1
|
Serrano-Mayorga CC, Duque S, Ibáñez-Prada ED, Garcia-Gallo E, Arrieta MPR, Bastidas A, Rodríguez A, Martin-Loeches I, Reyes LF. A targeted likelihood estimation comparing cefepime and piperacillin/tazobactam in critically ill patients with community-acquired pneumonia (CAP). Sci Rep 2024; 14:13392. [PMID: 38862579 PMCID: PMC11166966 DOI: 10.1038/s41598-024-64444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Abstract
Cefepime and piperacillin/tazobactam are antimicrobials recommended by IDSA/ATS guidelines for the empirical management of patients admitted to the intensive care unit (ICU) with community-acquired pneumonia (CAP). Concerns have been raised about which should be used in clinical practice. This study aims to compare the effect of cefepime and piperacillin/tazobactam in critically ill CAP patients through a targeted maximum likelihood estimation (TMLE). A total of 2026 ICU-admitted patients with CAP were included. Among them, (47%) presented respiratory failure, and (27%) developed septic shock. A total of (68%) received cefepime and (32%) piperacillin/tazobactam-based treatment. After running the TMLE, we found that cefepime and piperacillin/tazobactam-based treatments have comparable 28-day, hospital, and ICU mortality. Additionally, age, PTT, serum potassium and temperature were associated with preferring cefepime over piperacillin/tazobactam (OR 1.14 95% CI [1.01-1.27], p = 0.03), (OR 1.14 95% CI [1.03-1.26], p = 0.009), (OR 1.1 95% CI [1.01-1.22], p = 0.039) and (OR 1.13 95% CI [1.03-1.24], p = 0.014)]. Our study found a similar mortality rate among ICU-admitted CAP patients treated with cefepime and piperacillin/tazobactam. Clinicians may consider factors such as availability and safety profiles when making treatment decisions.
Collapse
Affiliation(s)
- Cristian C Serrano-Mayorga
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- School of Medicine, Universidad de La Sabana, Chía, Colombia
- Clinica Universidad de La Sabana, Chía, Colombia
- Engineering Faculty, Universidad de La Sabana, Chía, Colombia
| | - Sara Duque
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Elsa D Ibáñez-Prada
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- School of Medicine, Universidad de La Sabana, Chía, Colombia
- Clinica Universidad de La Sabana, Chía, Colombia
| | - Esteban Garcia-Gallo
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | | | - Alirio Bastidas
- School of Medicine, Universidad de La Sabana, Chía, Colombia
| | - Alejandro Rodríguez
- ICU Hospital , Universitario de Tarragona Joan XXIII - IISPV - Universidad Rovira and Virgili - CIBERES, Tarragona, Spain
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organisation (MICRO), St James's Hospital, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Pulmonary Department, Hospital Clinic, Universitat de Barcelona, IDIBAPS, ICREA, Barcelona, Spain
| | - Luis F Reyes
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia.
- School of Medicine, Universidad de La Sabana, Chía, Colombia.
- Clinica Universidad de La Sabana, Chía, Colombia.
- Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Elawady BA, Mahmoud NR, Badawi HES, Badr AEE, Gohar NM. Antimicrobial activity of cefepime-tazobactam combination against extended spectrum beta-lactamase and/or AmpC beta-lactamase- producing gram-negative bacilli. BMC Infect Dis 2024; 24:434. [PMID: 38654148 DOI: 10.1186/s12879-024-09296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The problem of resistance to beta-lactam antibiotics, which is caused by ESBL and AmpC β-lactamases, is getting worse globally. Infections caused by bacterial isolates harboring these enzymes are difficult to treat with carbapenems being the sole effective treatment option for such infections. The objective of this study was to determine the frequency of ESBLs and AmpC-producing Gram-negative bacilli isolated from clinical specimens and to evaluate the sensitivity of cefepime-tazobactam combination against them. METHODS This is an observational cross-sectional study carried out on 100 Gram-negative bacilli at Theodor Bilharz Research Institute Hospital during the period from February 2015 to January 2016. ESBL production was screened by using the disc diffusion test followed by confirmation by the combined disc confirmatory test, the screening for AmpC production was conducted using the cefoxitin disc test, which was subsequently confirmed by the AmpC disc test. Isolates confirmed positive for ESBL and/ or AmpC production were investigated for their susceptibility to antibiotics. RESULTS Among 100 Gram-negative bacilli, 44 isolates were confirmed as ESBL producers by the combined disc confirmatory test out of 56 isolates that tested positive for ESBL production through the disc diffusion test. The presence of AmpC production was assessed using the cefoxitin disc test, 32 isolates were screened to be AmpC producers, and the AmpC disc test confirmed AmpC production in 9 isolates of them. Using the Mast® D68C set, 32 isolates were ESBL producers, 3 were AmpC producers, and 4 isolates were ESBL/AmpC co-producers. The highest sensitivity was to cefepime-tazobactam (91.48%) followed by the carbapenems. CONCLUSION Cefepime-tazobactam showed remarkable activity against ESBL and/or AmpC-producing Gram-negative bacilli and may be considered as a therapeutic alternative to carbapenems.
Collapse
Affiliation(s)
- Basma Ahmed Elawady
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Noha Refaat Mahmoud
- Medical Microbiology and Immunology, Theodor Bilharz Research Institute, Warraq Al Hadar, Egypt
| | - Hala El-Sayed Badawi
- Medical Microbiology and Immunology, Theodor Bilharz Research Institute, Warraq Al Hadar, Egypt
| | - Azza Essam Eldin Badr
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha Mahmoud Gohar
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Zhang S, Liao X, Ding T, Ahn J. Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:260. [PMID: 38534695 DOI: 10.3390/antibiotics13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Since the discovery of penicillin, β-lactam antibiotics have commonly been used to treat bacterial infections. Unfortunately, at the same time, pathogens can develop resistance to β-lactam antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems by producing β-lactamases. Therefore, a combination of β-lactam antibiotics with β-lactamase inhibitors has been a promising approach to controlling β-lactam-resistant bacteria. The discovery of novel β-lactamase inhibitors (BLIs) is essential for effectively treating antibiotic-resistant bacterial infections. Therefore, this review discusses the development of innovative inhibitors meant to enhance the activity of β-lactam antibiotics. Specifically, this review describes the classification and characteristics of different classes of β-lactamases and the synergistic mechanisms of β-lactams and BLIs. In addition, we introduce potential sources of compounds for use as novel BLIs. This provides insights into overcoming current challenges in β-lactamase-producing bacteria and designing effective treatment options in combination with BLIs.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
4
|
Muller AE, Attwood M, Van den Berg S, Chavan R, Periasamy H, Noel A, MacGowan A. Cefepime pharmacodynamic targets against Enterobacterales employing neutropenic murine lung infection and in vitro pharmacokinetic models. J Antimicrob Chemother 2022; 77:3504-3509. [PMID: 36253951 DOI: 10.1093/jac/dkac349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Very limited studies, so far, have been conducted to identify the pharmacodynamic targets of cefepime, a well-established fourth-generation cephalosporin. As a result, conventional targets representing the cephalosporin class are used for cefepime target attainment analysis. OBJECTIVES We employed both a neutropenic murine lung infection model and an in vitro pharmacokinetic model (IVPM) to determine cefepime's pharmacodynamic target [percentage of the dosing interval during which unbound drug concentrations remain higher than the MIC (%fT>MIC)] for bacteriostatic and 1 log10 kill effects. METHODS Ten strains with cefepime MICs ranging from 0.03 to 16 mg/L were studied in the lung infection. In the IVPM, five cefepime-resistant strains with cefepime/tazobactam (fixed 8 mg/L) MICs ranging from 0.25 to 8 mg/L were included. Through 24 h dose fractionation, both in lung infection and IVPM (in the latter case, tazobactam 8 mg/L continuous infusion was used to protect cefepime), varying cefepime exposures and corresponding pharmacodynamic effect scenarios were generated to identify the pharmacodynamic targets. RESULTS Using a non-linear sigmoidal maximum-effect (Emax) model, the cefepime's plasma fT>MIC for 1 log10 kill in lung infection ranged from 17% to 53.7% and a combined exposure-response plot yielded 30%. In the case of IVPM, T>MIC ranged from 6.9% to 75.4% with a mean value of 34.2% for 1 log10 kill. CONCLUSIONS Both in vivo and in vitro studies showed that cefepime's pharmacodynamic requirements are lower than generally reported for cephalosporins (50%-70% fT>MIC). The lower requirement for cefepime could be linked with factors such as cefepime's better permeation properties and multiple PBP affinity-driven enhanced bactericidal action.
Collapse
Affiliation(s)
- Anouk E Muller
- Department of Medical Microbiology, Haaglanden Medisch Centrum, The Hague, The Netherlands
| | - Marie Attwood
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Infection Sciences, Southmead Hospital, Bristol BS10 5NB, UK
| | - Sanne Van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rajesh Chavan
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | | | - Alan Noel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Alasdair MacGowan
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Mushtaq S, Garello P, Vickers A, Woodford N, Livermore DM. Activity of ertapenem/zidebactam (WCK 6777) against problem Enterobacterales. J Antimicrob Chemother 2022; 77:2772-2778. [PMID: 35972407 PMCID: PMC9384802 DOI: 10.1093/jac/dkac280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Background Secondary healthcare will remain pressured for some years, both because SARS-CoV-2 will circulate as a nosocomial pathogen, and owing to backlogs of patients awaiting delayed elective procedures. These stresses will drive the use of Outpatient Parenteral Antibiotic Therapy (OPAT), which will need to cover increasingly resistant Gram-negative opportunists. We evaluated the activity of ertapenem/zidebactam, proposed for 2 + 2 g q24h administration. Materials and methods MICs were determined, by BSAC agar dilution, for 1632 Enterobacterales submitted to the UK national reference laboratory for investigation of antimicrobial resistance. Results Over 90% of Escherichia coli with AmpC, ESBLs, KPC, metallo- or OXA-48 carbapenemases were inhibited by ertapenem/zidebactam 1:1 at ertapenem’s current 0.5 mg/L breakpoint. For other major Enterobacterales, the proportions inhibited by ertapenem/zidebactam 1:1 at 0.5 mg/L were mostly 65% to 90% but were lower for Klebsiella pneumoniae/oxytoca with metallo- or OXA-48 β-lactamases. However, animal studies support an 8 mg/L breakpoint for ertapenem/zidebactam, based on a shortened T>MIC being needed compared with ertapenem alone. On this basis ertapenem/zidebactam would count as active against 90%–100% of isolates in all groups except K. pneumoniae/oxytoca with MBLs (±OXA-48), where MICs and percent susceptibility vary substantially even with inocula within the BSAC acceptable range. Conclusions Ertapenem/zidebactam has a proposed once-daily regimen well suited to OPAT. Even on highly conservative breakpoint projections, it has potential against MDR E. coli, including metallo-carbapenemase producers. If trial data sustain the 8 mg/L breakpoint indicated by animal experiments, its potential will extend widely across infections due to ESBL-, AmpC- and carbapenemase-producing Enterobacterales.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, United Kingdom Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Paolo Garello
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, United Kingdom Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, United Kingdom Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, United Kingdom Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, United Kingdom Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK.,Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
6
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
7
|
Brar A, Majumder S, Navarro MZ, Benoit-Biancamano MO, Ronholm J, George S. Nanoparticle-Enabled Combination Therapy Showed Superior Activity against Multi-Drug Resistant Bacterial Pathogens in Comparison to Free Drugs. NANOMATERIALS 2022; 12:nano12132179. [PMID: 35808015 PMCID: PMC9268018 DOI: 10.3390/nano12132179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
The emergence of multidrug-resistant (MDR) bacterial pathogens in farm animals and their zoonotic spread is a concern to both animal agriculture and public health. Apart from antimicrobial resistance (AMR), bacterial pathogens from the genera of Salmonella and Staphylococcus take refuge inside host cells, thereby demanding intervention strategies that can eliminate intracellular MDR pathogens. In this study, seven clinical isolates of Salmonella and Staphylococcus from swine farms were characterized for antibiotic (n = 24) resistance, resistance mechanisms, and virulence characteristics. All isolates showed resistance to one or more antibiotics and S. enterica ser. Typhimurium isolate had the highest resistance to the panel of antibiotics tested. Major resistance mechanisms identified were efflux pump and beta-lactamase enzyme activities. Staphylococcus isolates showed complete hemolysis and strong biofilm formation, while Salmonella isolates caused partial hemolysis, but showed no or weak biofilm formation. MDR isolates of S. aureus M12 and S. enterica ser. Typhimurium bacteria were subsequently tested against combinations of antibiotics and potentiating adjuvants for improved antibacterial efficacy using a checkerboard assay, and their fractional inhibitory concentration index (FICI) was calculated. A combination of chitosan and silica nanoparticles containing tetracycline (TET) and efflux pump inhibitor chlorpromazine (CPZ), respectively, was characterized for physicochemical properties and effectiveness against MDR Salmonella enterica ser. Typhimurium isolate. This combination of nano-encapsulated drugs improved the antibacterial efficacy by inhibiting AMR mechanisms (efflux activity, beta-lactamase enzyme activity, and hydrogen sulfide (H2S) production) and reducing intracellular pathogen load by 83.02 ± 14.35%. In conclusion, this study sheds light on the promising applicability of nanoparticle-enabled combination therapy to combat multidrug-resistant pathogens encountered in animal agriculture.
Collapse
Affiliation(s)
- Amarpreet Brar
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
| | - Satwik Majumder
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
| | - Maria Zardon Navarro
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Odile Benoit-Biancamano
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Department of Animal Science, Macdonald Campus, McGill University, 2111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
- Correspondence: ; Tel.: +1-514-398-7920; Fax: +1-514-398-7990
| |
Collapse
|
8
|
Sader HS, Carvalhaes CG, Mendes RE, Castanheira M. Antimicrobial Activity of High-Dose Cefepime-tazobactam (WCK 4282) against a Large Collection of Gram-negative Organisms Collected Worldwide in 2018 and 2019. Int J Infect Dis 2022; 116:306-312. [DOI: 10.1016/j.ijid.2022.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/29/2022] Open
|
9
|
Mushtaq S, Garello P, Vickers A, Woodford N, Livermore DM. Activity of cefepime/zidebactam (WCK 5222) against 'problem' antibiotic-resistant Gram-negative bacteria sent to a national reference laboratory. J Antimicrob Chemother 2021; 76:1511-1522. [PMID: 33760082 DOI: 10.1093/jac/dkab067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triple-action diazabicyclooctanes, e.g. zidebactam, combine β-lactamase inhibition, antibacterial activity, and 'enhancement' of PBP3-targeted β-lactams. OBJECTIVES To examine the activity of cefepime/zidebactam against consecutive 'problem' Gram-negative bacteria referred to the UK national reference laboratory. METHODS MICs were determined by BSAC agar dilution for 1632 Enterobacterales, 745 Pseudomonas aeruginosa and 450 other non-fermenters, categorized by carbapenemase detection and interpretive reading. RESULTS Universal susceptibility to cefepime/zidebactam 8 + 8 mg/L was seen for otherwise multidrug-resistant Enterobacterales with AmpC, extended-spectrum, K1, KPC and OXA-48-like β-lactamases, or with impermeability and 'unassigned' mechanisms. Unlike ceftazidime/avibactam and all other comparators, cefepime/zidebactam 8 + 8 mg/L also inhibited most (190/210, 90.5%) Enterobacterales with MBLs. Resistance in the remaining minority of MBL producers, and in 13/24 with both NDM MBLs and OXA-48-like enzymes, was associated with Klebsiella pneumoniae ST14. For Pseudomonas aeruginosa, MICs of cefepime/zidebactam rose with efflux grade, but exceeded 8 + 8 mg/L for only 11/85 isolates even in the highly-raised efflux group. Among 103 P. aeruginosa with ESBLs or MBLs, 97 (94.5%) were inhibited by cefepime/zidebactam 8 + 8 mg/L whereas fewer than 15% were susceptible to any comparator. MICs for Acinetobacter baumannii with acquired OXA carbapenemases clustered around 8 + 8 to 32 + 32 mg/L, with higher values for MBL producers. A strong enhancer effect augmented activity against many isolates that were highly resistant to cefepime and zidebactam alone and which had mechanisms not inhibited by zidebactam. CONCLUSIONS Assuming successful clinical trials, cefepime/zidebactam has scope to widely overcome critical resistances in both Enterobacterales and non-fermenters.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Paolo Garello
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK.,Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|