1
|
Baindara P, Roy D, Boosani CS, Mandal SM, Green JA. AAV-based gene delivery of antimicrobial peptides to combat drug-resistant pathogens. Appl Environ Microbiol 2025:e0170224. [PMID: 39760495 DOI: 10.1128/aem.01702-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as potential alternatives to conventional antibiotics due to their novelty and multiple mechanisms of action. Because they are peptides, AMPs are amenable to bioengineering and suitable for cloning and expression at large production scales. However, the efficient delivery of AMPs is an unaddressed issue, particularly due to their large size, possible toxicities, and the development of adverse immune responses. Here, we have reviewed the possibilities of adeno-associated virus (AAV)-based localized gene delivery of AMPs for the treatment of infectious diseases with a special focus on respiratory infections. By discussing the gene delivery mechanism of AAV and the accompanying technical and therapeutic challenges with AMPs, we describe a foundation that emphasizes the use of viral vector-based gene delivery of AMPs for disease treatment.
Collapse
Affiliation(s)
- Piyush Baindara
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Dinata Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - Chandra S Boosani
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Santi M Mandal
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Jonathan A Green
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
2
|
Markelova N, Chumak A. Antimicrobial Activity of Bacillus Cyclic Lipopeptides and Their Role in the Host Adaptive Response to Changes in Environmental Conditions. Int J Mol Sci 2025; 26:336. [PMID: 39796193 PMCID: PMC11720072 DOI: 10.3390/ijms26010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Bacillus cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions. Therefore, in a natural environment, alternative mechanisms of antimicrobial action by CLPs are more likely, such as inducing apoptosis in fungal cells, preventing microbial adhesion to the substrate, and promoting the death of phytopathogens by stimulating plant immune responses. In addition, CLPs in low concentrations act as signaling molecules of Bacillus's own metabolism, and when environmental conditions change, they form an adaptive response of the host bacterium. Namely, they trigger the differentiation of the bacterial population into various specialized cell types: competent cells, flagellated cells, matrix producers, and spores. In this review, we have summarized the current understanding of the antimicrobial action of Bacillus CLPs under both experimental and natural conditions. We have also shown the relationship between some regulatory pathways involved in CLP biosynthesis and bacterial cell differentiation, as well as the role of CLPs as signaling molecules that determine changes in the physiological state of Bacillus subpopulations in response to shifts in environmental conditions.
Collapse
Affiliation(s)
- Natalia Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia;
| | | |
Collapse
|
3
|
Yu F, Shen Y, Chen S, Fan H, Pang Y, Liu M, Peng J, Pei X, Liu X. Analysis of the Genomic Sequences and Metabolites of Bacillus velezensis YA215. Biochem Genet 2024; 62:5073-5091. [PMID: 38386213 DOI: 10.1007/s10528-024-10710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Discovering more novel antimicrobial compounds has become a keen research problem. In this study, YA215 genome was sequenced by the Illumina HiSeq + PacBio sequencing platform. Genome assembly was performed by Unicycler software and the gene clusters responsible for secondary metabolite biosynthesis were predicted by antiSMASH. The genome comprised 3976514 bp and had a 46.56% G + C content. 3809 coding DNA sequences, 27 rRNAs, 86 tRNAs genes, and 79 sRNA were predicted. Strain YA215 was re-identified as Bacillus velezensis based on ANI and OrthoANI analysis. In the COG database, 23 functional groups from 3090 annotations were predicted. In the GO database, 2654 annotations were predicted. 2486 KEGG annotations linked 41 metabolic pathways. Glycosyl transferases, polysaccharide lyases, auxiliary activities, glycoside hydrolases, carbohydrate esterases, and carbohydrate-binding modules were predicted among the 127 annotations in the CAZy database. AntiSMASH analysis predicted that B. velezensis YA215 boasted 13 gene clusters involved in synthesis of antimicrobial secondary metabolites including surfactin, fengycin, macrolactin H, bacillaene, difficidin, bacillibactin, bacilysin, and plantazolicin. Three of the gene clusters (gene cluster 5, gene cluster 9, and gene cluster 10) have the potential to synthesize unknown compounds. The research underscore the considerable potential of secondary metabolites, identified in the genomic composition of B. velezensis YA215, as versatile antibacterial agents with a broad spectrum of activity against pathogenic bacteria.
Collapse
Affiliation(s)
- FuTian Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YuanYuan Shen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - ShangLi Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - HeLiang Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YiYang Pang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - MingYuan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - JingJing Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoDong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoLing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
4
|
Cao X, Huang L, Tang M, Liang Y, Liu X, Hou H, Liang S. Antibiotics daptomycin interacts with S protein of SARS-CoV-2 to promote cell invasion of Omicron (B1.1.529) pseudovirus. Virulence 2024; 15:2339703. [PMID: 38576396 PMCID: PMC11057663 DOI: 10.1080/21505594.2024.2339703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed enormous challenges to global public health. The use of antibiotics has greatly increased during the SARS-CoV-2 epidemic owing to the presence of bacterial co-infection and secondary bacterial infections. The antibiotics daptomycin (DAP) is widely used in the treatment of infectious diseases caused by gram-positive bacteria owing to its highly efficient antibacterial activity. It is pivotal to study the antibiotics usage options for patients of coronavirus infectious disease (COVID-19) with pneumonia those need admission to receive antibiotics treatment for bacterial co-infection in managing COVID-19 disease. Herein, we have revealed the interactions of DAP with the S protein of SARS-CoV-2 and the variant Omicron (B1.1.529) using the molecular docking approach and Omicron (B1.1.529) pseudovirus (PsV) mimic invasion. Molecular docking analysis shows that DAP has a certain degree of binding ability to the S protein of SARS-CoV-2 and several derived virus variants, and co-incubation of 1-100 μM DAP with cells promotes the entry of the PsV into human angiotensin-converting enzyme 2 (hACE2)-expressing HEK-293T cells (HEK-293T-hACE2), and this effect is related to the concentration of extracellular calcium ions (Ca2+). The PsV invasion rate in the HEK-293T-hACE2 cells concurrently with DAP incubation was 1.7 times of PsV infection alone. In general, our findings demonstrate that DAP promotes the infection of PsV into cells, which provides certain reference of antibiotics selection and usage optimization for clinicians to treat bacterial coinfection or secondary infection during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xu Cao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinpeng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huijin Hou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Sreelakshmi KP, Madhuri M, Swetha R, Rangarajan V, Roy U. Microbial lipopeptides: their pharmaceutical and biotechnological potential, applications, and way forward. World J Microbiol Biotechnol 2024; 40:135. [PMID: 38489053 DOI: 10.1007/s11274-024-03908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.
Collapse
Affiliation(s)
- K P Sreelakshmi
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - M Madhuri
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - R Swetha
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India.
| |
Collapse
|
6
|
Qi X, Liu W, He X, Du C. A review on surfactin: molecular regulation of biosynthesis. Arch Microbiol 2023; 205:313. [PMID: 37603063 DOI: 10.1007/s00203-023-03652-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Surfactin has many biological activities, such as inhibiting plant diseases, resisting bacteria, fungi, viruses, tumors, mycoplasma, anti-adhesion, etc. It has great application potential in agricultural biological control, clinical medical treatment, environmental treatment and other fields. However, the low yield has been the bottleneck of its popularization and application. It is very important to understand the synthesis route and control strategy of surfactin to improve its yield and purity. In this paper, based on the biosynthetic pathway and regulatory factors of surfactin, its biosynthesis regulation strategy was comprehensively summarized, involving enhancement of endogenous and exogenous precursor supply, modification of the synthesis pathway of lipid chain and peptide chain, improvement of secretion and efflux, and manipulation some global regulatory factors, such as Spo0A, AbrB, ComQXP, phrCSF, etc. to directly or indirectly stimulate surfactin synthesis. And the current production and separation and purification process of surfactin are briefly described. This review also provides a scientific reference for promoting surfactin production and its applications in various fields.
Collapse
Affiliation(s)
- Xiaohua Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xin He
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, 066102, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
7
|
Jacinavicius FR, Geraldes V, Fernandes K, Crnkovic CM, Gama WA, Pinto E. Toxicological effects of cyanobacterial metabolites on zebrafish larval development. HARMFUL ALGAE 2023; 125:102430. [PMID: 37220983 DOI: 10.1016/j.hal.2023.102430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
Freshwater cyanobacteria are known worldwide for their potential to produce toxins. However, these organisms are also found in marine, terrestrial and extreme environments and produce unique compounds, other than toxins. Nevertheless, their effects on biological systems are still barely known. This work tested extracts of different cyanobacterial strains against zebrafish (Danio rerio) larvae and analyzed their metabolomic profiles using liquid chromatography combined with mass spectrometry. Strains Desertifilum tharense, Anagnostidinema amphibium, and Nostoc sp. promoted morphological abnormalities such as pericardial edema, edema in the digestive system region, curvature of the tail and spine in zebrafish larvae in vivo. In contrast, Microcystis aeruginosa and Chlorogloeopsis sp. did not promote such changes. Metabolomics revealed unique compounds belonging to the classes of terpenoids, peptides, and linear lipopeptides/microginins in the nontoxic strains. The toxic strains were shown to contain unique compounds belonging to the classes of cyclic peptides, amino acids and other peptides, anabaenopeptins, lipopeptides, terpenoids, and alkaloids and derivatives. Other unknown compounds were also detected, highlighting the rich structural diversity of secondary metabolites produced by cyanobacteria. The effects of cyanobacterial metabolites on living organisms, mainly those related to potential human and ecotoxicological risks, are still poorly known. This work highlights the diverse, complex, and unique metabolomic profiles of cyanobacteria and the biotechnological potential and associated risks of exposure to their metabolites.
Collapse
Affiliation(s)
- Fernanda R Jacinavicius
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil.
| | - Vanessa Geraldes
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, CEP 13418-260, Brazil
| | - Kelly Fernandes
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, CEP 13418-260, Brazil
| | - Camila M Crnkovic
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil
| | - Watson A Gama
- Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, CEP 52171-900, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical Sciences, Avenida Prof. Lineu Prestes, 580, Butantã, São Paulo, SP, CEP 05508-900, Brazil; Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, CEP 13418-260, Brazil
| |
Collapse
|
8
|
Baindara P, Chowdhury T, Roy D, Mandal M, Mandal SM. Surfactin-like lipopeptides from Bacillus clausii efficiently bind to spike glycoprotein of SARS-CoV-2. J Biomol Struct Dyn 2023; 41:14152-14163. [PMID: 37021470 DOI: 10.1080/07391102.2023.2196694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/02/2023] [Indexed: 04/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) rapidly spread across the globe, infecting millions and causing hundreds of deaths. It has been now around three years but still, it remained a serious threat worldwide, even after the availability of some vaccines. Bio-surfactants are known to have antiviral activities and might be a potential alternative for the treatment of SARS-CoV-2 infection. In the present study, we have isolated and purified, a surfactin-like lipopeptide produced by a probiotic bacterial strain Bacillus clausii TS. Upon purification and characterization with MALDI analysis, the molecular weight of the lipopeptide is confirmed as 1037 Da (similar to surfactin C) which is known to have antiviral activities against various enveloped viruses. Purified surfactin-like lipopeptide showed efficient binding and inhibition of SARS-CoV-2 spike (S1) protein, revealed by competitive ELISA assay. Further, we have explored the complete thermodynamics of the inhibitory binding of surfactin-like lipopeptide with S1 protein using isothermal titration calorimetric (ITC) assay. ITC results are in agreement with ELISA with a binding constant of 1.78 × 10-4 M-1. For further validation of the inhibitory binding of surfactin-like lipopeptide with S1 protein and its receptor binding domain (RBD), we performed molecular docking, dynamics, and simulation experiments. Our results suggested that surfactin could be a promising drug agent for the spike protein targeting drug development strategy against SARS-CoV-2 and other emerging variants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Radiation Oncology, University of Missouri, Columbia, MO, USA
| | - Trinath Chowdhury
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Dinata Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
9
|
Shekunov EV, Zlodeeva PD, Efimova SS, Muryleva AA, Zarubaev VV, Slita AV, Ostroumova OS. Cyclic lipopeptides as membrane fusion inhibitors against SARS-CoV-2: New tricks for old dogs. Antiviral Res 2023; 212:105575. [PMID: 36868316 PMCID: PMC9977712 DOI: 10.1016/j.antiviral.2023.105575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
With the resurgence of the coronavirus pandemic, the repositioning of FDA-approved drugs against coronovirus and finding alternative strategies for antiviral therapy are both important. We previously identified the viral lipid envelope as a potential target for the prevention and treatment of SARS-CoV-2 infection with plant alkaloids (Shekunov et al., 2021). Here, we investigated the effects of eleven cyclic lipopeptides (CLPs), including well-known antifungal and antibacterial compounds, on the liposome fusion triggered by calcium, polyethylene glycol 8000, and a fragment of SARS-CoV-2 fusion peptide (816-827) by calcein release assays. Differential scanning microcalorimetry of the gel-to-liquid-crystalline and lamellar-to-inverted hexagonal phase transitions and confocal fluorescence microscopy demonstrated the relation of the fusion inhibitory effects of CLPs to alterations in lipid packing, membrane curvature stress and domain organization. The antiviral effects of CLPs were evaluated in an in vitro Vero-based cell model, and aculeacin A, anidulafugin, iturin A, and mycosubtilin attenuated the cytopathogenicity of SARS-CoV-2 without specific toxicity.
Collapse
Affiliation(s)
- Egor V Shekunov
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia
| | - Polina D Zlodeeva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia
| | - Svetlana S Efimova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia
| | - Anna A Muryleva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia; Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, Mira 14, 197101, Saint Petersburg, Russia
| | - Vladimir V Zarubaev
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, Mira 14, 197101, Saint Petersburg, Russia
| | - Alexander V Slita
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, Mira 14, 197101, Saint Petersburg, Russia
| | - Olga S Ostroumova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064, Saint Petersburg, Russia.
| |
Collapse
|
10
|
Baindara P, Ganguli S, Chakraborty R, Mandal SM. Preventing Respiratory Viral Diseases with Antimicrobial Peptide Master Regulators in the Lung Airway Habitat. Clin Pract 2023; 13:125-147. [PMID: 36648852 PMCID: PMC9844411 DOI: 10.3390/clinpract13010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The vast surface area of the respiratory system acts as an initial site of contact for microbes and foreign particles. The whole respiratory epithelium is covered with a thin layer of the airway and alveolar secretions. Respiratory secretions contain host defense peptides (HDPs), such as defensins and cathelicidins, which are the best-studied antimicrobial components expressed in the respiratory tract. HDPs have an important role in the human body's initial line of defense against pathogenic microbes. Epithelial and immunological cells produce HDPs in the surface fluids of the lungs, which act as endogenous antibiotics in the respiratory tract. The production and action of these antimicrobial peptides (AMPs) are critical in the host's defense against respiratory infections. In this study, we have described all the HDPs secreted in the respiratory tract as well as how their expression is regulated during respiratory disorders. We focused on the transcriptional expression and regulation mechanisms of respiratory tract HDPs. Understanding how HDPs are controlled throughout infections might provide an alternative to relying on the host's innate immunity to combat respiratory viral infections.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Radiation Oncology, University of Missouri, Columbia, MO 65211, USA
| | - Sriradha Ganguli
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Santi M. Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
11
|
Clements-Decker T, Kode M, Khan S, Khan W. Underexplored bacteria as reservoirs of novel antimicrobial lipopeptides. Front Chem 2022; 10:1025979. [PMID: 36277345 PMCID: PMC9581180 DOI: 10.3389/fchem.2022.1025979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms play a prominent role in drug discovery as potential anti-infective agents. Over the past few decades, lipopeptides produced by particularly Bacillus, Pseudomonas, Streptomyces, Paenibacillus, and cyanobacteria species, have been extensively studied for their antimicrobial potential. Subsequently, daptomycin and polymyxin B were approved by the Food and Drug Administration as lipopeptide antibiotics. Recent studies have however, indicated that Serratia, Brevibacillus, and Burkholderia, as well as predatory bacteria such as Myxococcus, Lysobacter, and Cystobacter, hold promise as relatively underexplored sources of novel classes of lipopeptides. This review will thus highlight the structures and the newly discovered scaffolds of lipopeptide families produced by these bacterial genera, with potential antimicrobial activities. Additionally, insight into the mode of action and biosynthesis of these lipopeptides will be provided and the application of a genome mining approach, to ascertain the biosynthetic gene cluster potential of these bacterial genera (genomes available on the National Center for Biotechnology Information) for their future pharmaceutical exploitation, will be discussed.
Collapse
Affiliation(s)
| | - Megan Kode
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Wesaal Khan,
| |
Collapse
|
12
|
Abstract
Despite great efforts have been made worldwide, the coronavirus disease 19 (COVID-19) still has not a definitive cure, although the availability of different vaccines are slowing down the transmission and severity. It has been shown that surfactin, a cyclic lipopeptide produced by Bacillus subtilis, is a molecule able to counteract both SARS-CoV-1, MERS-CoV and HCoV-229E coronaviruses. In this study the potential antiviral activity of surfactin against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was tested in vitro in a cellular model of infection. Our results show that 2 h treatment with surfactin is able to reduce SARS-CoV-2 infectivity on Vero E6 cells both at 24 h and after 7 days from viral inoculation, probably impairing the viral membrane integrity. Moreover, surfactin, at the concentrations used in our experimental settings, is not cytotoxic. We suggest surfactin as a new potential molecule against SARS-CoV-2, to be employed at least as a disinfectant.
Collapse
|
13
|
Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics (Basel) 2022; 11:antibiotics11081106. [PMID: 36009975 PMCID: PMC9404966 DOI: 10.3390/antibiotics11081106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Surface-active compounds (SACs), biomolecules produced by bacteria, yeasts, and filamentous fungi, have interesting properties, such as the ability to interact with surfaces as well as hydrophobic or hydrophilic interfaces. Because of their advantages over other compounds, such as biodegradability, low toxicity, antimicrobial, and healing properties, SACs are attractive targets for research in various applications in medicine. As a result, a growing number of properties related to SAC production have been the subject of scientific research during the past decade, searching for potential future applications in biomedical, pharmaceutical, and therapeutic fields. This review aims to provide a comprehensive understanding of the potential of biosurfactants and emulsifiers as antimicrobials, modulators of virulence factors, anticancer agents, and wound healing agents in the field of biotechnology and biomedicine, to meet the increasing demand for safer medical and pharmacological therapies.
Collapse
|
14
|
Lipopeptide Biosurfactants from Bacillus spp.: Types, Production, Biological Activities, and Applications in Food. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3930112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biosurfactants are a functionally and structurally heterogeneous group of biomolecules produced by multiple filamentous fungi, yeast, and bacteria, and characterized by their distinct surface and emulsifying ability. The genus Bacillus is well studied for biosurfactant production as it produces various types of lipopeptides, for example, lichenysins, bacillomycin, fengycins, and surfactins. Bacillus lipopeptides possess a broad spectrum of biological activities such as antimicrobial, antitumor, immunosuppressant, and antidiabetic, in addition to their use in skincare. Moreover, Bacillus lipopeptides are also involved in various food products to increase the antimicrobial, surfactant, and emulsification impact. From the previously published articles, it can be concluded that biosurfactants have strong potential to be used in food, healthcare, and agriculture. In this review article, we discuss the versatile functions of lipopeptide Bacillus species with particular emphasis on the biological activities and their applications in food.
Collapse
|
15
|
Amirova M, Bagirova S, Azizova U, Guliyeva S. The Main Directions of Antimicrobial Peptides Use and Synthesis Overview. Health (London) 2022. [DOI: 10.4236/health.2022.148060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Manna S, Chowdhury T, M. Mandal S, Choudhury SM. Short Amphiphiles or Micelle Peptides May Help to Fight Against
COVID-19. Curr Protein Pept Sci 2022; 23:33-43. [DOI: 10.2174/1389203723666220127154159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
Background:
COVID-19 is a worldwide threat because of the incessant spread of SARS-CoV-2 which urges the development of suitable antiviral drug to secure our society. Already, a group of peptides have been recommended for SARS-CoV-2, but not yet established. SARS-CoV-2 is an enveloped virus with hydrophobic fusion protein and spike glycoproteins.
Methods:
Here, we have summarized several reported amphiphilic peptides and their in-silico docking analysis with spike glycoprotein of SARS-CoV-2.
Result:
The result revealed the complex formation of spike protein and amphiphilic peptides with higher binding affinity. It was also observed that PalL1 (ARLPRTMVHPKPAQP), 10AN1 (FWFTLIKTQAKQPARYRRFC), THETA defensin (RCICGRGICRLL) and mucroporin M1 (LFRLIKSLIKRLVSAFK) showed the binding free energy more than -1000 kcal/mol. Molecular pI and hydrophobicity are also important factors of peptides to enhance the binding affinity with spike protein of SARS-CoV-2
Conclusion:
In the light of these findings, it is necessary to check the real efficacy of amphiphilic peptides in-vitro to in-vivo experimental set up to develop an effective anti-SARS-CoV-2 peptide drug, which might help to control the current pandemic situation.
Collapse
Affiliation(s)
- Sounik Manna
- Department of Human Physiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
- Department of Microbiology, Midnapore College (Autonomous), Paschim Medinipur 721101, India
| | - Trinath Chowdhury
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sujata Maiti Choudhury
- Department of Human Physiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| |
Collapse
|
17
|
Baindara P, Chakraborty R, Holliday Z, Mandal S, Schrum A. Oral probiotics in coronavirus disease 2019: connecting the gut-lung axis to viral pathogenesis, inflammation, secondary infection and clinical trials. New Microbes New Infect 2021; 40:100837. [PMID: 33425362 PMCID: PMC7785423 DOI: 10.1016/j.nmni.2021.100837] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/12/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
Defined as helpful live bacteria that can provide medical advantages to the host when administered in tolerable amounts, oral probiotics might be worth considering as a possible preventive or therapeutic modality to mitigate coronavirus disease 2019 (COVID-19) symptom severity. This hypothesis stems from an emerging understanding of the gut-lung axis wherein probiotic microbial species in the digestive tract can influence systemic immunity, lung immunity, and possibly viral pathogenesis and secondary infection co-morbidities. We review the principles underlying the gut-lung axis, examples of probiotic-associated antiviral activities, and current clinical trials in COVID-19 based on oral probiotics.
Collapse
Affiliation(s)
- P. Baindara
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO, USA,Corresponding author: P. Baindara, Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
| | - R. Chakraborty
- Department of Biotechnology, North Bengal University, Darjeeling, India
| | - Z.M. Holliday
- Pulmonary Disease, Critical Care Medicine, School of Medicine, University of Missouri, Columbia, MO, USA
| | - S.M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India,Corresponding author: S.M. Mandal, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - A.G. Schrum
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO, USA,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA,Department of Biomedical, Biological, & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA,Corresponding author: A. Schrum, Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|