1
|
Wang S, Zhao K, Chen Z, Liu D, Tang S, Sun C, Chen H, Wang Y, Wu C. Halicin: A New Horizon in Antibacterial Therapy against Veterinary Pathogens. Antibiotics (Basel) 2024; 13:492. [PMID: 38927159 PMCID: PMC11200678 DOI: 10.3390/antibiotics13060492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
It is crucial to discover novel antimicrobial drugs to combat resistance. This study investigated the antibacterial properties of halicin (SU3327), an AI-identified anti-diabetic drug, against 13 kinds of common clinical pathogens of animal origin, including multidrug-resistant strains. Employing minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assessments, halicin demonstrated a broad-spectrum antibacterial effect. Time-killing assays revealed its concentration-dependent bactericidal activity against Escherichia coli ATCC 25922 (E. coli ATCC 25922), Staphylococcus aureus ATCC 29213 (S. aureus ATCC 29213), and Actinobacillus pleuropneumoniae S6 (APP S6) after 4 h of treatment at concentrations above the MIC. Halicin exhibited longer post-antibiotic effects (PAEs) and sub-MIC effects (PA-SMEs) for E. coli 25922, S. aureus 29213, and APP S6 compared to ceftiofur and ciprofloxacin, the commonly used veterinary antimicrobial agents, indicating sustained antibacterial action. Additionally, the results of consecutive passaging experiments over 40 d at sub-inhibitory concentrations showed that bacteria exhibited difficulty in developing resistance to halicin. Toxicology studies confirmed that halicin exhibited low acute toxicity, being non-mutagenic, non-reproductive-toxic, and non-genotoxic. Blood biochemical results suggested that halicin has no significant impact on hematological parameters, liver function, and kidney function. Furthermore, halicin effectively treated respiratory A. pleuropneumoniae infections in murine models. These results underscore the potential of halicin as a new antibacterial agent with applications against clinically relevant pathogens in veterinary medicine.
Collapse
Affiliation(s)
- Shuge Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.W.); (K.Z.); (Z.C.); (D.L.); (S.T.); (C.S.)
| | - Ke Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.W.); (K.Z.); (Z.C.); (D.L.); (S.T.); (C.S.)
| | - Ziqi Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.W.); (K.Z.); (Z.C.); (D.L.); (S.T.); (C.S.)
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.W.); (K.Z.); (Z.C.); (D.L.); (S.T.); (C.S.)
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.W.); (K.Z.); (Z.C.); (D.L.); (S.T.); (C.S.)
| | - Chengtao Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.W.); (K.Z.); (Z.C.); (D.L.); (S.T.); (C.S.)
| | - Hongliang Chen
- School of Life Sciences, Xiamen University, Xiamen 361005, China;
- Xiamen Vangenes Biotechnology Co., Ltd., Xiamen 361006, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.W.); (K.Z.); (Z.C.); (D.L.); (S.T.); (C.S.)
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.W.); (K.Z.); (Z.C.); (D.L.); (S.T.); (C.S.)
| |
Collapse
|
2
|
Zhang L, Wang H, Bai Y, Wang L, Bai Y, Hu J. Evaluation of the mutant selection window of danofloxacin against Actinobacillus pleuropneumoniae in an in vitro dynamic model. Front Vet Sci 2023; 10:1107608. [PMID: 36793382 PMCID: PMC9923107 DOI: 10.3389/fvets.2023.1107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction The rapid emergence and widespread spread of multidrug-resistant bacteria is a serious threat to the health of humans and animals. The pharmacokinetic/pharmacodynamic (PK/PD) integration model based on mutant selection window (MSW) theory is an important method to optimize the dosage regimen to prevent the emergence and spread of drug-resistant bacteria. Actinobacillus pleuropneumoniae (AP) is a pathogen that can cause pleuropneumonia in pigs. Methods We employed an in vitro dynamic infection model (DIM) to study the prevention of drug-resistant mutations of danofloxacin against AP. A peristaltic pump was applied to establish an in vitro DIM to simulate the PK of danofloxacin in plasma, and to study the MSW of danofloxacin against AP. A peristaltic-pump in vitro infection model was established to simulate dynamic changes in the danofloxacin concentration in pig plasma. PK and PD data were obtained. Then, the relationship between PK/PD parameters and antibacterial activity was analyzed by the sigmoid Emax model. Results and discussion The area under the curve during 24 h/ the minimum concentration that inhibits colony formation by 99% (AUC24h/MIC99) had the best-fitting relationship with antibacterial activity. The AUC24h/MIC99 values for a bacteriostatic effect, bactericidal effect, and eradication effect were 2.68, 33.67, and 71.58 h, respectively. We hope these results can provide valuable guidance when using danofloxacin to treat AP infection.
Collapse
Affiliation(s)
- Longfei Zhang
- College of Animal Science and Veterinary Medicine of Henan Institute of Science and Technology, Xinxiang, China
| | - Hongjuan Wang
- College of Animal Science and Veterinary Medicine of Henan Institute of Science and Technology, Xinxiang, China
| | - Yilin Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine of Henan Institute of Science and Technology, Xinxiang, China,*Correspondence: Lei Wang ✉
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine of Henan Institute of Science and Technology, Xinxiang, China,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,Yueyu Bai ✉
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine of Henan Institute of Science and Technology, Xinxiang, China,Jianhe Hu ✉
| |
Collapse
|
3
|
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022; 10:1025633. [PMID: 36620240 PMCID: PMC9815622 DOI: 10.3389/fpubh.2022.1025633] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
For around three decades, the fluoroquinolone (FQ) antibiotic ciprofloxacin has been used to treat a range of diseases, including chronic otorrhea, endocarditis, lower respiratory tract, gastrointestinal, skin and soft tissue, and urinary tract infections. Ciprofloxacin's main mode of action is to stop DNA replication by blocking the A subunit of DNA gyrase and having an extra impact on the substances in cell walls. Available in intravenous and oral formulations, ciprofloxacin reaches therapeutic concentrations in the majority of tissues and bodily fluids with a low possibility for side effects. Despite the outstanding qualities of this antibiotic, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa have all shown an increase in ciprofloxacin resistance over time. The rise of infections that are resistant to ciprofloxacin shows that new pharmacological synergisms and derivatives are required. To this end, ciprofloxacin may be more effective against the biofilm community of microorganisms and multi-drug resistant isolates when combined with a variety of antibacterial agents, such as antibiotics from various classes, nanoparticles, natural products, bacteriophages, and photodynamic therapy. This review focuses on the resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing its efficacy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mostafa Abedinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ganjalishahi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran,*Correspondence: Mohsen Heidary
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran,Saeed Khoshnood
| |
Collapse
|
4
|
A Single Amino Acid Substitution in Elongation Factor G Can Confer Low-Level Gentamicin Resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2022; 66:e0025122. [PMID: 35465683 PMCID: PMC9112995 DOI: 10.1128/aac.00251-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The continued emergence of Neisseria gonorrhoeae isolates which are resistant to first-line antibiotics has reinvigorated interest in alternative therapies such as expanded use of gentamicin (Gen). We hypothesized that expanded use of Gen promotes emergence of gonococci with clinical resistance to this aminoglycoside. To understand how decreased susceptibility of gonococci to Gen might develop, we selected spontaneous low-level Gen-resistant (GenR) mutants (Gen MIC = 32 μg/mL) of the Gen-susceptible strain FA19. Consequently, we identified a novel missense mutation in fusA, which encodes elongation factor G (EF-G), causing an alanine (A) to valine (V) substitution at amino acid position 563 in domain IV of EF-G; the mutant allele was termed fusA2. Transformation analysis showed that fusA2 could increase the Gen MIC by 4-fold. While possession of fusA2 did not impair either in vitro gonococcal growth or protein synthesis, it did result in a fitness defect during experimental infection of the lower genital tract in female mice. Through bioinformatic analysis of whole-genome sequences of 10,634 international gonococcal clinical isolates, other fusA alleles were frequently detected, but genetic studies revealed that they could not decrease Gen susceptibility in a similar manner to fusA2. In contrast to these diverse international fusA alleles, the fusA2-encoded A563V substitution was detected in only a single gonococcal clinical isolate. We hypothesize that the rare occurrence of fusA2 in N. gonorrhoeae clinical isolates is likely due to a fitness cost during infection, but compensatory mutations which alleviate this fitness cost could emerge and promote GenR in global strains.
Collapse
|