1
|
Xiang X, Kong J, Zhang J, Zhang X, Qian C, Zhou T, Sun Y. Multiple mechanisms mediate aztreonam-avibactam resistance in Klebsiella pneumoniae: driven by KPC-2 and OmpK36 mutations. Int J Antimicrob Agents 2024:107425. [PMID: 39734051 DOI: 10.1016/j.ijantimicag.2024.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
Aztreonam-avibactam (ATM-AVI) is a promising β-lactam/β-lactamase inhibitor combination with an antimicrobial spectrum covering serine carbapenemase- or metallo-β-lactamase-producing Enterobacterales. Although ATM-AVI has not been widely used in clinical practice, resistance to it in Escherichia coli has been widely reported. In this study, we investigated an ATM-AVI-resistant Klebsiella pneumoniae strain, designated as 1705R, derived from K. pneumoniae ATCC BAA-1705 by induction, with a minimal inhibitory concentration of 128 μg/mL. The 1705R strain contained two copies of the blaKPC-2 variant, which encodes for a K. pneumoniae carbapenemase (KPC) variant with a Ser109Pro substitution, as well as a premature termination in OmpK36 and OmpK35 porins. This KPC variant decreased susceptibility to ATM-AVI by four-fold and demonstrated a reduced affinity for ATM and AVI in molecular docking analysis. In porin-deficient strains harbouring this KPC variant, ATM-AVI susceptibility was further diminished, exhibiting a 32-fold reduction. Whole-genome sequencing revealed that the transposition of Tn4401 carrying blaKPC from the IncFIB/FIIK plasmid into the ColRNAI plasmid produced a second copy of blaKPC. Quantitative polymerase chain reaction revealed that the copy number of blaKPC and its carrier plasmid increased, which significantly up-regulated their mRNA expression. Overexpression of the AcrAB-TolC efflux pump may also be associated with high levels of ATM-AVI resistance. Furthermore, collateral susceptibility and costs of growth and biofilm formation developed after the acquisition of ATM-AVI resistance. This study demonstrates that multiple molecular mechanisms collectively contribute to ATM-AVI resistance in K. pneumoniae 1705R strain, which may represent a mode of resistance to ATM-AVI.
Collapse
Affiliation(s)
- Xinli Xiang
- The Second School of Medicine, Wenzhou Medical University; Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jingchun Kong
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jia Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Changrui Qian
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Yao Sun
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Blanco-Martín T, González-Pinto L, Aja-Macaya P, Rodríguez-Pallares S, Sánchez-Peña L, Gato E, Fernández-López MDC, Outeda-García M, Rodríguez-Coello A, Pedraza-Merino R, Alonso-García I, Vázquez-Ucha JC, Martínez-Martínez L, Arca-Suárez J, Beceiro A, Bou G. Mutant prevention concentrations, in vitro resistance evolution dynamics, and mechanisms of resistance to imipenem and imipenem/relebactam in carbapenem-susceptible Klebsiella pneumoniae isolates showing ceftazidime/avibactam resistance. Antimicrob Agents Chemother 2024; 68:e0112024. [PMID: 39545736 PMCID: PMC11619344 DOI: 10.1128/aac.01120-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) variants selected during ceftazidime/avibactam treatment usually develop susceptibility to carbapenems and carbapenem/β-lactamase inhibitors, such as imipenem and imipenem/relebactam. We analyzed imipenem and imipenem/relebactam single-step mutant frequencies, resistance development trajectories and differentially selected resistance mechanisms using two representative K. pneumoniae isolates that had developed ceftazidime/avibactam resistance during therapy (ST512/KPC-31 and ST258/KPC-35). Mutant frequencies and mutant prevention concentrations were measured in Mueller-Hinton agar plates containing incremental concentrations of imipenem or imipenem/relebactam. Resistance dynamics were determined after incubation for 7 days in 10 mL MH tubes containing incremental concentrations of each antibiotic or combination, up to 64 times their baseline MIC. Two colonies per strain from each experiment were characterized by antimicrobial susceptibility testing and whole genome sequencing. The impact of KPC variants identified in resistant mutants on β-lactam resistance was investigated by cloning experiments. Imipenem/relebactam suppressed the emergence of resistant mutants at lower concentrations than imipenem, slowed down resistance development for both strains, and the resulting mutants yielded lower MICs of carbapenems and carbapenem/β-lactamase inhibitors than those selected with imipenem alone. Characterization of resistant mutants revealed that imipenem resistance was mainly caused by inactivation of OmpK36 and mutations in the KPC β-lactamase. Imipenem/relebactam-resistant mutants also maintained OmpK36 alterations, but mutations in KPC were much less frequent compared with those selected with imipenem alone. Genetic and biochemical characterization of the KPC derivatives identified in the resistant mutants confirmed their role in carbapenem resistance. Our data positions imipenem/relebactam as an attractive therapeutic option for combating ceftazidime/avibactam-resistant KPC-producing K. pneumoniae infections.
Collapse
Affiliation(s)
- Tania Blanco-Martín
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Lucía González-Pinto
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Pablo Aja-Macaya
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Salud Rodríguez-Pallares
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Lucía Sánchez-Peña
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Eva Gato
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - María del Carmen Fernández-López
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Michelle Outeda-García
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Arianna Rodríguez-Coello
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Rosa Pedraza-Merino
- Unidad de Microbiología, Hospital Universitario Reina Sofía e Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Isaac Alonso-García
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Vázquez-Ucha
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Martínez-Martínez
- Unidad de Microbiología, Hospital Universitario Reina Sofía e Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Química Agrícola, Edafología y Microbiología, Universidad de Córdoba, Córdoba, Spain
| | - Jorge Arca-Suárez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Germán Bou
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Rodríguez-Pallares S, Blanco-Martín T, Lence E, Aja-Macaya P, Sánchez-Peña L, González-Pinto L, Rodríguez-Mayo M, Fernández-González A, Galán-Sánchez F, Beceiro A, González-Bello C, Bou G, Arca-Suárez J. In vivo emergence of resistance to ceftazidime/avibactam through modification of chromosomal AmpC β-lactamase in Klebsiella aerogenes. Antimicrob Agents Chemother 2024; 68:e0130724. [PMID: 39503481 PMCID: PMC11619368 DOI: 10.1128/aac.01307-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 12/06/2024] Open
Abstract
We describe the in vivo emergence of resistance to ceftazidime/avibactam via modification of AmpC in a clinical Klebsiella aerogenes isolate during therapy with this combination. Paired ceftazidime/avibactam-susceptible/resistant isolates were obtained before and during ceftazidime/avibactam treatment. Whole genome sequencing revealed a differential mutation in AmpC (R148W) in the ceftazidime/avibactam-resistant isolate. Molecular cloning and structural studies confirmed the impact of this substitution, which affects the architecture of the H10 helix, on the evolved resistant phenotype.
Collapse
Affiliation(s)
- Salud Rodríguez-Pallares
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Tania Blanco-Martín
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Emilio Lence
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Aja-Macaya
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Lucía Sánchez-Peña
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Lucía González-Pinto
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - María Rodríguez-Mayo
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Ana Fernández-González
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Fátima Galán-Sánchez
- Servicio de Microbiología and Instituto de Innovación e Investigación Biomédica de Cádiz (INIBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Concepción González-Bello
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Germán Bou
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Arca-Suárez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Shen S, Tang C, Yang W, Ding L, Han R, Shi Q, Guo Y, Yin D, Hu F. In vitro mimicry of in vivo KPC mutations by ceftazidime-avibactam: phenotypes, mechanisms, genetic structure and kinetics of enzymatic hydrolysis. Emerg Microbes Infect 2024; 13:2356146. [PMID: 38743401 PMCID: PMC11151810 DOI: 10.1080/22221751.2024.2356146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Ceftazidime-avibactam (CZA) is employed for the treatment of infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP). Resistance to CZA is frequently linked to point mutations in the blaKPC. We conducted in vitro simulations of in vivo blaKPC mutations using CZA. Four pre-therapy KPC-KP isolates (K1, K2, K3, and K4) were evaluated, all initially exhibited susceptibility to CZA and produced KPC-2. The crucial distinction was that following CZA treatment, the blaKPC-2 mutated in K1, K2, and K3, rendering them resistant to CZA, while K4 achieved microbiological clearance, and blaKPC-2 remained unaltered. The induction assay identified various blaKPC-2 variants, including blaKPC-25, blaKPC-127, blaKPC-100, blaKPC-128, blaKPC-137, blaKPC-138, blaKPC-144 and blaKPC-180. Our findings suggest that the resistance of KPC-KP to CZA primarily results from the emergence of KPC variants, complemented by increased blaKPC expression. A close correlation exists between avibactam concentration and the rate of increased CZA minimum Inhibitory concentration, as well as blaKPC mutation. Inadequate avibactam concentration is more likely to induce resistance in strains against CZA, there is also a higher likelihood of mutation in the blaKPC-2 and the optimal avibactam ratio remains to be determined. Simultaneously, we selected a blaKPC-33-producing K. pneumoniae strain (mutated from blaKPC-2) and induced it with imipenem and meropenem, respectively. The blaKPC-2 was detected during the process, indicating that the mutation is reversible. Clinical use of carbapenems to treat KPC variant strains increases the risk of infection, as the gene can mutate back to blaKPC-2, rendering the strain even more cross-resistant to carbapenems and CZA.
Collapse
Affiliation(s)
- Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Chengkang Tang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Weiwei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Lei TY, Liao BB, Yang LR, Wang Y, Chen XB. Hypervirulent and carbapenem-resistant Klebsiella pneumoniae: A global public health threat. Microbiol Res 2024; 288:127839. [PMID: 39141971 DOI: 10.1016/j.micres.2024.127839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/16/2024]
Abstract
The evolution of hypervirulent and carbapenem-resistant Klebsiella pneumoniae can be categorized into three main patterns: the evolution of KL1/KL2-hvKp strains into CR-hvKp, the evolution of carbapenem-resistant K. pneumoniae (CRKp) strains into hv-CRKp, and the acquisition of hybrid plasmids carrying carbapenem resistance and virulence genes by classical K. pneumoniae (cKp). These strains are characterized by multi-drug resistance, high virulence, and high infectivity. Currently, there are no effective methods for treating and surveillance this pathogen. In addition, the continuous horizontal transfer and clonal spread of these bacteria under the pressure of hospital antibiotics have led to the emergence of more drug-resistant strains. This review discusses the evolution and distribution characteristics of hypervirulent and carbapenem-resistant K. pneumoniae, the mechanisms of carbapenem resistance and hypervirulence, risk factors for susceptibility, infection syndromes, treatment regimens, real-time surveillance and preventive control measures. It also outlines the resistance mechanisms of antimicrobial drugs used to treat this pathogen, providing insights for developing new drugs, combination therapies, and a "One Health" approach. Narrowing the scope of surveillance but intensifying implementation efforts is a viable solution. Monitoring of strains can be focused primarily on hospitals and urban wastewater treatment plants.
Collapse
Affiliation(s)
- Ting-Yu Lei
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Bin-Bin Liao
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Liang-Rui Yang
- First Affiliated Hospital of Dali University, Yunnan 671000, China.
| | - Ying Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Xu-Bing Chen
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
6
|
Pariona JGM, Vásquez-Ponce F, Becerra J, Martins-Gonçalves T, Pariona EMM, Madueño FT, Esposito F, V de Lima A, Mello Sampaio JL, Galhardo RS, Lincopan N. Reversion of KPC-114 to KPC-2 in ceftazidime-avibactam- resistant/meropenem-susceptible Klebsiella pneumoniae ST11 is related to low mutation rates. Microbiol Spectr 2024; 12:e0117324. [PMID: 39190636 PMCID: PMC11448024 DOI: 10.1128/spectrum.01173-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024] Open
Abstract
Klebsiella pneumoniae strains that produce Klebsiella pneumoniae Carbapenemase (KPC) variants displaying resistance to ceftazidime-avibactam (CZA) often remain susceptible to meropenem (MEM), suggesting a potential therapeutic use of this carbapenem antibiotic. However, in vitro studies indicate that these sorts of strains can mutate becoming MEM-resistant, raising concerns about the effectiveness of carbapenems as treatment option. We have studied mutation rates occurring from the reversion of MEM-susceptible KPC-114 to MEM-resistant KPC-2, in CZA-resistant K. pneumoniae belonging to ST11. Two-step fluctuation assays (FAs) were conducted. In brief, initial cultures of KPC-114-producing K. pneumoniae showing 1 µg/mL MEM MIC were spread on Mueller-Hinton agar plates containing 2-8 µg/mL MEM. A second step of FA, at 4-16 µg/mL MEM was performed from a mutant colony obtained at 2 µg/mL MEM. Mutation rates were calculated using maximum likelihood estimation. Parental and mutant strains were sequenced by Illumina NextSeq, and mutations were predicted by variant-calling analysis. At 8 µg/mL MEM, mutants derived from parental CZA-resistant (MIC ≥ 64 µg/mL)/MEM-susceptible (MIC = 1 µg/mL) KPC-114-positive K. pneumoniae exhibited an accumulative mutation rate of 3.05 × 10-19 mutations/cell/generation, whereas at 16 µg/mL MEM an accumulative mutation rate of 1.33 × 10-19 mutations/cell/generation resulted in the reversion of KPC-114 (S181_P182 deletion) to KPC-2. These findings highlight that the reversion of MEM-susceptible KPC-114 to MEM-resistant KPC-2, in CZA-resistant K. pneumoniae ST11 is related to low mutation rates suggesting a low risk of therapeutic failure. In vivo investigations are necessary to confirm the clinical potential of MEM against CZA-resistant KPC variants.IMPORTANCEThe emergence of ceftazidime-avibactam (CZA) resistance among carbapenem-resistant Klebsiella pneumoniae is a major concern due to the limited therapeutic options. Strikingly, KPC mutations mediating CZA resistance are generally associated with meropenem susceptibility, suggesting a potential therapeutic use of this carbapenem antibiotic. However, the reversion of meropenem-susceptible to meropenem-resistant could be expected. Therefore, knowing the mutation rate related to this genetic event is essential to estimate the potential use of meropenem against CZA-resistant KPC-producing K. pneumoniae. In this study, we demonstrate, in vitro, that under high concentrations of meropenem, reversion of KPC-114 to KPC-2 in CZA-resistant/meropenem-susceptible K. pneumoniae belonging to the global high-risk ST11 is related to low mutation rates.
Collapse
Affiliation(s)
- Jesus G M Pariona
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Felipe Vásquez-Ponce
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Johana Becerra
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil
| | - Thais Martins-Gonçalves
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Eva M M Pariona
- Universidad Peruana Cayetano Heredia, Unidad de Investigación de Enfermedades Emergentes y Cambio Climático, San Martín de Porres, Peru
| | - Fabio T Madueño
- Escola Politécnica, Engenharia Elétrica, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Aline V de Lima
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge L Mello Sampaio
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo S Galhardo
- Department of Microbiology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil
| |
Collapse
|
7
|
González-Pinto L, Alonso-García I, Blanco-Martín T, Camacho-Zamora P, Fraile-Ribot PA, Outeda-García M, Lasarte-Monterrubio C, Guijarro-Sánchez P, Maceiras R, Moya B, Juan C, Vázquez-Ucha JC, Beceiro A, Oliver A, Bou G, Arca-Suárez J. Impact of chromosomally encoded resistance mechanisms and transferable β-lactamases on the activity of cefiderocol and innovative β-lactam/β-lactamase inhibitor combinations against Pseudomonas aeruginosa. J Antimicrob Chemother 2024; 79:2591-2597. [PMID: 39073766 PMCID: PMC11441999 DOI: 10.1093/jac/dkae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVES We aimed to compare the stability of the newly developed β-lactams (cefiderocol) and β-lactam/β-lactamase inhibitor combinations (ceftazidime/avibactam, ceftolozane/tazobactam, aztreonam/avibactam, cefepime/taniborbactam, cefepime/zidebactam, imipenem/relebactam, meropenem/vaborbactam, meropenem/nacubactam and meropenem/xeruborbactam) against the most clinically relevant mechanisms of mutational and transferable β-lactam resistance in Pseudomonas aeruginosa. METHODS We screened a collection of 61 P. aeruginosa PAO1 derivatives. Eighteen isolates displayed the most relevant mechanisms of mutational resistance to β-lactams. The other 43 constructs expressed transferable β-lactamases from genes cloned in pUCP-24. MICs were determined by reference broth microdilution. RESULTS Cefiderocol and imipenem/relebactam exhibited excellent in vitro activity against all of the mutational resistance mechanisms studied. Aztreonam/avibactam, cefepime/taniborbactam, cefepime/zidebactam, meropenem/vaborbactam, meropenem/nacubactam and meropenem/xeruborbactam proved to be more vulnerable to mutational events, especially to overexpression of efflux operons. The agents exhibiting the widest spectrum of activity against transferable β-lactamases were aztreonam/avibactam and cefepime/zidebactam, followed by cefepime/taniborbactam, cefiderocol, meropenem/xeruborbactam and meropenem/nacubactam. However, some MBLs, particularly NDM enzymes, may affect their activity. Combined production of certain enzymes (e.g. NDM-1) with increased MexAB-OprM-mediated efflux and OprD deficiency results in resistance to almost all agents tested, including last options such as aztreonam/avibactam and cefiderocol. CONCLUSIONS Cefiderocol and new β-lactam/β-lactamase inhibitor combinations show promising and complementary in vitro activity against mutational and transferable P. aeruginosa β-lactam resistance. However, the combined effects of efflux pumps, OprD deficiency and efficient β-lactamases could still result in the loss of all therapeutic options. Resistance surveillance, judicious use of new agents and continued drug development efforts are encouraged.
Collapse
Affiliation(s)
- Lucía González-Pinto
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Isaac Alonso-García
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Tania Blanco-Martín
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Pablo Camacho-Zamora
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Pablo Arturo Fraile-Ribot
- Servicio de Microbiología & Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Michelle Outeda-García
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Cristina Lasarte-Monterrubio
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Paula Guijarro-Sánchez
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Romina Maceiras
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Bartolome Moya
- Servicio de Microbiología & Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Servicio de Microbiología & Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Vázquez-Ucha
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología & Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Germán Bou
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Arca-Suárez
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Tang C, Shen S, Yang W, Shi Q, Ding L, Han R, Yin D, Guo Y, Zhu D, Hu F. Complex evolutionary trajectories in vivo of two novel KPC variants conferring ceftazidime-avibactam resistance. Int J Antimicrob Agents 2024; 64:107265. [PMID: 38964622 DOI: 10.1016/j.ijantimicag.2024.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
More and more ceftazidime-avibactam-resistant KPC-producing Klebsiella pneumoniae have been reported with its widespread use, and the detection rate of KPC variants has increased dramatically. However, the evolutionary mechanism and fitness effects during KPC mutation remained unknown. Here, we report the complex in vivo evolutionary trajectories of two novel KPC variants, KPC-155 (L169P/GT242A) and KPC-185 (D179Y/GT242A), from K. pneumoniae in the same patient. The novel variants were shown to confer ceftazidime-avibactam resistance but restore carbapenem susceptibility based on the results of plasmid transformation assays, cloning experiments, and enzyme kinetic measurements. In vitro, competition experiments highlighted the adaptive advantage conferred by strains carrying these KPC variants, which could lead to the rapid spread of these ceftazidime-avibactam-resistant strains. The growth curve indicated that blaKPC-185 had better growth conditions at lower avibactam concentration compared to blaKPC-155, which was consistent with ceftazidime-avibactam use in vivo. In addition, replicative transposition of the IS26-flanked translocatable unit (IS26-ISKpn6-blaKPC-ISKpn27-IS26) also contributes to the blaKPC amplification and formation of two copies (blaKPC-2 and blaKPC-185), conferring both carbapenem and ceftazidime-avibactam resistance. However, strains with double copies showed reduced competitive advantage and configuration stability. The comparative plasmid analysis of IS26 group (IS26-blaKPC-IS26) and Tn1721 group (Tn1721-blaKPC-IS26) revealed that IS26-insertion could influence the distribution of resistance genes and ability of self-conjugation. The dynamic changes in blaKPC configuration highlight the need for consistent monitoring including antimicrobial susceptibility testing and determination of blaKPC subtypes - during clinical treatment, especially when ceftazidime-avibactam is administered.
Collapse
Affiliation(s)
- Chengkang Tang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Weiwei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Demei Zhu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China.
| |
Collapse
|
9
|
Krajewska J, Tyski S, Laudy AE. In Vitro Resistance-Predicting Studies and In Vitro Resistance-Related Parameters-A Hit-to-Lead Perspective. Pharmaceuticals (Basel) 2024; 17:1068. [PMID: 39204172 PMCID: PMC11357384 DOI: 10.3390/ph17081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Despite the urgent need for new antibiotics, very few innovative antibiotics have recently entered clinics or clinical trials. To provide a constant supply of new drug candidates optimized in terms of their potential to select for resistance in natural settings, in vitro resistance-predicting studies need to be improved and scaled up. In this review, the following in vitro parameters are presented: frequency of spontaneous mutant selection (FSMS), mutant prevention concentration (MPC), dominant mutant prevention concentration (MPC-D), inferior-mutant prevention concentration (MPC-F), and minimal selective concentration (MSC). The utility of various adaptive laboratory evolution (ALE) approaches (serial transfer, continuous culture, and evolution in spatiotemporal microenvironments) for comparing hits in terms of the level and time required for multistep resistance to emerge is discussed. We also consider how the hit-to-lead stage can benefit from high-throughput ALE setups based on robotic workstations, do-it-yourself (DIY) continuous cultivation systems, microbial evolution and growth arena (MEGA) plates, soft agar gradient evolution (SAGE) plates, microfluidic chips, or microdroplet technology. Finally, approaches for evaluating the fitness of in vitro-generated resistant mutants are presented. This review aims to draw attention to newly emerged ideas on how to improve the in vitro forecasting of the potential of compounds to select for resistance in natural settings.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Environmental Health and Safety, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland;
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology and Laboratory Diagnostic, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
10
|
Blanco-Martín T, Alonso-García I, González-Pinto L, Outeda-García M, Guijarro-Sánchez P, López-Hernández I, Pérez-Vázquez M, Aracil B, López-Cerero L, Fraile-Ribot P, Oliver A, Vázquez-Ucha JC, Beceiro A, Bou G, Arca-Suárez J. Activity of cefiderocol and innovative β-lactam/β-lactamase inhibitor combinations against isogenic strains of Escherichia coli expressing single and double β-lactamases under high and low permeability conditions. Int J Antimicrob Agents 2024; 63:107150. [PMID: 38513748 DOI: 10.1016/j.ijantimicag.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES To analyse the impact of the most clinically relevant β-lactamases and their interplay with low outer membrane permeability on the activity of cefiderocol, ceftazidime/avibactam, aztreonam/avibactam, cefepime/enmetazobactam, cefepime/taniborbactam, cefepime/zidebactam, imipenem/relebactam, meropenem/vaborbactam, meropenem/xeruborbactam and meropenem/nacubactam against recombinant Escherichia coli strains. METHODS We constructed 82 E. coli laboratory transformants expressing the main β-lactamases circulating in Enterobacterales (70 expressing single β-lactamase and 12 producing double carbapenemase) under high (E. coli TG1) and low (E. coli HB4) permeability conditions. Antimicrobial susceptibility testing was determined by reference broth microdilution. RESULTS Aztreonam/avibactam, cefepime/zidebactam, cefiderocol, meropenem/xeruborbactam and meropenem/nacubactam were active against all E. coli TG1 transformants. Imipenem/relebactam, meropenem/vaborbactam, cefepime/taniborbactam and cefepime/enmetazobactam were also highly active, but unstable against most of MBL-producing transformants. Combination of β-lactamases with porin deficiency (E. coli HB4) did not significantly affect the activity of aztreonam/avibactam, cefepime/zidebactam, cefiderocol or meropenem/nacubactam, but limited the effectiveness of the rest of carbapenem- and cefepime-based combinations. Double-carbapenemase production resulted in the loss of activity of most of the compounds tested, an effect particularly evident for those E. coli HB4 transformants in which MBLs were present. CONCLUSIONS Our findings highlight the promising activity that cefiderocol and new β-lactam/β-lactamase inhibitors have against recombinant E. coli strains expressing widespread β-lactamases, including when these are combined with low permeability or other enzymes. Aztreonam/avibactam, cefiderocol, cefepime/zidebactam and meropenem/nacubactam will help to mitigate to some extent the urgency of new compounds able to resist MBL action, although NDM enzymes represent a growing challenge against which drug development efforts are still needed.
Collapse
Affiliation(s)
- Tania Blanco-Martín
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Isaac Alonso-García
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Lucía González-Pinto
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Michelle Outeda-García
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Paula Guijarro-Sánchez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Inmaculada López-Hernández
- Laboratorio de Referencia para tipado molecular y detección de mecanismos de resistencia a antimicrobianos de Andalucía (PIRASOA). Unidad de Gestión Clínica de Microbiología y Enfermedades Infecciosas, Hospital Universitario Virgen Macarena, Sevilla. Instituto de Biomedicina de Sevilla (IBIS), CSIC, Universidad de Sevilla, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena López-Cerero
- Laboratorio de Referencia para tipado molecular y detección de mecanismos de resistencia a antimicrobianos de Andalucía (PIRASOA). Unidad de Gestión Clínica de Microbiología y Enfermedades Infecciosas, Hospital Universitario Virgen Macarena, Sevilla. Instituto de Biomedicina de Sevilla (IBIS), CSIC, Universidad de Sevilla, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Fraile-Ribot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases e Instituto de Investigación Sanitaria Illes Balears (IDISBA), Palma de Mallorca, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases e Instituto de Investigación Sanitaria Illes Balears (IDISBA), Palma de Mallorca, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Vázquez-Ucha
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Germán Bou
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Arca-Suárez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Jacobs LMC, Consol P, Chen Y. Drug Discovery in the Field of β-Lactams: An Academic Perspective. Antibiotics (Basel) 2024; 13:59. [PMID: 38247618 PMCID: PMC10812508 DOI: 10.3390/antibiotics13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
β-Lactams are the most widely prescribed class of antibiotics that inhibit penicillin-binding proteins (PBPs), particularly transpeptidases that function in peptidoglycan synthesis. A major mechanism of antibiotic resistance is the production of β-lactamase enzymes, which are capable of hydrolyzing β-lactam antibiotics. There have been many efforts to counter increasing bacterial resistance against β-lactams. These studies have mainly focused on three areas: discovering novel inhibitors against β-lactamases, developing new β-lactams less susceptible to existing resistance mechanisms, and identifying non-β-lactam inhibitors against cell wall transpeptidases. Drug discovery in the β-lactam field has afforded a range of research opportunities for academia. In this review, we summarize the recent new findings on both β-lactamases and cell wall transpeptidases because these two groups of enzymes are evolutionarily and functionally connected. Many efforts to develop new β-lactams have aimed to inhibit both transpeptidases and β-lactamases, while several promising novel β-lactamase inhibitors have shown the potential to be further developed into transpeptidase inhibitors. In addition, the drug discovery progress against each group of enzymes is presented in three aspects: understanding the targets, screening methodology, and new inhibitor chemotypes. This is to offer insights into not only the advancement in this field but also the challenges, opportunities, and resources for future research. In particular, cyclic boronate compounds are now capable of inhibiting all classes of β-lactamases, while the diazabicyclooctane (DBO) series of small molecules has led to not only new β-lactamase inhibitors but potentially a new class of antibiotics by directly targeting PBPs. With the cautiously optimistic successes of a number of new β-lactamase inhibitor chemotypes and many questions remaining to be answered about the structure and function of cell wall transpeptidases, non-β-lactam transpeptidase inhibitors may usher in the next exciting phase of drug discovery in this field.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.M.C.J.); (P.C.)
| |
Collapse
|