY, USA.
| | | | | | | | - Allison Glaser
- Staten Island University Hospital, Staten Island, NY, USA
| |
Collapse
|
19
|
Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev 2020; 34:e00115-20. [PMID: 33177185 PMCID: PMC7667665 DOI: 10.1128/cmr.00115-20] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel β-lactam-β-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum β-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D β-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-β-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).
Collapse
Affiliation(s)
- Dafna Yahav
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Christian G Giske
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Alise Grāmatniece
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Pauls Stradins University Hospital, University of Latvia, Riga, Latvia
| | - Henrietta Abodakpi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Leonard Leibovici
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
- Medicine E, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| |
Collapse
|
20
|
Imipenem/Cilastatin/Relebactam Alone and in Combination against Pseudomonas aeruginosa in the In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother 2020; 64:AAC.01764-20. [PMID: 33139283 DOI: 10.1128/aac.01764-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Combination therapy may enhance imipenem/cilastatin/relebactam's (I/R) activity against Pseudomonas aeruginosa and suppress resistance development. Human-simulated unbound plasma concentrations of I/R at 1.25 g every 6 h (h), colistin at 360 mg daily, and amikacin at 25 mg/kg daily were reproduced alone and in combination against six imipenem-nonsusceptible P. aeruginosa isolates in an in vitro pharmacodynamic model over 24 h. For I/R alone, the mean reductions in CFU ± the standard errors by 24 h were -2.52 ± 0.49, -1.49 ± 0.49, -1.15 ± 0.67, and -0.61 ± 0.10 log10 CFU/ml against isolates with MICs of 1/4, 2/4, 4/4, and 8/4 μg/ml, respectively. Amikacin alone also resulted in 24 h CFU reductions consistent with its MIC, while colistin CFU reductions did not differ. Resistant subpopulations were observed after 24 h in 1, 4, and 3 I/R-, colistin-, and amikacin-exposed isolates, respectively. The combination of I/R and colistin resulted in synergistic (n = 1) or additive (n = 2) interactions against three isolates with 24-h CFU reductions ranging from -2.62 to -4.67 log10 CFU/ml. The combination of I/R and amikacin exhibited indifferent interactions against all isolates, with combined drugs achieving -0.51- to -3.33-log10 CFU/ml reductions. No resistant subpopulations were observed during I/R and colistin combination studies, and when added to amikacin, I/R prevented the emergence of amikacin resistance. Against these six multidrug-resistant P. aeruginosa, I/R alone achieved significant CFU reductions against I/R-susceptible isolates. Combinations of I/R plus colistin resulted in additivity or synergy against some P. aeruginosa, whereas the addition of amikacin did not provide further antibacterial efficacy against these isolates.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW To describe current antimicrobial resistance in ESKAPE Gram-negative microorganisms and their situation in the ICUs, the implication of the so-called high-risk clones (HiRCs) involved in the spread of antimicrobial resistance as well as relevance of the COVID-19 pandemic in the potential increase of resistance. RECENT FINDINGS Extended-spectrum and carbapenemase producing Enterobacterales and multidrug and extensive drug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii have increased worldwide. Sequence type (ST)131 Escherichia coli, ST258, ST11, ST10, ST147 and ST307 Klebsiella pneumoniae, ST111, ST175, ST235 and ST244 P. aeruginosa HiRCs are responsible for this increase in the ICUs, and some of them are implicated in the emergence of resistance mechanisms affecting new antimicrobials. A similar situation can be found with European clonal complex 1 and clonal complex 2 of A. baumannii. The high use of antimicrobials during the COVID-19 pandemic, particularly in ICUs, might have a negative influence in future trends of antimicrobial resistance. SUMMARY The increase of antimicrobial resistance in ICUs is mainly due to the spread of HiRCs and is exemplified with the ESKAPE Gram-negative microorganisms. The COVID-19 pandemic might have a negative impact in the increase of antimicrobial resistance and should be monitored through specific surveillance studies in ICUs.
Collapse
|