1
|
Totoń E, Lisiak N, Romaniuk-Drapała A, Framski G, Wyszko E, Ostrowski T. Cytotoxic effects of kinetin riboside and its selected analogues on cancer cell lines. Bioorg Med Chem Lett 2024; 100:129628. [PMID: 38280656 DOI: 10.1016/j.bmcl.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
N6-[(Furan-2-yl)methyl]adenosine (kinetin riboside) and its seven synthesized analogues were examined for the ability to inhibit the growth of five human carcinoma cell lines and for comparison of normal human lung fibroblast cell line (MRC-5). Out of the compounds evaluated, 8-azakinetin riboside was shown to exhibit significant cytotoxic activity for 72 h treatment against ovarian OVCAR-3 and pancreatic MIA PaCa-2 cancer cells (IC50 = 1.1 μM) with an observed weaker effect against MRC-5 cells (IC50 = 4.6 μM). Kinetin riboside, as well as its N6-[(furan-3-yl)methyl]- and N6-[(thien-2-yl)methyl]- counterparts, also exhibited cytotoxic activities at low micromolar levels but were non-selective over MRC-5 cells.
Collapse
Affiliation(s)
- Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Grzegorz Framski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Ostrowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
2
|
Nam T, Kang W, Oh S. Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation. J Microbiol Biotechnol 2023; 33:1206-1212. [PMID: 37463866 PMCID: PMC10580898 DOI: 10.4014/jmb.2301.01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023]
Abstract
Kinetin riboside is a naturally produced cytokinin that displays strong antiproliferative activity in various human cancer cells. However, the mechanism of chemoprevention in colorectal cancer cells has not been elucidated. We used a cell-based reporter system to identify kinetin riboside as an antagonist of the Wnt/β-catenin pathway, which is aberrantly upregulated in colorectal cancer. Kinetin riboside suppressed β-catenin response transcription (CRT) by accelerating the degradation of intracellular β-catenin via a proteasomal degradation pathway. Pharmacological inhibition of glycogen synthase kinase-3β did not affect CRT downregulation. Kinetin riboside decreased the intracellular β-catenin levels in colorectal cancer cells with mutations in adenomatous polyposis coli (APC) and β-catenin. Consistently, kinetin riboside repressed expression of c-Myc and cyclin D1, β-catenin/T-cell factor (TCF)-dependent genes, and inhibited the proliferation of colorectal cancer cells. In addition, kinetin riboside stimulated apoptosis, as measured by an increase in annexin V-FITC-stained cells. These findings suggest that kinetin riboside exerts its anti-cancer activity by promoting β-catenin degradation and has significant potential as a chemopreventive agent for colorectal cancer cells.
Collapse
Affiliation(s)
- TaeKyung Nam
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
3
|
Halim HH, Pak Dek MS, Hamid AA, Saari N, Mohd Lazim MI, Abas F, Ngalim A, Ismail A, Jaafar AH. Novel sources of bioactive compounds in coconut (Cocos nucifera L.) water from different maturity levels and varieties as potent skin anti-aging strategies and anti-fatigue agents. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Lee H, Kwon Y, Jin H, Liu H, Kang W, Chun Y, Bae J, Choi H. Anticancer activity and metabolic profile alterations by ortho‐topolin riboside in in vitro and in vivo models of non‐small cell lung cancer. FASEB J 2022; 36:e22127. [DOI: 10.1096/fj.202101333r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Hwanhui Lee
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Yeo‐Jung Kwon
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Hanyong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education College of Pharmacy Yanbian University Yanji China
| | - Heifeng Liu
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Wonku Kang
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Young‐Jin Chun
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Hyung‐Kyoon Choi
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| |
Collapse
|
5
|
Zhang S, Lyons N, Koedam M, van de Peppel J, van Leeuwen JP, van der Eerden BCJ. Identification of small molecules as novel anti-adipogenic compounds based on Connectivity Map. Front Endocrinol (Lausanne) 2022; 13:1017832. [PMID: 36589834 PMCID: PMC9800878 DOI: 10.3389/fendo.2022.1017832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Several physiological and pathological conditions such as aging, obesity, diabetes, anorexia nervosa are associated with increased adipogenesis in the bone marrow. A lack of effective drugs hinder the improved treatment for aberrant accumulation of bone marrow adipocytes. Given the higher costs, longer duration and sometimes lack of efficacy in drug discovery, computational and experimental strategies have been used to identify previously approved drugs for the treatment of diseases, also known as drug repurposing. Here, we describe the method of small molecule-prioritization by employing adipocyte-specific genes using the connectivity map (CMap). We then generated transcriptomic profiles using human mesenchymal stromal cells under adipogenic differentiation with the treatment of prioritized compounds, and identified emetine and kinetin-riboside to have a potent inhibitory effect on adipogenesis. Overall, we demonstrated a proof-of-concept method to identify repurposable drugs capable of inhibiting adipogenesis, using the Connectivity Map.
Collapse
Affiliation(s)
- Shuang Zhang
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nicholas Lyons
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen van de Peppel
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johannes P.T.M. van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Bram C. J. van der Eerden,
| |
Collapse
|
6
|
Implications of Oxidative Stress in Glioblastoma Multiforme Following Treatment with Purine Derivatives. Antioxidants (Basel) 2021; 10:antiox10060950. [PMID: 34204594 PMCID: PMC8231124 DOI: 10.3390/antiox10060950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, small compound-based therapies have provided new insights into the treatment of glioblastoma multiforme (GBM) by inducing oxidative impairment. Kinetin riboside (KR) and newly designed derivatives (8-azaKR, 7-deazaKR) selectively affect the molecular pathways crucial for cell growth by interfering with the redox status of cancer cells. Thus, these compounds might serve as potential alternatives in the oxidative therapy of GBM. The increased basal levels of reactive oxygen species (ROS) in GBM support the survival of cancer cells and cause drug resistance. The simplest approach to induce cell death is to achieve the redox threshold and circumvent the antioxidant defense mechanisms. Consequently, cells become more sensitive to oxidative stress (OS) caused by exogenous agents. Here, we investigated the effect of KR and its derivatives on the redox status of T98G cells in 2D and 3D cell culture. The use of spheroids of T98G cells enabled the selection of one derivative-7-deazaKR-with comparable antitumor activity to KR. Both compounds induced ROS generation and genotoxic OS, resulting in lipid peroxidation and leading to apoptosis. Taken together, these results demonstrated that KR and 7-deazaKR modulate the cellular redox environment of T98G cells, and vulnerability of these cells is dependent on their antioxidant capacity.
Collapse
|
7
|
Montesinos JC, Abuzeineh A, Kopf A, Juanes-Garcia A, Ötvös K, Petrášek J, Sixt M, Benková E. Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. EMBO J 2020; 39:e104238. [PMID: 32667089 PMCID: PMC7459425 DOI: 10.15252/embj.2019104238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.
Collapse
Affiliation(s)
| | - Anas Abuzeineh
- Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Aglaja Kopf
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Alba Juanes-Garcia
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Krisztina Ötvös
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.,Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Jan Petrášek
- Institute of Experimental Botany, The Czech Academy of Sciences, Praha, Czech Republic
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
8
|
New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. Eur J Med Chem 2018; 150:946-957. [PMID: 29604584 DOI: 10.1016/j.ejmech.2018.03.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/22/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022]
Abstract
Eleven 6-furfurylaminopurine (kinetin, Kin) derivatives were synthesized to obtain biologically active compounds. The prepared compounds were characterized using 1H NMR, mass spectrometry combined with HPLC purity determination and elemental C, H, N analyses. The biological activity of new derivatives was tested on plant cells and tissues in cytokinin bioassays, such as tobacco callus, detached wheat leaf chlorophyll retention bioassay and Amaranthus bioassay. The selected compounds were subsequently tested on normal human dermal fibroblasts (NHDF) and keratinocyte cell lines (HaCaT) to exclude possible phototoxic effects and, on the other hand, to reveal possible UVA and UVB photoprotective activity. The protective antioxidant activity of the prepared cytokinin derivatives was further studied and compared to previously prepared antisenescent compound 6-furfurylamino-9-(tetrahydrofuran-2-yl)purine (Kin-THF) using induced oxidative stress (OS) on nematode Caenorhabditis elegans damaged by 5-hydroxy-1,4-naphthoquinone (juglone), a generator of reactive oxygen species. The observed biological activity was interpreted in relation to the structure of the prepared derivatives. The most potent oxidative stress protection of all the prepared compounds was shown by 6-(thiophen-2-ylmethylamino)-9-(tetrahydrofuran-2-yl)purine (6) and 2-chloro-6-furfurylamino-9-(tetrahydrofuran-2-yl)purine (9) derivatives and the results were comparable to Kin-THF. Compounds 6 and 9 were able to significantly protect human skin cells against UV radiation in vitro. Both the derivatives 6 and 9 showed higher protective activity in comparison to previously known structurally similar compounds Kin and Kin-THF. The obtained results are surprising due to the fact that the prepared compounds showed to be inactive in the ORAC assay which proved that the compounds did not act as direct antioxidants as they were unable to directly scavenge oxygen radicals.
Collapse
|
9
|
Chanclud E, Lacombe B. Plant Hormones: Key Players in Gut Microbiota and Human Diseases? TRENDS IN PLANT SCIENCE 2017; 22:754-758. [PMID: 28843313 DOI: 10.1016/j.tplants.2017.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 05/27/2023]
Abstract
It is well established that plant hormones such as auxins, cytokinins (CKs), and abscisic acid (ABA) not only govern important plant physiological traits but are key players in plant-microbe interactions. A poorly appreciated fact, however, is that both microbes and animals produce and perceive plant hormones and their mimics. Moreover, dietary plant hormones impact on human physiological process such as glucose assimilation, inflammation, and cell division. This leads us to wonder whether plant hormones could ensure functions in microbes per se as well as in animal-microbe interactions. We propose here and explore the hypothesis that plant hormones play roles in animal-microbiota relationships, with consequences for human health.
Collapse
Affiliation(s)
- Emilie Chanclud
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA)/SupAgro/Université de Montpellier, Institut de Biologie Intégrative des Plantes 'Claude Grignon', 34060 Montpellier, France; Present address: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Benoît Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique (CNRS)/Institut National de la Recherche Agronomique (INRA)/SupAgro/Université de Montpellier, Institut de Biologie Intégrative des Plantes 'Claude Grignon', 34060 Montpellier, France.
| |
Collapse
|
10
|
Voller J, Maková B, Kadlecová A, Gonzalez G, Strnad M. Plant Hormone Cytokinins for Modulating Human Aging and Age-Related Diseases. HEALTHY AGEING AND LONGEVITY 2017. [DOI: 10.1007/978-3-319-63001-4_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Othman EM, Naseem M, Awad E, Dandekar T, Stopper H. The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells. PLoS One 2016; 11:e0168386. [PMID: 28005918 PMCID: PMC5179003 DOI: 10.1371/journal.pone.0168386] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/29/2016] [Indexed: 01/29/2023] Open
Abstract
Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing.
Collapse
Affiliation(s)
- Eman M Othman
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.,Department of Analytical Chemistry, Faculty of Pharmacy, University of El-Minia, Minia, Egypt
| | - Muhammed Naseem
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.,Bogazici University, Department of Molecular Biology and Genetics, Kuzey Park, Istanbul
| | - Eman Awad
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Wang L, Yu DL, Zhang HW, He LY, Wu L. Ortho-topolin riboside induces apoptosis in Acute myeloid leukemia HL-60 cells. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0020-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Jayakumar T, Yang CH, Geraldine P, Yen TL, Sheu JR. The pharmacodynamics of antiplatelet compounds in thrombosis treatment. Expert Opin Drug Metab Toxicol 2016; 12:615-32. [DOI: 10.1080/17425255.2016.1176141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pitchairaj Geraldine
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Ting-Lin Yen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Vistoli G, Brizzolari A, Faioni E, Razzari C, Santaniello E. Naturally occurring N(6)-substituted adenosines (cytokinin ribosides) are in vitro inhibitors of platelet aggregation: an in silico evaluation of their interaction with the P2Y(12) receptor. Bioorg Med Chem Lett 2014; 24:5652-5655. [PMID: 25467153 DOI: 10.1016/j.bmcl.2014.10.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/21/2022]
Abstract
A few naturally occurring N(6)-substituted adenosine derivatives (cytokinin ribosides) were investigated as inhibitors of platelet aggregation induced in vitro by collagen and their activity range was demonstrated (IC50: 6.77-141 μM). A docking study suggests that anti-aggregation activity of these compounds could involve an interaction with the P2Y12 receptor binding site.
Collapse
Affiliation(s)
- Giulio Vistoli
- Department of Pharmaceutical Science, Università degli Studi, Via Celoria 2, 20100 Milano, Italy
| | - Andrea Brizzolari
- Department of Health Sciences, Università degli Studi, Via A. Di Rudinì 8, 20142 Milano, Italy
| | - Elena Faioni
- Department of Health Sciences, Università degli Studi, Via A. Di Rudinì 8, 20142 Milano, Italy; S. Paolo Hospital, Via A. Di Rudinì 8, 20142 Milano, Italy
| | | | - Enzo Santaniello
- Department of Health Sciences, Università degli Studi, Via A. Di Rudinì 8, 20142 Milano, Italy.
| |
Collapse
|
15
|
Adamska E, Barciszewski J, Markiewicz WT. Convenient and efficient syntheses of N(6)- and N(4)- substituted adenines and cytosines and their 2'-deoxyribosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 31:861-71. [PMID: 23215549 DOI: 10.1080/15257770.2012.742198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Convenient and efficient methods of the synthesis of N(6)- and N(4)-substituted derivatives of adenine and cytosine and their 2'-deoxyribosides were developed. The reactions of either unprotected nucleobases (adenine, cytosine) or unprotected 2'-deoxyribosides with aryl or alkyl aldehydes give corresponding Schiff bases that can be reduced to the target title compounds with high overall yields. In the case of aryl aldehydes the imine derivatives are obtained in the presence of methoxides in methanol and reduced with sodium borohydride. The corresponding reactions with alkyl aldehydes require the use of acetic acid and borane dimethyl sulfide complex instead.
Collapse
Affiliation(s)
- Ewelina Adamska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | | |
Collapse
|
16
|
Kunikowska A, Byczkowska A, Kaźmierczak A. Kinetin induces cell death in root cortex cells of Vicia faba ssp. minor seedlings. PROTOPLASMA 2013; 250:851-61. [PMID: 23143313 PMCID: PMC3728429 DOI: 10.1007/s00709-012-0466-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/24/2012] [Indexed: 05/09/2023]
Abstract
The double fluorescence staining with acridine orange and ethidium bromide (AO/EB) revealed that treatment of Vicia faba ssp. minor seedlings with kinetin-induced programmed cell death (PCD) in root cortex cells. Kinetin-induced cell death reflected by the morphological changes of nuclei including their invagination, volume increase, chromatin condensation and degradation as well as formation of micronuclei showed by AO/EB and 4,6-diamidino-2-phenylindol staining was accompanied by changes including increase in conductivity of cell electrolytes secreted to culture media, decrease in the number of the G1- and G2-phase cells and appearance of fraction of hypoploid cells as the effect of DNA degradation without ladder formation. Decrease in the number of mitochondria and in the activity of cellular dehydrogenases, production of reactive oxygen species (ROS), appearance of small and then large lytic vacuoles and increase in the amount of cytosolic calcium ions were also observed. The PCD was also manifested by increased width and weight of apical fragments of roots as well as decreased length of cortex cells which led to shortening of the whole roots. The kinetin-induced PCD process was almost completely inhibited by adenine, an inhibitor of phosphoribosyl transferase, and mannitol, an inhibitor of ROS production. These cell-death hallmarks and pathway of this process suggested that the induction of kinetin-specific vacuolar type of death, expressed itself with similar intensity on both morphological and metabolic levels, was a transient protecting whole roots and whole seedlings against elimination.
Collapse
Affiliation(s)
- Anita Kunikowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland
| | - Anna Byczkowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland
| |
Collapse
|
17
|
Kunikowska A, Byczkowska A, Doniak M, Kaźmierczak A. Cytokinins résumé: their signaling and role in programmed cell death in plants. PLANT CELL REPORTS 2013; 32:771-80. [PMID: 23579381 PMCID: PMC3654191 DOI: 10.1007/s00299-013-1436-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 05/21/2023]
Abstract
Cytokinins (CKs) are a large group of plant hormones which play a crucial role in many physiological processes in plants. One of the interesting functions of CKs is the control of programmed cell death (PCD). It seems that all CKs-dependent phenomena including PCD are accompanied by special multi-step phosphorelay signaling pathway. This pathway consists of three elements: histidine kinase receptors (HKs), histidine phosphotransfer proteins (HPs) and response regulators (RRs). This review shows the résumé of the latest knowledge about CKs signaling pathways in many physiological processes in plants with special attention paid to PCD process.
Collapse
Affiliation(s)
- A. Kunikowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - A. Byczkowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - M. Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - A. Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| |
Collapse
|
18
|
Rajabi M, Gorincioi E, Santaniello E. Antiproliferative activity of kinetin riboside on HCT-15 colon cancer cell line. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:474-81. [PMID: 22646087 DOI: 10.1080/15257770.2012.681825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytokinins and cytokinin nucleosides are purine derivatives with potential anticancer activity both in vitro and in vivo. N(6)-furfuryladenosine (kinetin riboside, KR) displays antiproliferative and apoptogenic activity against various human cancer cell lines and has recently been shown to suppress tumor growth in murine xenograft models of human leukemia and melanoma. In this study, we demonstrate that KR is able to inhibit the proliferation in HCT-15 human colon cancer cells in a dose-dependent manner with a concentration of 2.5 μM, which causes 50% inhibition of cell viability. The cell cycle analysis by flow cytometry showed that KR arrested cell cycle progression in the S Phase by blocking through G(2)/M and G(0)/G(1) phase in HCT-15 colon cells. Moreover, suppression of clonogenic activity occurs after exposure to KR at a concentration of 2.5 μM for HCT-15.
Collapse
Affiliation(s)
- Mehdi Rajabi
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Universitá del Piemonte Orientale, Novara, Italy.
| | | | | |
Collapse
|
19
|
Wang L, Sun C, Wang ZH, Guo GQ. Mechanism of apoptotosis induced by ortho-topolin riboside in human hepatoma cell line SMMC-7721. Food Chem Toxicol 2012; 50:1962-8. [DOI: 10.1016/j.fct.2012.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/01/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
|
20
|
Dudzik P, Dulińska-Litewka J, Wyszko E, Jędrychowska P, Opałka M, Barciszewski J, Laidler P. Effects of kinetin riboside on proliferation and proapoptotic activities in human normal and cancer cell lines. J Cell Biochem 2011; 112:2115-24. [PMID: 21465535 DOI: 10.1002/jcb.23132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kinetin riboside (KR) is a N6-substituted derivative of adenosine. It is a natural compound which occurs in the milk of coconuts on the nanomole level. KR was initially shown to selectively inhibit proliferation of cancer cells and induce their apoptosis. We observed that KR inhibited growth (20-80%) of not only human cancer, but also normal cells and that this effect strongly depended on the type of cells. The anti-apoptotic Bcl-2 protein was downregulated, while proapoptotic Bax was upregulated in normal as well as in cancer cell lines, upon exposure to KR. Cytochrome c level increased in the cytosol upon treatment of cells with KR. The activity of caspases (ApoFluor®Green Caspase Activity Assay), as well as caspase-3 (caspase-3 activation assay) were increased mainly in cancer cells. The expression of procaspase 9 and its active form in the nucleus as well as in cytosol of KR-treated cells was elevated. In contrast, no effect of KR on caspase 8 expression was noted. The results indicated that non-malignant cells were less sensitive to KR then their cancer analogs and that KR most likely stimulated apoptosis mechanism of cancer cells through the intrinsic pathway.
Collapse
|
21
|
Rogers JT, Mikkilineni S, Cantuti-Castelvetri I, Smith DH, Huang X, Bandyopadhyay S, Cahill CM, Maccecchini ML, Lahiri DK, Greig NH. The alpha-synuclein 5'untranslated region targeted translation blockers: anti-alpha synuclein efficacy of cardiac glycosides and Posiphen. J Neural Transm (Vienna) 2011; 118:493-507. [PMID: 21221670 PMCID: PMC6625511 DOI: 10.1007/s00702-010-0513-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/15/2010] [Indexed: 12/24/2022]
Abstract
Increased brain α-synuclein (SNCA) protein expression resulting from gene duplication and triplication can cause a familial form of Parkinson's disease (PD). Dopaminergic neurons exhibit elevated iron levels that can accelerate toxic SNCA fibril formation. Examinations of human post mortem brain have shown that while mRNA levels for SNCA in PD have been shown to be either unchanged or decreased with respect to healthy controls, higher levels of insoluble protein occurs during PD progression. We show evidence that SNCA can be regulated via the 5'untranslated region (5'UTR) of its transcript, which we modeled to fold into a unique RNA stem loop with a CAGUGN apical loop similar to that encoded in the canonical iron-responsive element (IRE) of L- and H-ferritin mRNAs. The SNCA IRE-like stem loop spans the two exons that encode its 5'UTR, whereas, by contrast, the H-ferritin 5'UTR is encoded by a single first exon. We screened a library of 720 natural products (NPs) for their capacity to inhibit SNCA 5'UTR driven luciferase expression. This screen identified several classes of NPs, including the plant cardiac glycosides, mycophenolic acid (an immunosuppressant and Fe chelator), and, additionally, posiphen was identified to repress SNCA 5'UTR conferred translation. Western blotting confirmed that Posiphen and the cardiac glycoside, strophanthidine, selectively blocked SNCA expression (~1 μM IC(50)) in neural cells. For Posiphen this inhibition was accelerated in the presence of iron, thus providing a known APP-directed lead with potential for use as a SNCA blocker for PD therapy. These are candidate drugs with the potential to limit toxic SNCA expression in the brains of PD patients and animal models in vivo.
Collapse
Affiliation(s)
- Jack T Rogers
- Neurochemistry Laboratory, Psychiatry-Neuroscience, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Voller J, Zatloukal M, Lenobel R, Dolezal K, Béres T, Krystof V, Spíchal L, Niemann P, Dzubák P, Hajdúch M, Strnad M. Anticancer activity of natural cytokinins: a structure-activity relationship study. PHYTOCHEMISTRY 2010; 71:1350-1359. [PMID: 20553699 DOI: 10.1016/j.phytochem.2010.04.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/15/2010] [Accepted: 04/19/2010] [Indexed: 05/29/2023]
Abstract
Cytokinin ribosides (N(6)-substituted adenosine derivatives) have been shown to have anticancer activity both in vitro and in vivo. This study presents the first systematic analysis of the relationship between the chemical structure of cytokinins and their cytotoxic effects against a panel of human cancer cell lines with diverse histopathological origins. The results confirm the cytotoxic activity of N(6)-isopentenyladenosine, kinetin riboside, and N(6)-benzyladenosine and show that the spectrum of cell lines that are sensitive to these compounds and their tissues of origin are wider than previously reported. The first evidence that the hydroxylated aromatic cytokinins (ortho-, meta-, para-topolin riboside) and the isoprenoid cytokinin cis-zeatin riboside have cytotoxic activities is presented. Most cell lines in the panel showed greatest sensitivity to ortho-topolin riboside (IC(50)=0.5-11.6 microM). Cytokinin nucleotides, some synthesized for the first time in this study, were usually active in a similar concentration range to the corresponding ribosides. However, cytokinin free bases, 2-methylthio derivatives and both O- and N-glucosides showed little or no toxicity. Overall the study shows that structural requirements for cytotoxic activity of cytokinins against human cancer cell lines differ from the requirements for their activity in plant bioassays. The potent anticancer activity of ortho-topolin riboside (GI(50)=0.07-84.60 microM, 1st quartile=0.33 microM, median=0.65 microM, 3rd quartile=1.94 microM) was confirmed using NCI(60), a standard panel of 59 cell lines, originating from nine different tissues. Further, the activity pattern of oTR was distinctly different from those of standard anticancer drugs, suggesting that it has a unique mechanism of activity. In comparison with standard drugs, oTR showed exceptional cytotoxic activity against NCI(60) cell lines with a mutated p53 tumour suppressor gene. oTR also exhibited significant anticancer activity against several tumour models in in vivo hollow fibre assays.
Collapse
Affiliation(s)
- Jirí Voller
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany ASCR, Slechtitelů 11, 783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Novotná R, Trávníček Z, Popa I. X-ray crystallographic and NMR study of the tautomerism in kinetin, kinetin riboside and their derivatives: A comparison between the solid state and solution. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2009.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Yong JWH, Ge L, Ng YF, Tan SN. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 2009; 14:5144-64. [PMID: 20032881 PMCID: PMC6255029 DOI: 10.3390/molecules14125144] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/03/2009] [Accepted: 12/08/2009] [Indexed: 12/13/2022] Open
Abstract
Coconut water (coconut liquid endosperm), with its many applications, is one of the world's most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut water in health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant tissue culture/micropropagation. The wide applications of coconut water can be justified by its unique chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. This review attempts to summarise and evaluate the chemical composition and biological properties of coconut water.
Collapse
Affiliation(s)
| | | | | | - Swee Ngin Tan
- Natural Sciences and Science Education Academic Group, Nanyang Technological University, 1 Nanyang Walk, 637616 Singapore
| |
Collapse
|
25
|
Cheong J, Goh D, Wan Hong Yong J, Ngin Tan S, Shi Ong E. Inhibitory effect of kinetin riboside in human heptamoa, HepG2. ACTA ACUST UNITED AC 2009; 5:91-8. [DOI: 10.1039/b712807j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Cabello CM, Bair WB, Ley S, Lamore SD, Azimian S, Wondrak GT. The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A(p21) upregulation in human cancer cell lines. Biochem Pharmacol 2008; 77:1125-38. [PMID: 19186174 DOI: 10.1016/j.bcp.2008.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/25/2022]
Abstract
Cytokinins and cytokinin nucleosides are purine derivatives with potential anticancer activity. N(6)-furfuryladenosine (FAdo, kinetin-riboside) displays anti-proliferative and apoptogenic activity against various human cancer cell lines, and FAdo has recently been shown to suppress tumor growth in murine xenograft models of human leukemia and melanoma. In this study, FAdo-induced genotoxicity, stress response gene expression, and cellular ATP depletion were examined as early molecular consequences of FAdo exposure in MiaPaCa-2 pancreas carcinoma, A375 melanoma, and other human cancer cell lines. FAdo, but not adenosine or N(6)-furfuryladenine (FA), displayed potent anti-proliferative activity that was also observed in human primary fibroblasts and keratinocytes. Remarkably, massive ATP depletion and induction of genotoxic stress as assessed by the alkaline comet assay occurred within 60-180min of exposure to low micromolar concentrations of FAdo. This was followed by rapid upregulation of CDKN1A and other DNA damage/stress response genes (HMOX1, DDIT3, and GADD45A) as revealed by expression array and Western analysis. Pharmacological and siRNA-based genetic inhibition of adenosine kinase (ADK) suppressed FAdo cytotoxicity and also prevented ATP depletion and p21 upregulation suggesting the importance of bioconversion of FAdo into the nucleotide form required for drug action. Taken together our data suggest that early induction of genotoxicity and energy crisis are important causative factors involved in FAdo cytotoxicity.
Collapse
Affiliation(s)
- Christopher M Cabello
- Department of Pharmacology and Toxicology, Arizona Cancer Center, University of Arizona, Tucson, 85724, USA
| | | | | | | | | | | |
Collapse
|
27
|
Tiedemann RE, Mao X, Shi CX, Zhu YX, Palmer SE, Sebag M, Marler R, Chesi M, Fonseca R, Bergsagel PL, Schimmer AD, Stewart AK. Identification of kinetin riboside as a repressor of CCND1 and CCND2 with preclinical antimyeloma activity. J Clin Invest 2008; 118:1750-64. [PMID: 18431519 DOI: 10.1172/jci34149] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 03/05/2008] [Indexed: 12/23/2022] Open
Abstract
Knockout and transgenic studies in mice demonstrate that normal somatic tissues redundantly express 3 cyclin D proteins, whereas tumor cells seem dependent on a single overexpressed cyclin D. Thus, selective suppression of the individual cyclin D deregulated in a tumor represents a biologically valid approach to targeted cancer therapy. In multiple myeloma, overexpression of 1 of the cyclin D proteins is a ubiquitous feature, unifying at least 7 different initiating genetic events. We demonstrate here that RNAi of genes encoding cyclin D1 and cyclin D2 (CCND1 and CCND2, respectively) inhibits proliferation and is progressively cytotoxic in human myeloma cells. By screening a chemical library using a cell-based assay for inhibition of CCND2 trans-activation, we identified the plant cytokinin kinetin riboside as an inhibitor of CCND2 trans-activation. Kinetin riboside induced marked suppression of CCND2 transcription and rapidly suppressed cyclin D1 and D2 protein expression in primary myeloma cells and tumor lines, causing cell-cycle arrest, tumor cell-selective apoptosis, and inhibition of myeloma growth in xenografted mice. Mechanistically, kinetin riboside upregulated expression of transcription repressor isoforms of cAMP-response element modulator (CREM) and blocked both trans-activation of CCND2 by various myeloma oncogenes and cis-activation of translocated CCND1, suggesting induction of an overriding repressor activity that blocks multiple oncogenic pathways targeting cyclin D genes. These data support targeted repression of cyclin D genes as a therapeutic strategy for human malignancies.
Collapse
Affiliation(s)
- Rodger E Tiedemann
- Mayo Clinic, Comprehensive Cancer Center, Division of Hematology and Oncology, Scottsdale, Arizona, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Choi BH, Kim W, Wang QC, Kim DC, Tan SN, Yong JWH, Kim KT, Yoon HS. Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer Lett 2007; 261:37-45. [PMID: 18162289 DOI: 10.1016/j.canlet.2007.11.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 10/31/2007] [Accepted: 11/05/2007] [Indexed: 01/05/2023]
Abstract
Here, we demonstrate that kinetin riboside (KR), a cytokinin analog, induces apoptosis in HeLa and mouse melanoma B16F-10 cells. KR disrupted the mitochondrial membrane potential and induced the release of cytochrome c and activation of caspase-3. Bad were upregulated while Bcl-2 was down-regulated under KR exposure. A tumor growth in mice was dramatically suppressed by KR. In contrast, human skin fibroblast CCL-116 and bovine primary fibroblast cells show resistances to KR and no significant changes in Bad, Bcl-X(L,) and cleaved PARP were observed. Our data suggest that KR selectively induces apoptosis in cancer cells through the classical mitochondria dependent apoptosis pathway.
Collapse
Affiliation(s)
- Bo-Hwa Choi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637511, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Griffaut B, Debiton E, Madelmont JC, Maurizis JC, Ledoigt G. Stressed Jerusalem artichoke tubers (Helianthus tuberosus L.) excrete a protein fraction with specific cytotoxicity on plant and animal tumour cell. Biochim Biophys Acta Gen Subj 2007; 1770:1324-30. [PMID: 17662535 DOI: 10.1016/j.bbagen.2007.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 11/15/2022]
Abstract
Wounds from Jerusalem artichoke (Helianthus tuberosus L.) tubers excrete bioactive metabolites from a variety of structural classes, including proteins. Here we describe a protein specifically active against tumour cells arising either from human, animal or plant tissues. The non-tumour animal cells or the plant callus cells are not sensitive to these excreta. The active product was only obtained after a wound-drought stress of plant tubers. The cytotoxicity varies according to the tumour cell type. For instance, some human tumour cell lines and especially the human mammary tumour cells MDA-MB-231 were shown to be very susceptible to the active product. The active agent is shown to contain an 18-kDa polypeptide with homology to a superoxide dismutase (SOD). A 28-kDa polypeptide, related to an alkaline phosphatase (AP), was shown to be tightly linked to this 18-kDa polypeptide. The excreted 28-kDa polypeptide also displayed a consensus sequence similar to the group of DING proteins, but with a smaller molecular weight. The superoxide dismutase polypeptide was shown to be involved in the antitumour activity, but the presence of smaller factors (MW<10 kDa), such as salicylic acid, can enhance this activity.
Collapse
Affiliation(s)
- B Griffaut
- EA 3296 ERTAC, "Tumeurs et Autosurveillance Cellulaire", Université Blaise-Pascal (Clermont-Ferrand II), Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière cedex, France
| | | | | | | | | |
Collapse
|
30
|
Barciszewski J, Massino F, Clark BFC. Kinetin--a multiactive molecule. Int J Biol Macromol 2007; 40:182-92. [PMID: 16899291 DOI: 10.1016/j.ijbiomac.2006.06.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 06/30/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Cytokinins are important adenine derivatives that serve as hormones to control many processes in plants. They were discovered as factors that promote cell division in tobacco tissue cultures and have been shown also to regulate several other developmental events. Kinetin which was isolated 50 years ago for the first time as a plant hormone, as well as other cytokinins isopentenyladenine, zeatin and benzylaminopurine induce callus (clusters of dedifferentiated plant cells) to redifferentiate into adventitious buds. Because of some similarities in the biological phenotypes of cancer and callus cells, cytokinins and especially kinetin, affect the differentiation of human cells through a common signal transduction system. Therefore, cytokinins found their way to use in molecular medicine.
Collapse
Affiliation(s)
- Jan Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland.
| | | | | |
Collapse
|