1
|
Wang H, Yang Y, Wang S, Badawy S, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Antimicrobial sensitisers: Gatekeepers to avoid the development of multidrug-resistant bacteria. J Control Release 2024; 369:25-38. [PMID: 38508527 DOI: 10.1016/j.jconrel.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The resistance of multidrug-resistant bacteria to existing antibiotics forces the continued development of new antibiotics and antibacterial agents, but the high costs and long timeframe involved in the development of new agents renders the hope that existing antibiotics may again play a part. The "antibiotic adjuvant" is an indirect antibacterial strategy, but its vague concept has, in the past, limited the development speed of related drugs. In this review article, we put forward an accurate concept of a "non-self-antimicrobial sensitisers (NSAS)", to distinguish it from an "antibiotic adjuvant", and then discuss several scientific methods to restore bacterial sensitivity to antibiotics, and the sources and action mechanism of existing NSAS, in order to guide the development and further research of NSAS.
Collapse
Affiliation(s)
- Hanfei Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Simeng Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sara Badawy
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
2
|
Li L, Gao X, Li M, Liu Y, Ma J, Wang X, Yu Z, Cheng W, Zhang W, Sun H, Song X, Wang Z. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol 2024; 14:1324895. [PMID: 38465230 PMCID: PMC10920351 DOI: 10.3389/fcimb.2024.1324895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yuchun Liu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Jiayue Ma
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Zhong X, Deng K, Yang X, Song X, Zou Y, Zhou X, Tang H, Li L, Fu Y, Yin Z, Wan H, Zhao X. Brevicidine acts as an effective sensitizer of outer membrane-impermeable conventional antibiotics for Acinetobacter baumannii treatment. Front Microbiol 2023; 14:1304198. [PMID: 38173680 PMCID: PMC10762313 DOI: 10.3389/fmicb.2023.1304198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The antibiotic resistance of Acinetobacter baumannii poses a significant threat to global public health, especially those strains that are resistant to carbapenems. Therefore, novel strategies are desperately needed for the treatment of infections caused by antibiotic-resistant A. baumannii. In this study, we report that brevicidine, a bacterial non-ribosomally produced cyclic lipopeptide, shows synergistic effects with multiple outer membrane-impermeable conventional antibiotics against A. baumannii. In particular, brevicidine, at a concentration of 1 μM, lowered the minimum inhibitory concentration of erythromycin, azithromycin, and rifampicin against A. baumannii strains by 32-128-fold. Furthermore, mechanistic studies were performed by employing erythromycin as an example of an outer membrane-impermeable conventional antibiotic, which showed the best synergistic effects with brevicidine against the tested A. baumannii strains in the present study. The results demonstrate that brevicidine disrupted the outer membrane of A. baumannii at a concentration range of 0.125-4 μM in a dose-dependent manner. This capacity of brevicidine could help the tested outer membrane-impermeable antibiotics enter A. baumannii cells and thereafter exert their antimicrobial activity. In addition, the results show that brevicidine-erythromycin combination exerted strong A. baumannii killing capacity by the enhanced inhibition of adenosine triphosphate biosynthesis and accumulation of reactive oxygen species, which are the main mechanisms causing the death of bacteria. Interestingly, brevicidine and erythromycin combination showed good therapeutic effects on A. baumannii-induced mouse peritonitis-sepsis models. These findings demonstrate that brevicidine is a promising sensitizer candidate of outer membrane-impermeable conventional antibiotics for treating A. baumannii infections in the post-antibiotic age.
Collapse
Affiliation(s)
- Xinyi Zhong
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Kai Deng
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiuhan Yang
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Yuping Fu
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
| | - Hongping Wan
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Cebrián R, Lucas R, Fernández-Cantos MV, Slot K, Peñalver P, Martínez-García M, Párraga-Leo A, de Paz MV, García F, Kuipers OP, Morales JC. Synthesis and antimicrobial activity of aminoalkyl resveratrol derivatives inspired by cationic peptides. J Enzyme Inhib Med Chem 2023; 38:267-281. [PMID: 36600674 PMCID: PMC9828810 DOI: 10.1080/14756366.2022.2146685] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance is a global concern, far from being resolved. The need of new drugs against new targets is imminent. In this work, we present a family of aminoalkyl resveratrol derivatives with antibacterial activity inspired by the properties of cationic amphipathic antimicrobial peptides. Surprisingly, the newly designed molecules display modest activity against aerobically growing bacteria but show surprisingly good antimicrobial activity against anaerobic bacteria (Gram-negative and Gram-positive) suggesting specificity towards this bacterial group. Preliminary studies into the action mechanism suggest that activity takes place at the membrane level, while no cross-resistance with traditional antibiotics is observed. Actually, some good synergistic relations with existing antibiotics were found against Gram-negative pathogens. However, some cytotoxicity was observed, despite their low haemolytic activity. Our results show the importance of the balance between positively charged moieties and hydrophobicity to improve antimicrobial activity, setting the stage for the design of new drugs based on these molecules.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands,Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Clínico San Cecilio, Granada, Spain,CONTACT Rubén Cebrián University Hospital San Cecilio,Clinical Microbiology Department, Av. de la Innovación s/n, 18061, Granada, Spain
| | - Ricardo Lucas
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - María Victoria Fernández-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Koen Slot
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Armilla, Granada, Spain
| | - Marta Martínez-García
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Antonio Párraga-Leo
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - María Violante de Paz
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, Seville, Spain
| | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Clínico San Cecilio, Granada, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands,Oscar P. Kuipers University of Groningen, Faculty of Science and Engineering, Department of Genetics, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Armilla, Granada, Spain,Juan Carlos Morales Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento 17, Armilla, 18016Granada, Spain
| |
Collapse
|
5
|
Chatupheeraphat C, Peamchai J, Luk-in S, Yainoy S, Eiamphungporn W. Synergistic effect of two antimicrobial peptides, BP203 and MAP-0403 J-2 with conventional antibiotics against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. PLoS One 2023; 18:e0294287. [PMID: 37972089 PMCID: PMC10653547 DOI: 10.1371/journal.pone.0294287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
Drug-resistant Enterobacterales infections are a great health concern due to the lack of effective treatments. Consequently, finding novel antimicrobials or combining therapies becomes a crucial approach in addressing this problem. BP203 and MAP-0403 J-2, novel antimicrobial peptides, have exhibited effectiveness against Gram-negative bacteria. In this study, we assessed the in vitro antibacterial activity of BP203 and MAP-0403 J-2, along with their synergistic interaction with conventional antibiotics including colistin, rifampicin, chloramphenicol, ceftazidime, meropenem, and ciprofloxacin against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. The minimal inhibitory concentrations (MIC) of BP203 and MAP-0403 J-2 against tested E. coli isolates were 2-16 and 8-32 μg/mL, respectively. However, for the majority of K. pneumoniae isolates, the MIC of BP203 and MAP-0403 J-2 were >128 μg/mL. Notably, our results demonstrated a synergistic effect when combining BP203 with rifampicin, meropenem, or chloramphenicol, primarily observed in most K. pneumoniae isolates. In contrast, no synergism was evident between BP203 and colistin, chloramphenicol, ceftazidime, rifampicin, or ciprofloxacin when tested against all E. coli isolates. Furthermore, synergistic effects between MAP-0403 J-2 and rifampicin, ceftazidime or colistin were observed against the majority of E. coli isolates. Similarly, the combined effect of MAP-0403 J-2 with rifampicin or chloramphenicol was synergistic in the majority of K. pneumoniae isolates. Importantly, these peptides displayed the stability at high temperatures, across a wide range of pH values, in specific serum concentrations and under physiological salt conditions. Both peptides also showed no significant hemolysis and cytotoxicity against mammalian cells. Our findings suggested that BP203 and MAP-0403 J-2 are promising candidates against colistin-resistant E. coli. Meanwhile, the synergism of these peptides and certain antibiotics could be of great therapeutic value as antimicrobial drugs against infections caused by colistin-resistant E. coli and K. pneumoniae.
Collapse
Affiliation(s)
- Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Jiratchaya Peamchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Lazar V, Oprea E, Ditu LM. Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness-Current State and Envisioned Solutions for the Near Future. Pathogens 2023; 12:pathogens12050746. [PMID: 37242416 DOI: 10.3390/pathogens12050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The current antibiotic crisis and the global phenomena of bacterial resistance, inherited and non-inherited, and tolerance-associated with biofilm formation-are prompting dire predictions of a post-antibiotic era in the near future. These predictions refer to increases in morbidity and mortality rates as a consequence of infections with multidrug-resistant or pandrug-resistant microbial strains. In this context, we aimed to highlight the current status of the antibiotic resistance phenomenon and the significance of bacterial virulence properties/fitness for human health and to review the main strategies alternative or complementary to antibiotic therapy, some of them being already clinically applied or in clinical trials, others only foreseen and in the research phase.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| |
Collapse
|
7
|
Melander RJ, Mattingly AE, Nemeth AM, Melander C. Overcoming intrinsic resistance in gram-negative bacteria using small molecule adjuvants. Bioorg Med Chem Lett 2023; 80:129113. [PMID: 36566797 PMCID: PMC9885958 DOI: 10.1016/j.bmcl.2022.129113] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Gram-negative bacteria are intrinsically resistant to many classes of antibiotics, predominantly due to the impermeability of the outer membrane and the presence of efflux pumps. Small molecule adjuvants that circumvent these resistance mechanisms have the potential to expand therapeutic options for treating Gram-negative infections to encompass antibiotic classes that are otherwise limited to treating Gram-positive infections. Adjuvants that effect increased antibiotic permeation, either by physical disruption of the outer membrane or through interference with synthesis, transport, or assembly of membrane components, and adjuvants that limit efflux, are discussed as potential avenues to overcoming intrinsic resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Anne E Mattingly
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ansley M Nemeth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
8
|
Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans. Pharmaceutics 2022; 14:pharmaceutics14091937. [PMID: 36145681 PMCID: PMC9503518 DOI: 10.3390/pharmaceutics14091937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing resistance of human pathogens promotes the development of novel antimicrobial agents. Due to the physical bactericidal mechanism of membrane disruption, antimicrobial peptides are considered as potential therapeutic candidates without inducing microbial resistance. Scorpion venom-derived peptide, Androctonus amoreuxi Antimicrobial Peptide 1 (AamAP1), has been proved to have broad-spectrum antimicrobial properties. However, AamAP1 can induce hemolysis and shows strong toxicity against mammalian cells. Herein, the antimicrobial activity and mechanism of a novel synthetic antimicrobial peptide, GK-19, derived from AamAP1 and its derivatives, was evaluated. Five bacteria and three fungi were used to evaluate the antimicrobial effects of GK-19 in vitro. Scalded mice models combined with skin and soft tissue infections (SSTIs) were used to evaluate its applicability. The results indicated that GK-19 could not only inhibit Gram-positive and Gram-negative bacterial growth, but also kill fungi by disrupting the microbial cell membrane. Meanwhile, GK-19 showed negligible toxicity to mammalian cells, low hemolytic activity and high stability in plasma. Furthermore, in scalded mice models combined with SSTIs induced by either Methicillin-Resistant Staphylococcus aureus (MRSA) or Candida albicans, GK-19 showed significant antimicrobial and healing effects. Overall, it was demonstrated that GK-19 might be a promising drug candidate in the battle against drug-resistant bacterial and fungal infections.
Collapse
|
9
|
Wesseling CJ, Martin NI. Synergy by Perturbing the Gram-Negative Outer Membrane: Opening the Door for Gram-Positive Specific Antibiotics. ACS Infect Dis 2022; 8:1731-1757. [PMID: 35946799 PMCID: PMC9469101 DOI: 10.1021/acsinfecdis.2c00193] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
New approaches to target antibacterial agents toward Gram-negative bacteria are key, given the rise of antibiotic resistance. Since the discovery of polymyxin B nonapeptide as a potent Gram-negative outer membrane (OM)-permeabilizing synergist in the early 1980s, a vast amount of literature on such synergists has been published. This Review addresses a range of peptide-based and small organic compounds that disrupt the OM to elicit a synergistic effect with antibiotics that are otherwise inactive toward Gram-negative bacteria, with synergy defined as a fractional inhibitory concentration index (FICI) of <0.5. Another requirement for the inclusion of the synergists here covered is their potentiation of a specific set of clinically used antibiotics: erythromycin, rifampicin, novobiocin, or vancomycin. In addition, we have focused on those synergists with reported activity against Gram-negative members of the ESKAPE family of pathogens namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and/or Acinetobacter baumannii. In cases where the FICI values were not directly reported in the primary literature but could be calculated from the published data, we have done so, allowing for more direct comparison of potency with other synergists. We also address the hemolytic activity of the various OM-disrupting synergists reported in the literature, an effect that is often downplayed but is of key importance in assessing the selectivity of such compounds for Gram-negative bacteria.
Collapse
|
10
|
Yu B, Choudhury MR, Yang X, Benoit SL, Womack E, Van Mouwerik Lyles K, Acharya A, Kumar A, Yang C, Pavlova A, Zhu M, Yuan Z, Gumbart JC, Boykin DW, Maier RJ, Eichenbaum Z, Wang B. Restoring and Enhancing the Potency of Existing Antibiotics against Drug-Resistant Gram-Negative Bacteria through the Development of Potent Small-Molecule Adjuvants. ACS Infect Dis 2022; 8:1491-1508. [PMID: 35801980 PMCID: PMC11227883 DOI: 10.1021/acsinfecdis.2c00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Manjusha Roy Choudhury
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | | | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Atanu Acharya
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Anna Pavlova
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - James C. Gumbart
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
11
|
Lopes BS, Hanafiah A, Nachimuthu R, Muthupandian S, Md Nesran ZN, Patil S. The Role of Antimicrobial Peptides as Antimicrobial and Antibiofilm Agents in Tackling the Silent Pandemic of Antimicrobial Resistance. Molecules 2022; 27:molecules27092995. [PMID: 35566343 PMCID: PMC9105241 DOI: 10.3390/molecules27092995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/11/2023] Open
Abstract
Just over a million people died globally in 2019 due to antibiotic resistance caused by ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The World Health Organization (WHO) also lists antibiotic-resistant Campylobacter and Helicobacter as bacteria that pose the greatest threat to human health. As it is becoming increasingly difficult to discover new antibiotics, new alternatives are needed to solve the crisis of antimicrobial resistance (AMR). Bacteria commonly found in complex communities enclosed within self-produced matrices called biofilms are difficult to eradicate and develop increased stress and antimicrobial tolerance. This review summarises the role of antimicrobial peptides (AMPs) in combating the silent pandemic of AMR and their application in clinical medicine, focusing on both the advantages and disadvantages of AMPs as antibiofilm agents. It is known that many AMPs display broad-spectrum antimicrobial activities, but in a variety of organisms AMPs are not stable (short half-life) or have some toxic side effects. Hence, it is also important to develop new AMP analogues for their potential use as drug candidates. The use of one health approach along with developing novel therapies using phages and breakthroughs in novel antimicrobial peptide synthesis can help us in tackling the problem of AMR.
Collapse
Affiliation(s)
- Bruno S. Lopes
- Department of Medical Microbiology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Correspondence: (B.S.L.); (A.H.)
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
- Correspondence: (B.S.L.); (A.H.)
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Laboratory, Department of Biomedical Sciences, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, India;
| | - Saravanan Muthupandian
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai 600077, India;
| | - Zarith Nameyrra Md Nesran
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, China;
| |
Collapse
|