1
|
João JMLG, Silva Barbosa JA, Sales da Silva LL, Fukuzaki S, de Campos EC, Camargo LDN, dos Santos TM, Moreira Bezerra SK, de Almeida FM, Saraiva-Romanholo BM, Lopes FDTQDS, Bonturi CR, Righetti RF, Oliva MLV, Tibério IDFLC, Leick EA. Effects of plant protease inhibitors (Pep-3-EcTI, Pep-BbKI, and Pep-BrTI) versus corticosteroids on inflammation, remodeling, and oxidative stress in an asthma-COPD (ACO) model. Front Pharmacol 2024; 15:1282870. [PMID: 38774212 PMCID: PMC11106483 DOI: 10.3389/fphar.2024.1282870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/08/2024] [Indexed: 05/24/2024] Open
Abstract
The peptide derived from E. contortisiliquum trypsin inhibitor (Pep-3-EcTI), peptide derived from kallikrein inhibitor isolated from B. bauhinioides (Pep-BbKI), and B. rufa peptide modified from B. bauhinioides (Pep-BrTI) peptides exhibit anti-inflammatory and antioxidant activities, suggesting their potential for treating asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO). We compared the effects of these peptides with dexamethasone (DX) treatment in an ACO model. In this study, 11 groups of male BALB/c mice were pre-treated under different conditions, including sensitization with intraperitoneal injection and inhalation of ovalbumin (OVA), intratracheal instillation of porcine pancreatic elastase (ELA), sensitization with intraperitoneal injection, and various combinations of peptide treatments with Pep-3-EcTI, Pep-BbKI, Pep-BrTI, dexamethasone, and non-treated controls (SAL-saline). Respiratory system resistance, airway resistance, lung tissue resistance, exhaled nitric oxide, linear mean intercept, immune cell counts in the bronchoalveolar lavage fluid, cytokine expression, extracellular matrix remodeling, and oxidative stress in the airways and alveolar septa were evaluated on day 28. Results showed increased respiratory parameters, inflammatory markers, and tissue remodeling in the ACO group compared to controls. Treatment with the peptides or DX attenuated or reversed these responses, with the peptides showing effectiveness in controlling hyperresponsiveness, inflammation, remodeling, and oxidative stress markers. These peptides demonstrated an efficacy comparable to that of corticosteroids in the ACO model. However, this study highlights the need for further research to assess their safety, mechanisms of action, and potential translation to clinical studies before considering these peptides for human use.
Collapse
Affiliation(s)
| | | | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | | |
Collapse
|
2
|
Teixeira EMGF, Kalume DE, Ferreira PF, Alves TA, Fontão APGA, Sampaio ALF, de Oliveira DR, Morgado-Díaz JA, Silva-López RE. A Novel Trypsin Kunitz-Type Inhibitor from Cajanus cajan Leaves and Its Inhibitory Activity on New Cancer Serine Proteases and Its Effect on Tumor Cell Growth. Protein J 2024; 43:333-350. [PMID: 38347326 DOI: 10.1007/s10930-023-10175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 05/01/2024]
Abstract
A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 μM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and β-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.
Collapse
Affiliation(s)
- Erika Maria Gomes Ferreira Teixeira
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Dario Eluam Kalume
- Interdisciplinary Laboratory of Medical Research, IOC-Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - Patrícia Fernandes Ferreira
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Thayane Aparecida Alves
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Ana Paula G A Fontão
- Departament of Pharmacology, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - André Luís Franco Sampaio
- Departament of Pharmacology, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - Danilo Ribeiro de Oliveira
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - José Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, National Institute of Cancer (INCa), Rio de Janeiro, Brazil
| | - Raquel Elisa Silva-López
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil.
| |
Collapse
|
3
|
Kolodziejczyk-Czepas J, Czepas J. Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity-A Review. Molecules 2023; 28:molecules28041677. [PMID: 36838662 PMCID: PMC9965408 DOI: 10.3390/molecules28041677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Functionality of the fibrinolytic system is based on activity of its central enzyme, plasmin, responsible for the removal of fibrin clots. Besides the hemostasis, fibrinolytic proteins are also involved in many other physiological and pathological processes, including immune response, extracellular matrix degradation, cell migration, and tissue remodeling. Both the impaired and enhanced activity of fibrinolytic proteins may result in serious physiological consequences: prothrombotic state or excessive bleeding, respectively. However, current medicine offers very few options for treating fibrinolytic disorders, particularly in the case of plasmin inhibition. Although numerous attempts have been undertaken to identify natural or to develop engineered fibrinolytic system modulators, structural similarities within serine proteases of the hemostatic system and pleiotropic activity of fibrinolytic proteins constitute a serious problem in discovering anti- or profibrinolytic agents that could precisely affect the target molecules and reduce the risk of side effects. Therefore, this review aims to present a current knowledge of various classes of natural inhibitors and stimulators of the fibrinolytic system being well-defined low-molecular plant secondary metabolites or constituents of plant extracts as well as plant peptides. This work also discusses obstacles caused by low specificity of most of natural compounds and, hence, outlines recent trends in studies aimed at finding more efficient modulators of plasmin activity, including investigation of modifications of natural pharmacophore templates.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| | - Jan Czepas
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
4
|
Fortunato RH, Nores MJ. "Cow's Hoof" ( Bauhinia L., Leguminosae): A Review on Pharmacological Properties of Austral South American Species. PLANTS (BASEL, SWITZERLAND) 2022; 12:31. [PMID: 36616160 PMCID: PMC9823647 DOI: 10.3390/plants12010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The genus Bauhinia s.l. (Leguminosae), known as cow's hoof, unha de boi or pata de vaca, has been used in traditional medicine worldwide. The aim of the present review is to summarize the studies published on the biological activity of the main native medicinal species reported in austral South America. Of the 14 species present in the region, 10 are consumed as leaf infusions to regulate glucose and lipid metabolism, as well as used for their anti-inflammatory and analgesic effects and to treat various diseases. Pharmacological properties have been recorded in seven species. Antioxidant, anticoagulant, antihypertensive, diuretic, antimicrobial and antitumor properties have been reported in B. forficata. Together with B. holophylla, they are important for their antidiabetic properties, since several studies indicate their effectiveness as a hypoglycemic agent. B. bauhinioides is distinguished for its anti-inflammatory and antithrombotic activities and S. microstachya for its analgesic properties. Anti-ulcer and wound healing activities recorded in B. holophylla and B. ungulata, respectively, are of particular interest. Most of the species possess antitumor activity. The antioxidant capacity of flavonoids and other bioactive compounds make these plants good candidates to assist or treat various alterations related with oxidative stress, such as diabetic complications. Thus, these species constitute promising targets for new bioactive substance research and phytotherapy.
Collapse
Affiliation(s)
| | - María Jimena Nores
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto Multidisciplinario de Biología Vegetal (CONICET—Universidad Nacional de Córdoba), UNC, Vélez Sarsfield 1611, Argentina
| |
Collapse
|
5
|
Plant Kunitz Inhibitors and Their Interaction with Proteases: Current and Potential Pharmacological Targets. Int J Mol Sci 2022; 23:ijms23094742. [PMID: 35563133 PMCID: PMC9100506 DOI: 10.3390/ijms23094742] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The action of proteases can be controlled by several mechanisms, including regulation through gene expression; post-translational modifications, such as glycosylation; zymogen activation; targeting specific compartments, such as lysosomes and mitochondria; and blocking proteolysis using endogenous inhibitors. Protease inhibitors are important molecules to be explored for the control of proteolytic processes in organisms because of their ability to act on several proteases. In this context, plants synthesize numerous proteins that contribute to protection against attacks by microorganisms (fungi and bacteria) and/or invertebrates (insects and nematodes) through the inhibition of proteases in these organisms. These proteins are widely distributed in the plant kingdom, and are present in higher concentrations in legume seeds (compared to other organs and other botanical families), motivating studies on their inhibitory effects in various organisms, including humans. In most cases, the biological roles of these proteins have been assigned based mostly on their in vitro action, as is the case with enzyme inhibitors. This review highlights the structural evolution, function, and wide variety of effects of plant Kunitz protease inhibitors, and their potential for pharmaceutical application based on their interactions with different proteases.
Collapse
|
6
|
Valois MV, de Oliveira C, Lapa AJ, Souccar C, Oliva MLV. Bauhinia Protease Inhibitors Attenuate Gastric Ulcer by Blocking Neutrophil Enzymes. PLANTA MEDICA 2021; 87:169-176. [PMID: 32663895 DOI: 10.1055/a-1202-4799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proteases play a pivotal role in many signaling pathways; inhibitors of well-established proteases have shown a substantial therapeutic success. This study aimed to examine the in vivo effects of 3 protease inhibitors isolated from Bauhinia species: i) Bauhinia mollis elastase inhibitor, which blocks human neutrophil elastase (Kiapp 2.8 nM) and cathepsin G (Kiapp 1.0 nM) activities; ii) Bauhinia mollis trypsin inhibitor, a trypsin inhibitor (Kiapp 5.0 nM); and iii) Bauhinia bauhinioides cruzipain inhibitor, which inhibits elastase (Kiapp 2.6 nM), cathepsin G (Kiapp 160.0 nM), and the cysteine proteases cathepsin L (Kiapp 0.2 nM). Bauhinia bauhinioides cruzipain inhibitor, Bauhinia mollis elastase inhibitor, and Bauhinia mollis trypsin inhibitor were isolated using acetone and ammonium sulfate fractionations, DEAE-Sephadex, trypsin-Sepharose, and Resource-Q chromatographies. Mice and rats were treated intraperitoneally with 1 dose of inhibitor; gastric mucosal lesions were induced by cold-restraint stress. Oral pretreatment of mice with Bauhinia mollis elastase inhibitor or Bauhinia mollis trypsin inhibitor (1 - 10 mg/kg) did not show anti-ulcer effect, while Bauhinia bauhinioides cruzipain inhibitor (0.1 - 1.0 mg/kg) produced a similar reduction of the index of mucosal damage at all effective doses (30 to 33% < control). In rats at doses lower than those used in mice, Bauhinia mollis elastase inhibitor and Bauhinia bauhinioides cruzipain inhibitor reduced the index of mucosal damage by 66% and 54% of controls, respectively. The results indicate a protective effect against gastric mucosal lesions associated with elastase inhibition but not inhibition of trypsin activities. Moreover, the lack of Bauhinia mollis elastase inhibitor efficacy observed in mice may possibly be related to the reported structural differences of elastase in mice and rats.
Collapse
Affiliation(s)
- Mayara Vioto Valois
- Department of Biochemistry, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | - Cleide de Oliveira
- Department of Biochemistry, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | - Antonio José Lapa
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Caden Souccar
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | - Maria Luiza Vilela Oliva
- Department of Biochemistry, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| |
Collapse
|
7
|
Almeida Filho LC, Tabosa PM, Hissa DC, Vasconcelos IM, Carvalho AF. First insights into insecticidal activity against Aedes aegypti and partial biochemical characterization of a novel low molecular mass chymotrypsin-trypsin inhibitor purified from Lonchocarpus sericeus seeds. PEST MANAGEMENT SCIENCE 2018; 74:1362-1373. [PMID: 29193604 DOI: 10.1002/ps.4812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Arboviroses such as dengue, Zika and chikungunya represent a serious public health issue as a consequence of the absence of approved vaccines or specific antiviral drugs against the arboviruses that cause them. One way to prevent these diseases is by combating the vector mosquito, Aedes aegypti (Diptera), which has serine proteases in the midgut. Protease inhibitors are molecules that can block enzyme activity, impairing digestion and nutrition, which can lead to death. Thus, we purified and characterized a novel chymotrypsin-trypsin inhibitor (LsCTI) from Lonchocarpus sericeus seeds and investigated its effect upon Ae. aegypti egg hatching, larval development and digestive proteases. RESULTS LsCTI showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the molecular mass determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was 8870.45 Da. Kinetics analyses revealed a noncompetitive type of inhibition and low inhibition constant (Ki ) for chymotrypsin (8.24 x 10-8 m). The thermal resistance was remarkable, even at 100 °C for 180 min. The inhibitor concentration required for 50-percent enzyme inhibition (IC50 ) of LsCTI was 4.7 x 10-7 m for Ae. aegypti midgut larval enzymes. LsCTI did not affect egg hatchability at 0.3 mg mL-1 , but caused a high larval mortality rate (77%) and delayed development (37%). CONCLUSIONS LsCTI is a novel protease inhibitor with remarkable biochemical characteristics and is a potential tool to control Ae. aegypti development. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luiz Cp Almeida Filho
- Federal University of Ceará, Biochemistry and Molecular Biology Department, Fortaleza, Ceará, Brazil
| | - Pedro Ms Tabosa
- Federal University of Ceará, Biochemistry and Molecular Biology Department, Fortaleza, Ceará, Brazil
| | - Denise C Hissa
- Federal University of Ceará, Biology Department, Fortaleza, Ceará, Brazil
| | - Ilka M Vasconcelos
- Federal University of Ceará, Biochemistry and Molecular Biology Department, Fortaleza, Ceará, Brazil
| | - Ana Fu Carvalho
- Federal University of Ceará, Biology Department, Fortaleza, Ceará, Brazil
| |
Collapse
|
8
|
Ramalho SR, Bezerra CDS, Lourenço de Oliveira DG, Souza Lima L, Maria Neto S, Ramalho de Oliveira CF, Valério Verbisck N, Rodrigues Macedo ML. Novel Peptidase Kunitz Inhibitor from Platypodium elegans Seeds Is Active against Spodoptera frugiperda Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1349-1358. [PMID: 29239611 DOI: 10.1021/acs.jafc.7b04159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel Kunitz-type inhibitor from Platypodium elegans seeds (PeTI) was purified and characterized. The mass spectrometry analyses of PeTI indicated an intact mass of 19 701 Da and a partial sequence homologous to Kunitz inhibitors. PeTI was purified by ion exchange and affinity chromatographies. A complex with a 1:1 ratio was obtained only for bovine trypsin, showing a Ki = 0.16 nM. Stability studies showed that PeTI was stable over a wide range of temperature (37-80 °C) and pH (2-10). The inhibitory activity of PeTI was affected by dithiothreitol (DTT). Bioassays of PeTI on Spodoptera frugiperda showed negative effects on larval development and weight gain, besides extending the insect life cycle. The activities of digestive enzymes, trypsin and chymotrypsin, were reduced by feeding larvae with 0.2% PeTI in an artificial diet. In summary, we describe a novel Kunitz inhibitor with promising biotechnological potential for pest control.
Collapse
|
9
|
Fortunato RH, Varela BG, Castro MA, Nores MJ. Leaf venation pattern to recognize austral South American medicinal species of “cow's hoof” ( Bauhinia L., Fabaceae). REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Srikanth S, Chen Z. Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy. Front Pharmacol 2016; 7:470. [PMID: 28008315 PMCID: PMC5143346 DOI: 10.3389/fphar.2016.00470] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022] Open
Abstract
Plants are known to have many secondary metabolites and phytochemical compounds which are highly explored at biochemical and molecular genetics level and exploited enormously in the human health care sector. However, there are other less explored small molecular weight proteins, which inhibit proteases/proteinases. Plants are good sources of protease inhibitors (PIs) which protect them against diseases, insects, pests, and herbivores. In the past, proteinaceous PIs were considered primarily as protein-degrading enzymes. Nevertheless, this view has significantly changed and PIs are now treated as very important signaling molecules in many biological activities such as inflammation, apoptosis, blood clotting and hormone processing. In recent years, PIs have been examined extensively as therapeutic agents, primarily to deal with various human cancers. Interestingly, many plant-based PIs are also found to be effective against cardiovascular diseases, osteoporosis, inflammatory diseases and neurological disorders. Several plant PIs are under further evaluation in in vitro clinical trials. Among all types of PIs, Bowman-Birk inhibitors (BBI) have been studied extensively in the treatment of many diseases, especially in the field of cancer prevention. So far, crops such as beans, potatoes, barley, squash, millet, wheat, buckwheat, groundnut, chickpea, pigeonpea, corn, and pineapple have been identified as good sources of PIs. The PI content of such foods has a significant influence on human health disorders, particularly in the regions where people mostly depend on these kind of foods. These natural PIs vary in concentration, protease specificity, heat stability, and sometimes several PIs may be present in the same species or tissue. However, it is important to carry out individual studies to identify the potential effects of each PI on human health. PIs in plants make them incredible sources to determine novel PIs with specific pharmacological and therapeutic effects due to their peculiarity and superabundance.
Collapse
Affiliation(s)
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
11
|
Guimarães LC, de Oliveira CFR, Marangoni S, de Oliveira DGL, Macedo MLR. Purification and characterization of a Kunitz inhibitor from Poincianella pyramidalis with insecticide activity against the Mediterranean flour moth. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 118:1-9. [PMID: 25752423 DOI: 10.1016/j.pestbp.2014.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 05/13/2023]
Abstract
This paper describes the characterization of a trypsin inhibitor from Poincianella pyramidalis seeds (PpyTI). The partial sequencing of PpyTI revealed homology to Kunitz inhibitors, clustered as a member of Family I03 in MEROPS database. PpyTI has a single polypeptide chain of 19,042 Da and presents stability at high temperatures (up to 70 °C) and a wide range of pH. In vitro assays showed that disulfide bridges have an important stabilization role of reactive site in PpyTI, a characteristic shared among several Kunitz inhibitors. Bioassays carried out with the Mediterranean flour moth (Anagasta kuehniella) revealed a significant decrease in both larval weight and survival of PpyTI-fed larvae, besides a larval stage extension. Through biochemical analysis, we demonstrated that the PpyTI insecticide effects were triggered by digestion process commitment, through the inhibition of trypsin and chymotrypsin activities, the major digestive enzymes in this species. The insecticide effects and biochemical characterization of PpyTI encourage further studies using this inhibitor for insect pest control.
Collapse
Affiliation(s)
- Lays Cordeiro Guimarães
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil; Department of Food Technology and Public Health, Center for Biological and Health Sciences, University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil; Department of Food Technology and Public Health, Center for Biological and Health Sciences, University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
| | - Sergio Marangoni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Daniella Gorete Lourenço de Oliveira
- Department of Food Technology and Public Health, Center for Biological and Health Sciences, University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
| | - Maria Lígia Rodrigues Macedo
- Department of Food Technology and Public Health, Center for Biological and Health Sciences, University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil.
| |
Collapse
|
12
|
Fischer M, Kuckenberg M, Kastilan R, Muth J, Gebhardt C. Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors. Mol Genet Genomics 2015; 290:387-98. [PMID: 25260821 PMCID: PMC4309916 DOI: 10.1007/s00438-014-0906-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/23/2014] [Indexed: 11/25/2022]
Abstract
Plant protease inhibitors are a structurally highly diverse and ubiquitous class of small proteins, which play various roles in plant development and defense against pests and pathogens. Particular isoforms inhibit in vitro proteases and other enzymes that are not their natural substrates, for example proteases that have roles in human diseases. Mature potato tubers are a rich source of several protease inhibitor families. Different cultivars have different inhibitor profiles. With the objective to explore the functional diversity of the natural diversity of potato protease inhibitors, we randomly selected and sequenced 9,600 cDNA clones originated from mature tubers of ten potato cultivars. Among these, 120 unique inhibitor cDNA clones were identified by homology searches. Eighty-eight inhibitors represented novel sequence variants of known plant protease inhibitor families. Most frequent were Kunitz-type inhibitors (KTI), potato protease inhibitors I and II (PIN), pectin methylesterase inhibitors, metallocarboxypeptidase inhibitors and defensins. Twenty-three inhibitors were functionally characterized after heterologous expression in the yeast Pichia pastoris. The purified recombinant proteins were tested for inhibitory activity on trypsin, eleven pharmacological relevant proteases and the non-proteolytic enzyme 5-lipoxygenase. Members of the KTI and PIN families inhibited pig pancreas elastase, β-Secretase, Cathepsin K, HIV-1 protease and potato 5-lipoxygenase. Our results demonstrate in vitro inhibitory diversity of small potato tuber proteins commonly known as protease inhibitors, which might have biotechnological or medical applications.
Collapse
Affiliation(s)
- Matthias Fischer
- Department Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Carl von LinnéWeg 10, 50829 Cologne, Germany
| | - Markus Kuckenberg
- Department Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Carl von LinnéWeg 10, 50829 Cologne, Germany
| | - Robin Kastilan
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Jost Muth
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Christiane Gebhardt
- Department Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Carl von LinnéWeg 10, 50829 Cologne, Germany
| |
Collapse
|
13
|
Ferreira JG, Diniz PMM, Andrade de Paula CA, Lobo YA, Paredes-Gamero EJ, Paschoalin T, Nogueira-Pedro A, Maza PK, Toledo MS, Suzuki E, Oliva MLV. The impaired viability of prostate cancer cell lines by the recombinant plant kallikrein inhibitor. J Biol Chem 2013; 288:13641-54. [PMID: 23511635 DOI: 10.1074/jbc.m112.404053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Kallikreins play a pivotal role in establishing prostate cancer. RESULTS In contrast to the classical Kunitz plant inhibitor SbTI, the recombinant kallikrein inhibitor (rBbKIm) led to prostate cancer cell death, whereas fibroblast viability was not affected. CONCLUSION rBbKIm shows selective cytotoxic effect and angiogenesis inhibition against prostate cancer cells. SIGNIFICANCE New actions of rBbKIm may contribute to understanding the mechanisms of prostate cancer. Prostate cancer is the most common type of cancer, and kallikreins play an important role in the establishment of this disease. rBbKIm is the recombinant Bauhinia bauhinioides kallikreins inhibitor that was modified to include the RGD/RGE motifs of the inhibitor BrTI from Bauhinia rufa. This work reports the effects of rBbKIm on DU145 and PC3 prostate cancer cell lines. rBbKIm inhibited the cell viability of DU145 and PC3 cells but did not affect the viability of fibroblasts. rBbKIm caused an arrest of the PC3 cell cycle at the G0/G1 and G2/M phases but did not affect the DU145 cell cycle, although rBbKIm triggers apoptosis and cytochrome c release into the cytosol of both cell types. The differences in caspase activation were observed because rBbKIm treatment promoted activation of caspase-3 in DU145 cells, whereas caspase-9 but not caspase-3 was activated in PC3 cells. Because angiogenesis is important to the development of a tumor, the effect of rBbKIm in this process was also analyzed, and an inhibition of 49% was observed in in vitro endothelial cell capillary-like tube network formation. In summary, we demonstrated that different properties of the protease inhibitor rBbKIm may be explored for investigating the androgen-independent prostate cancer cell lines PC3 and DU145.
Collapse
Affiliation(s)
- Joana Gasperazzo Ferreira
- Departments of Biochemistry, Universidade Federal de São Paulo-Escola Paulista de Medicina, 04044-020, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakahata AM, Mayer B, Ries C, de Paula CAA, Karow M, Neth P, Sampaio MU, Jochum M, Oliva MLV. The effects of a plant proteinase inhibitor from Enterolobium contortisiliquum on human tumor cell lines. Biol Chem 2011; 392:327-36. [PMID: 21781023 DOI: 10.1515/bc.2011.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Supplementary to the efficient inhibition of trypsin, chymotrypsin, plasma kallikrein, and plasmin already described by the EcTI inhibitor from Enterolobium contortisiliquum, it also blocks human neutrophil elastase (K(iapp)=4.3 nM) and prevents phorbol ester (PMA)-stimulated activation of matrix metalloproteinase (MMP)-2 probably via interference with membrane-type 1 (MT1)-MMP. Moreover, plasminogen-induced activation of proMMP-9 and processing of active MMP-2 was also inhibited. Furthermore, the effect of EcTI on the human cancer cell lines HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), K562 and THP-1 (leukemia), as well as on human primary fibroblasts and human mesenchymal stem cells (hMSCs) was studied. EcTI inhibited in a concentration range of 1.0-2.5 μM rather specifically tumor cell viability without targeting primary fibroblasts and hMSCs. Taken together, our data indicate that the polyspecific proteinase inhibitor EcTI prevents proMMP activation and is cytotoxic against tumor cells without affecting normal tissue remodeling fibroblasts or regenerative hMSCs being an important tool in the studies of tumor cell development and dissemination.
Collapse
Affiliation(s)
- Adriana Miti Nakahata
- Departamento de Bioquímica, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio 100, 04044-020, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fang EF, Bah CSF, Wong JH, Pan WL, Chan YS, Ye XJ, Ng TB. A potential human hepatocellular carcinoma inhibitor from Bauhinia purpurea L. seeds: from purification to mechanism exploration. Arch Toxicol 2011; 86:293-304. [DOI: 10.1007/s00204-011-0751-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/14/2011] [Indexed: 11/28/2022]
|
16
|
Oliva MLV, Silva MC, Sallai RC, Brito MV, Sampaio MU. A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie 2010; 92:1667-73. [DOI: 10.1016/j.biochi.2010.03.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/26/2010] [Indexed: 11/16/2022]
|
17
|
Silva-Lucca RA, Faneca HMS, de Lima MCP, De Caroli FP, Assis ML, Sampaio MU, Oliva MLV. Interaction of proteinase inhibitors with phospholipid vesicles is modulated by pH. Int J Biol Macromol 2010; 47:551-7. [PMID: 20692285 DOI: 10.1016/j.ijbiomac.2010.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/05/2010] [Accepted: 07/28/2010] [Indexed: 11/28/2022]
Abstract
rBbKI and rBbCI, plant recombinant inhibitors from Bauhinia bauhinioides, and BpuTI from Bauhinia purpurea seeds distinctly and specifically block proteolytic enzymes. The secondary structures of those inhibitors were compared and their interactions with phospholipid vesicles were evaluated by the release of calcein and by intrinsic fluorescence of tryptophan residues. The results show that rBbKI, rBbCI and BpuTI are able to interact with phospholipd vesicles and induce membrane permeabilization in a concentration- and pH-dependent manner. The leakage was rapid and extensive at pH 4.5, but at physiological pH, no calcein release was observed. These results may suggest that upon inflammation or microorganism invasion accompanied by lowering of pH, appropriate conditions may occur for the inhibitors to interact with cell membrane and act on specific proteolytic enzyme.
Collapse
Affiliation(s)
- Rosemeire A Silva-Lucca
- Departamento de Bioquímica, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio, 100 Vila Clementino, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Bilgin M, Neuhof C, Doerr O, Benscheid U, Andrade SS, Most A, Abdallah Y, Parahuleva M, Guenduez D, Oliva ML, Erdogan A. Bauhinia bauhinioides cruzipain inhibitor reduces endothelial proliferation and induces an increase of the intracellular Ca2+ concentration. J Physiol Biochem 2010; 66:283-90. [DOI: 10.1007/s13105-010-0032-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
|
19
|
Oliva MLV, Sampaio MU. Action of plant proteinase inhibitors on enzymes of physiopathological importance. AN ACAD BRAS CIENC 2010; 81:615-21. [PMID: 19722028 DOI: 10.1590/s0001-37652009000300023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 05/26/2009] [Indexed: 11/22/2022] Open
Abstract
Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized, exhibiting different properties. Although proteins from this group share high structural similarity, they present differences in proteinase inhibition, explored in studies using diverse biological models.
Collapse
Affiliation(s)
- Maria Luiza V Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Três de Maio, 100, 04044-020 São Paulo, SP, Brasil.
| | | |
Collapse
|
20
|
Sumikawa JT, Brito MVD, Macedo MLR, Uchoa AF, Miranda A, Araujo APU, Silva-Lucca RA, Sampaio MU, Oliva MLV. The defensive functions of plant inhibitors are not restricted to insect enzyme inhibition. PHYTOCHEMISTRY 2010; 71:214-220. [PMID: 19939420 DOI: 10.1016/j.phytochem.2009.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/05/2009] [Accepted: 10/11/2009] [Indexed: 05/28/2023]
Abstract
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bauhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH2 (RGE) and IVYYPDRGETGL-NH2 (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED(50) 0.16% and LD(50) 0.09%), this being even more effective than the native protein.
Collapse
Affiliation(s)
- Joana Tomomi Sumikawa
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100 Vila Clementino, CEP 04044-020, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Action of Bauhinia-derivated compounds on Callosobruchus maculatus development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 611:563-4. [PMID: 19400314 DOI: 10.1007/978-0-387-73657-0_247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Ramos VDS, Silva GDS, Freire MDGM, Machado OLT, Parra JRP, Macedo MLR. Purification and characterization of a trypsin inhibitor from Plathymenia foliolosa seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11348-11355. [PMID: 18991455 DOI: 10.1021/jf802778b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel trypsin inhibitor (PFTI) was isolated from Plathymenia foliolosa (Benth.) seeds by gel filtration chromatography on a Sephadex G-100, DEAE-Sepharose, and trypsin-Sepharose columns. By SDSPAGE, PFTI yielded a single band with a M(r) of 19 kDa. PFTI inhibited bovine trypsin and bovine chymotrypsin with equilibrium dissociation constants (K(i)) of 4 x 10(-8) and 1.4 x 10(-6) M, respectively. PFTI retained more than 50% of activity at up to 50 degrees C for 30 min, but there were 80 and 100% losses of activity at 60 and 70 degrees C, respectively. DTT affected the activity or stability of PFTI. The N-terminal amino acid sequence of PFTI showed a high degree of homology with various members of the Kunitz family of inhibitors. Anagasta kuehniella is found worldwide; this insect attacks stored grains and products of rice, oat, rye, corn, and wheat. The velvet bean caterpillar (Anticarsia gemmatalis) is considered the main defoliator pest of soybean in Brazil. Diatraea saccharalis, the sugar cane borer, is the major pest of sugar cane crops, and its caterpillar-feeding behavior, inside the stems, hampers control. PFTI showed significant inhibitory activity against trypsin-like proteases present in the larval midguts on A. kuehniella and D. saccharalis and could suppress the growth of larvae.
Collapse
|
23
|
Oliva MLV, Sampaio UM. Bauhinia Kunitz-type proteinase inhibitors: structural characteristics and biological properties. Biol Chem 2008; 389:1007-13. [PMID: 18754727 DOI: 10.1515/bc.2008.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Plant proteinase inhibitors are involved in the regulation of the activity of many proteinases and, in consequence, in biological processes driven by proteolysis. In this review, we summarize recent results on the activity of native Bauhinia inhibitors and synthetic derivatives. Structural and functional characteristics and the potential therapeutic use of these inhibitors are also discussed.
Collapse
Affiliation(s)
- Maria Luiza Vilela Oliva
- Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil.
| | | |
Collapse
|
24
|
Oliva MLV, Sampaio MU. BauhiniaKunitz-type proteinase inhibitors: structural characteristics and biological properties. Biol Chem 2008. [DOI: 10.1515/bc.2008.119_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Oliveira AS, Migliolo L, Aquino RO, Ribeiro JKC, Macedo LLP, Andrade LBS, Bemquerer MP, Santos EA, Kiyota S, Sales MP. Identification of a Kunitz-type proteinase inhibitor from Pithecellobium dumosum seeds with insecticidal properties and double activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:7342-9. [PMID: 17672477 DOI: 10.1021/jf071107+] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A trypsin inhibitor, PdKI, was purified from Pithecellobium dumosum seeds by TCA precipitation, trypsin-sepharose chromatography, and reversed-phase-HPLC. PdKI was purified 217.6-fold and recovered 4.7%. SDS-PAGE showed that PdKI is a single polypeptide chain of 18.9 kDa and 19.7 kDa by MALDI-TOF. The inhibition on trypsin was stable in the pH range 2-10 and at a temperature of 50 degrees C. The Ki values were 3.56 x 10(-8)and 7.61 x 10(-7) M with competitive and noncompetitive inhibition mechanisms for trypsin and papain, respectively. The N-terminal sequence identified with members of Kunitz-type inhibitors from the Mimosoideae and Caesalpinoideae subfamilies. PdKI was effective against digestive proteinase from Zabrotes subfasciatus, Ceratitis capitata, Plodia interpunctella, Alabama argillaceae, and Callosobruchus maculatus, with 69, 66, 44, 38, and 29% inhibition, respectively. Results support that PdKI is a member of the Kunitz inhibitor family and its insecticidal properties indicate a potent insect antifeedant.
Collapse
Affiliation(s)
- A S Oliveira
- Departamento Bioquímica, Universidade Federal do Rio Grande de Norte, Natal, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hansen D, Macedo-Ribeiro S, Veríssimo P, Yoo Im S, Sampaio MU, Oliva MLV. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor. Biochem Biophys Res Commun 2007; 360:735-40. [PMID: 17631863 DOI: 10.1016/j.bbrc.2007.06.144] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 06/19/2007] [Indexed: 11/27/2022]
Abstract
Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7A resolution were obtained using hanging drop method by vapor diffusion at 18 degrees C. The refined structure shows the conservative beta-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function.
Collapse
Affiliation(s)
- Daiane Hansen
- Departamento de Bioquímica, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio, 100, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|