1
|
Liang D, Liang W, Luo H, Liu Q, Temirlan K, Li W. Research on electron beam irradiation in the multiscale structure of starch and its related applications: A review. Compr Rev Food Sci Food Saf 2024; 23:e70009. [PMID: 39289807 DOI: 10.1111/1541-4337.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024]
Abstract
Electron beam irradiation (EBI), as a typical "green" emerging technology, can effectively alter the functional properties of starch by influencing its microstructure. This alteration enables starch to meet the current demands of consumers and the market for "health food." This paper reviews studies on modifying various starches using EBI and describes the changes in microstructure, physicochemical properties, and functional properties induced by this method. Additionally, the effects of EBI on starch-containing food products are discussed, along with issues to be addressed and research gaps in the synergistic treatment of modified starch. It is noted that the source, irradiation dose, and irradiation time all influence the effectiveness of starch modification. Given the characteristics of EBI technology, integrating physical, chemical, and biological modification methods can optimize the modification process and enhance efficiency. This technology can potentially diversify modified starch varieties and expand their applications. Furthermore, there remains significant research potential in producing modified starch using EBI technology and applying it to the food industry.
Collapse
Affiliation(s)
- Danyang Liang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Wei Liang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Haiyu Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Qing Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Khamiddolov Temirlan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Zhang J, Zhao F, Li C, Ban X, Gu Z, Li Z. Acceleration mechanism of the rehydration process of dried rice noodles by the porous structure. Food Chem 2024; 431:137050. [PMID: 37573750 DOI: 10.1016/j.foodchem.2023.137050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Rehydration of dried rice noodles (DRNs) is a time-consuming process, which is dominated by the compactness of noodle structure. Therefore, DRNs with differentiated porous structures were prepared, and their effect on the rehydration process was investigated. Porous structure can shorten rehydration time by reducing the time needed for water to migrate into the noodle core, or the water amount required for rehydration. Magnetic resonance imaging showed that although larger pores facilitate absorbing more water, the time for water to migrate into the noodle center is longer than that of medium size pores, as water needs to fill the periphery large hole before inward migration. SAXS analysis demonstrated that the presence of flexible starch molecular chains reduce the water required to achieve the maximum tensile strain of samples, thus shortening the rehydration time. Understanding the acceleration mechanism of porous structure on rehydration contributes to designing improved process of instant noodle products.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, China
| | - Fangfang Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Mojica-Muñoz DM, Macías-Sánchez KL, Juárez-Hernández EO, Rodríguez-Álvarez A, Grévy JM, Díaz-Valle A, Carrillo-Tripp M, Falcón-González JM. Optimizing biodegradable plastics: Molecular dynamics insights into starch plasticization with glycerol and oleic acid. J Mol Graph Model 2024; 126:108674. [PMID: 37984192 DOI: 10.1016/j.jmgm.2023.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Petroleum-based plastics dominate everyday life, necessitating the exploration of natural polymers as alternatives. Starch, abundant and biodegradable, is a promising raw material. However, understanding the molecular mechanisms underlying starch plasticization has proven challenging. To address this, we employ molecular dynamics simulations, focusing on amylose as a model. Our comprehensive evaluation revealed that chain size affects solubility, temperature influenced diffusivity and elastic properties, and oleic acid expressed potential as an alternative plasticizer. Furthermore, blending glycerol or oleic acid with water suggested the enhancement amylose's elasticity. These findings contribute to the design of sustainable and improved biodegradable plastics.
Collapse
Affiliation(s)
- Diana Margarita Mojica-Muñoz
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico
| | - Karla Lizbeth Macías-Sánchez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico
| | - Estefanía Odemaris Juárez-Hernández
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico
| | - Aurora Rodríguez-Álvarez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, 22222, Morelos, Mexico
| | - Jean-Michel Grévy
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca, 22222, Morelos, Mexico
| | - Armando Díaz-Valle
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, 66600, Nuevo León, Mexico
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Vía del Conocimiento 201, PIIT, Apodaca, 66600, Nuevo León, Mexico
| | - José Marcos Falcón-González
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200, Col. Fraccionamiento Industrial Puerto Interior, Silao de la Victoria, 36275, Guanajuato, Mexico.
| |
Collapse
|
4
|
Ranathunga A, Suwannaporn P, Kiatponglarp W, Wansuksri R, Sagis LM. Molecular structure and linear-non linear rheology relation of rice starch during milky, dough, and mature stages. Carbohydr Polym 2023; 312:120812. [PMID: 37059541 DOI: 10.1016/j.carbpol.2023.120812] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Immature rice has potential to be used as healthy food. The relation between molecular structure and rheological properties was investigated. The lamellar repeating distance (8.42-8.63 nm) and crystalline thickness (4.60-4.72 nm) were not different among stages indicating a complete lamellar structure even at early stage. The relative crystallinity was higher in dough (39.62 %) than milky (36.69 %) and mature starch (35.22 %) caused by molecular structure, amylose, and amylose-lipid complex. The short amylopectin branched chains (A and B1) in dough starch were easily entangled resulted in higher Payne effect and elastic dominant. Dough starch paste exhibited higher G'Max (738 Pa) than milky (685 Pa) and mature (645 Pa) starch. In a non-linear viscoelastic regime, small strain hardening was found in milky and dough starch. Mature starch showed the highest plasticity and shear thinning at high-shear strains as the long-branched chains (B3) microstructure was disrupted, disentangled, followed by chain orientation along shear.
Collapse
|
5
|
Ding L, Liang W, Qu J, Persson S, Liu X, Herburger K, Kirkensgaard JJK, Khakimov B, Enemark-Rasmussen K, Blennow A, Zhong Y. Effects of natural starch-phosphate monoester content on the multi-scale structures of potato starches. Carbohydr Polym 2023; 310:120740. [PMID: 36925255 DOI: 10.1016/j.carbpol.2023.120740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Affiliation(s)
- Li Ding
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Wenxin Liang
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Staffan Persson
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Klaus Herburger
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark; Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Jacob Judas Kain Kirkensgaard
- Department of Food Science, University of Copenhagen, DK-1958 Frederiksberg C, Denmark; Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, DK-1958 Frederiksberg C, Denmark
| | - Kasper Enemark-Rasmussen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Andreas Blennow
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Yuyue Zhong
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| |
Collapse
|
6
|
Starch Chemical Composition and Molecular Structure in Relation to Physicochemical Characteristics and Resistant Starch Content of Four Thai Commercial Rice Cultivars Differing in Pasting Properties. Polymers (Basel) 2023; 15:polym15030574. [PMID: 36771875 PMCID: PMC9921408 DOI: 10.3390/polym15030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Variations in starch pasting properties, considered an alternative potential quality classification parameter for rice starches, are directly controlled by the diverse starch molecular composition and structural features. Here, the starch characteristics of four rice cultivars (i.e., RD57, RD29, KDML105, and RD6) differing in pasting properties were assessed, and their relationship was determined. The results revealed that protein and moisture contents and their crystalline type were similar among the four rice starches. However, their molecular compositions and structures (i.e., reducing sugar and amylose contents, amylopectin branch chain-length distributions, granule size and size distribution, and degree of crystallinity) significantly varied among different genotypes, which resulted in distinct swelling, solubility, gelatinization, retrogradation, and hydrolytic resistance properties. The swelling power and gelatinization enthalpy (∆H) were positively correlated with C-type granule and relative crystallinity, but were negatively correlated with amylose content, B-type granule and median particle size (d(0.5)). Conversely, the water solubility and resistant starch content negatively correlated with C-type granule, but positively correlated with amylose content, B-type granule, and d(0.5). The gelatinization onset temperature (To(g)), and retrogradation concluding temperatures (Tc(r)), enthalpy (∆H(r)), and percentage (R%) were positively impacted by the amount of protein, amylose, and B1 chains (DP 13-24), while they were negatively correlated with short A chains (DP 6-12). Collectively, the starch physicochemical and functional properties of these Thai rice starches are attributed to an interplay between compositional and structural features. These results provide decisive and crucial information on rice cultivars' suitability for consumption as cooked rice and for specific industrial applications.
Collapse
|
7
|
Pautong PA, Añonuevo JJ, de Guzman MK, Sumayao R, Henry CJ, Sreenivasulu N. Evaluation of in vitro digestion methods and starch structure components as determinants for predicting the glycemic index of rice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Zhong Y, Qu JZ, Liu X, Ding L, Liu Y, Bertoft E, Petersen BL, Hamaker BR, Hebelstrup KH, Blennow A. Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways. Carbohydr Polym 2022; 287:119327. [DOI: 10.1016/j.carbpol.2022.119327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
|
9
|
An D, Li H, Zhang D, Huang Y, Li D, Obadi M, Xu B. Relation between adhesiveness and surface leachate rheological properties of cooked noodles: From the view of starch fine molecular structure. Food Res Int 2022; 155:111111. [DOI: 10.1016/j.foodres.2022.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022]
|
10
|
Zhong Y, Qu J, Li Z, Tian Y, Zhu F, Blennow A, Liu X. Rice starch multi-level structure and functional relationships. Carbohydr Polym 2022; 275:118777. [PMID: 34742453 DOI: 10.1016/j.carbpol.2021.118777] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023]
Abstract
Starch from 15 different rice genotypes with amylose content (AC) ranging 1.5%-30.6% were investigated for relationships between structures and properties. For parameters related to the granular level, the most important relationships were found for AC, average chain lengths (ACL) of the amylopectin (AP) fb1 chains having a length of DP 13-24, crystallinity, and the thickness of the crystalline (dc) and the amorphous lamellae (da) of the starch granule. AC and dc were negatively correlated with the peak gelatinization temperature (Tp), thermal enthalpy (ΔH), and peak viscosity (PV), but positively correlated with swelling power. ACLfb1 and da, as compared to AC and dc, had the opposite effects on these parameters, demonstrating important roles of specific molecular and lamellar structures on the starch granular stability. For the gelatinized systems, increasing ACLfb1 decreased retrogradation, while AC increased retrogradation by increasing the resistant starch (RS) content, storage modulus (G'), and setback (SB).
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhihang Li
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yu Tian
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
11
|
Liu X, Huang S, Chao C, Yu J, Copeland L, Wang S. Changes of starch during thermal processing of foods: Current status and future directions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Yield, Grain Quality, and Starch Physicochemical Properties of 2 Elite Thai Rice Cultivars Grown under Varying Production Systems and Soil Characteristics. Foods 2021; 10:foods10112601. [PMID: 34828879 PMCID: PMC8620510 DOI: 10.3390/foods10112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Rice production systems and soil characteristics play a crucial role in determining its yield and grain quality. Two elite Thai rice cultivars, namely, KDML105 and RD6, were cultivated in two production systems with distinct soil characteristics, including net-house pot production and open-field production. Under open-field system, KDML105 and RD6 had greater panicle number, total grain weight, 100-grain weight, grain size, and dimension than those grown in the net-house. The amounts of reducing sugar and long amylopectin branch chains (DP 25–36) of the RD6 grains along with the amounts of long branch chains (DP 25–36 and DP ≥ 37), C-type starch granules, and average chain length of the KDML105 were substantially enhanced by the open-field cultivation. Contrastingly, the relative crystallinity of RD6 starch and the amounts of short branch chains (DP 6–12 and DP 13–24), B- and A-type granules, and median granule size of KDML105 starch were significantly suppressed. Consequently, the open-field-grown RD6 starch displayed significant changes in its gelatinization and retrogradation properties, whereas, certain retrogradation parameters and peak viscosity (PV) of KDML105 starches were differentially affected by the distinct cultivating conditions. This study demonstrated the influences of production systems and soil characteristics on the physicochemical properties of rice starches.
Collapse
|
13
|
Zhong Y, Li Z, Qu J, Bertoft E, Li M, Zhu F, Blennow A, Liu X. Relationship between molecular structure and lamellar and crystalline structure of rice starch. Carbohydr Polym 2021; 258:117616. [PMID: 33593533 DOI: 10.1016/j.carbpol.2021.117616] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 12/29/2022]
Abstract
The relationship between molecular structure and crystalline and lamellar structures of fifteen types of rice starches was studied. GPC and HPAEC were used for the molecular chain analysis and WAXS, SAXS, and CP/MAS 13C NMR were employed for aggregation structural analysis. The amylopectin content and the average lengths of fb1-chains (the degree of polymerization (DP) 13-24) were positively correlated with the amount of double helices (r2 = 0.92 and 0.57, respectively). In contrast, amylose content was positively correlated with the amounts of amorphous materials in starch (r2 = 0.77). The amount of double helices, which constitute a major part of the crystalline matrix, was positively correlated with the lamellar ordering (r2 = 0.81), and negatively correlated with the thickness of crystalline lamellae (r2 = 0.90) and lamellar repeat distance (r2 = 0.84). Conversely, the amount of the amorphous matrix was correlated with these parameters in the opposite way (r2 = 0.50, 0.75, and 0.75, respectively).
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Zhihang Li
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Eric Bertoft
- Bertoft Solutions, Gamla Sampasvägen 18, 20960, Turku, Finland
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
14
|
Li C, Gong B. Relations between rice starch fine molecular and lamellar/crystalline structures. Food Chem 2021; 353:129467. [PMID: 33740510 DOI: 10.1016/j.foodchem.2021.129467] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023]
Abstract
Starch lamellar and crystalline structures are important controller of its physicochemical and digestion properties. Here, starch lamellar/crystalline structures of 16 different rice starches were investigated and correlated with their chain-length distributions (CLDs) and molecular size distributions. Results showed that the thickness of amorphous lamellae was mainly correlated with the amount of amylose short and medium chains. Thickness of both amorphous and crystalline lamellae was negatively correlated with the amount of amylopectin medium chains and relative length of amylopectin short chains. The degree of crystallinity was negatively correlated with the amount of amylose short and long chains. The lamellar ordering, fractal nature and thickness polydispersity were also related to the starch CLDs. Whereas, starch molecular size distributions were shown to be lack of correlations with the starch lamellar/crystalline structures. This study helps a better understanding of the molecular nature of starch semi-crystalline lamellae.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development of Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Bo Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Zhang C, Yang Y, Chen Z, Chen F, Pan L, Lu Y, Li Q, Fan X, Sun Z, Liu Q. Characteristics of Grain Physicochemical Properties and the Starch Structure in Rice Carrying a Mutated ALK/SSIIa Gene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13950-13959. [PMID: 33140950 DOI: 10.1021/acs.jafc.0c01471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The gelatinization temperature (GT) of endosperm starch influences rice eating and the cooking quality (ECQ). ALK encoding soluble starch synthase IIa (SSIIa) is the major gene determining grain GT in rice. Herein, we identified a spontaneous ALK mutant named ALKd, which resulted from a G/T single-nucleotide polymorphism (SNP) in exon 1 of the ALKc allele from the high-GT indica rice cultivar. Compared with grains from the ALKc near-isogenic line (NIL), NIL(ALKd) grains exhibited a high GT (2.3 °C) and improved retrogradation properties. The NIL(ALKd) grain starch contained an increased proportion of amylopectin intermediate chains (DP 13-24) at the expense of short chains (DP < 12), resulting in enhancements in both the crystallinity and the lamellar peak intensity compared with low-GT rice grains. Moreover, both NIL(ALKd) and NIL(ALKc) grains also featured a significantly lower apparent amylose content (AAC), harder gel consistency (GC), higher pasting curve, and poorer taste values in comparison to Nip(ALKa) grains. Taken together, this work provides novel insights underlying the allelic variation of the ALK gene in rice.
Collapse
Affiliation(s)
- Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yong Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Zhuanzhuan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Fei Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Lixu Pan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yan Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zhizhong Sun
- Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Zhong Y, Liu L, Qu J, Blennow A, Hansen AR, Wu Y, Guo D, Liu X. Amylose content and specific fine structures affect lamellar structure and digestibility of maize starches. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105994] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Song Z, Zhong Y, Tian W, Zhang C, Hansen AR, Blennow A, Liang W, Guo D. Structural and functional characterizations of α-amylase-treated porous popcorn starch. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
|
19
|
Almeida RLJ, dos Santos Pereira T, de Andrade Freire V, Santiago ÂM, Oliveira HML, de Sousa Conrado L, de Gusmão RP. Influence of enzymatic hydrolysis on the properties of red rice starch. Int J Biol Macromol 2019; 141:1210-1219. [DOI: 10.1016/j.ijbiomac.2019.09.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
|
20
|
Zhang B, Zhou W, Qiao D, Zhang P, Zhao S, Zhang L, Xie F. Changes in Nanoscale Chain Assembly in Sweet Potato Starch Lamellae by Downregulation of Biosynthesis Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6302-6312. [PMID: 30925057 DOI: 10.1021/acs.jafc.8b06523] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Granule-bound starch synthase I (GBSSI) and starch-branching enzymes I and II (SBEI and SBEII) are crucial enzymes that biosynthesize starches with varied apparent amylose contents and amylopectin branching structure. With a sweet potato ( Ipomoea batatas [L.] Lam. cv. Xushu22), this work shows that downregulating GBSSI (for waxy starch) or SBE (for high-amylose starch) activity allowed the formation of new semicrystalline lamellae (named Type II) in sweet potato starch in addition to the widely reported Type I lamellae. Small-angle X-ray scattering (SAXS) results show that, compared with Type I lamellae, Type II lamellae displayed increased average thickness and thickness-distribution width, with thickened amorphous and crystalline components. The size-exclusion-chromatography (SEC) data revealed mainly two enzyme sets, (i) and (ii), synthesizing amylopectin chains. Reducing the GBSSI or SBE activity increased the amounts of amylopectin long chains (degree of polymerization (DP) ≥ 33). Combined SAXS and SEC analyses indicate that parts of these long chains from enzyme set (i) could be confined to Type II lamellae, followed by DP ≤ 32 short chains in Type I lamellae and the rest of the long chains from enzyme sets (i) and (ii) spanning more than a single lamella.
Collapse
Affiliation(s)
- Binjia Zhang
- Group for Cereals and Oils Processing, Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Wenzhi Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT , Hubei University of Technology , Wuhan 430068 , China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Siming Zhao
- Group for Cereals and Oils Processing, Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Liang Zhang
- School of Food Science and Engineering , Yangzhou University , Yangzhou 225127 , China
| | - Fengwei Xie
- Institute of Advanced Study , University of Warwick , Coventry CV4 7HS , United Kingdom
- International Institute for Nanocomposites Manufacturing (IINM), WMG , University of Warwick , Coventry CV4 7AL , United Kingdom
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
21
|
Shen Y, Zhang N, Xu Y, Huang J, Yuan M, Wu D, Shu X. Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. Int J Biol Macromol 2019; 128:775-781. [DOI: 10.1016/j.ijbiomac.2019.01.194] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 01/28/2019] [Indexed: 11/30/2022]
|
22
|
Lin L, Guo K, Zhang L, Zhang C, Liu Q, Wei C. Effects of molecular compositions on crystalline structure and functional properties of rice starches with different amylopectin extra-long chains. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Hong J, Zeng XA, Buckow R, Han Z. Structural, thermodynamic and digestible properties of maize starches esterified by conventional and dual methods: Differentiation of amylose contents. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Guo L, Cui B. The Role of Chain Structures on Enzymatic Hydrolysis of Potato and Sweet Potato Amylopectins. STARCH-STARKE 2018. [DOI: 10.1002/star.201800003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Li Guo
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 China
| | - Bo Cui
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 China
| |
Collapse
|
25
|
Unit and internal chain profiles of maca amylopectin. Food Chem 2018; 242:106-112. [DOI: 10.1016/j.foodchem.2017.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/01/2017] [Accepted: 09/04/2017] [Indexed: 11/22/2022]
|
26
|
Abstract
Starch is a major food supply for humanity. It is produced in seeds, rhizomes, roots and tubers in the form of semi-crystalline granules with unique properties for each plant. Though the size and morphology of the granules is specific for each plant species, their internal structures have remarkably similar architecture, consisting of growth rings, blocklets, and crystalline and amorphous lamellae. The basic components of starch granules are two polyglucans, namely amylose and amylopectin. The molecular structure of amylose is comparatively simple as it consists of glucose residues connected through α-(1,4)-linkages to long chains with a few α-(1,6)-branches. Amylopectin, which is the major component, has the same basic structure, but it has considerably shorter chains and a lot of α-(1,6)-branches. This results in a very complex, three-dimensional structure, the nature of which remains uncertain. Several models of the amylopectin structure have been suggested through the years, and in this review two models are described, namely the “cluster model” and the “building block backbone model”. The structure of the starch granules is discussed in light of both models.
Collapse
|
27
|
Yang X, Bi J, Gilbert RG, Li G, Liu Z, Wang S, Ding Y. Amylopectin chain length distribution in grains of japonica rice as affected by nitrogen fertilizer and genotype. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Spherulitic self-assembly of debranched starch from aqueous solution and its effect on enzyme digestibility. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Gayin J, Abdel-Aal ESM, Manful J, Bertoft E. Unit and internal chain profile of African rice (Oryza glaberrima) amylopectin. Carbohydr Polym 2016; 137:466-472. [DOI: 10.1016/j.carbpol.2015.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
|
30
|
Castaño J, Rodríguez-Llamazares S, Bouza R, Franco CML. Chemical composition and thermal properties of ChileanAraucaria araucanastarch. STARCH-STARKE 2015. [DOI: 10.1002/star.201500148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Johanna Castaño
- Unidad de Desarrollo Tecnológico; Universidad de Concepción; Coronel Chile
| | | | - Rebeca Bouza
- Grupo de Polímeros, Departamento de Física, E.U.P. Ferrol; Universidad de A Coruña; Ferrol Spain
| | - Celia Maria Landi Franco
- Departamento de Engenharia e Tecnologia de Alimentos; Universidade Estadual Paulista; São José do Rio Preto SP Brazil
| |
Collapse
|
31
|
Affiliation(s)
| | - Eric Bertoft
- Department of Food Science and Nutrition; University of Minnesota; St Paul MN
| |
Collapse
|
32
|
Kalinga DN, Bertoft E, Tetlow I, Liu Q, Yada RY, Seetharaman K. Evolution of amylopectin structure in developing wheat endosperm starch. Carbohydr Polym 2014; 112:316-24. [DOI: 10.1016/j.carbpol.2014.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
33
|
Witt T, Gilbert RG. Causal Relations between Structural Features of Amylopectin, a Semicrystalline Hyperbranched Polymer. Biomacromolecules 2014; 15:2501-11. [DOI: 10.1021/bm500353e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Torsten Witt
- Tongji
School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
- Centre
for Nutrition and Food Science, Queensland Alliance for Agriculture
and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G. Gilbert
- Tongji
School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
- Centre
for Nutrition and Food Science, Queensland Alliance for Agriculture
and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
34
|
Characteristics of the starch fine structure and pasting properties of waxy rice during storage. Food Chem 2014; 152:432-9. [DOI: 10.1016/j.foodchem.2013.11.144] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 11/11/2013] [Accepted: 11/24/2013] [Indexed: 11/22/2022]
|
35
|
Gilbert RG, Witt T, Hasjim J. What Is Being Learned About Starch Properties from Multiple-Level Characterization. Cereal Chem 2013. [DOI: 10.1094/cchem-11-12-0141-fi] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Robert G. Gilbert
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
- Corresponding author. Phone: +61 7 3365 4809. Fax: +61 7 3365 1188. E-mail:
| | - Torsten Witt
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Jovin Hasjim
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| |
Collapse
|
36
|
Wang L, Xie B, Xiong G, Wu W, Wang J, Qiao Y, Liao L. The effect of freeze–thaw cycles on microstructure and physicochemical properties of four starch gels. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Bertoft E, Koch K, Åman P. Building block organisation of clusters in amylopectin from different structural types. Int J Biol Macromol 2012; 50:1212-23. [DOI: 10.1016/j.ijbiomac.2012.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 02/24/2012] [Accepted: 03/09/2012] [Indexed: 11/28/2022]
|
38
|
Chávez-Murillo CE, Méndez-Montealvo G, Wang YJ, Bello-Pérez LA. Starch of diverse Mexican rice cultivars: physicochemical, structural, and nutritional features. STARCH-STARKE 2012. [DOI: 10.1002/star.201200016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Jiranuntakul W, Puttanlek C, Rungsardthong V, Puncha-arnon S, Uttapap D. Amylopectin structure of heat-moisture treated starches. STARCH-STARKE 2012. [DOI: 10.1002/star.201100160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Blazek J, Gilbert EP. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.02.041] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Zhu F, Corke H, Bertoft E. Amylopectin internal molecular structure in relation to physical properties of sweetpotato starch. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.12.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Goldstein A, Nantanga KKM, Seetharaman K. REVIEW: Molecular Interactions in Starch‐Water Systems: Effect of Increasing Starch Concentration. Cereal Chem 2010. [DOI: 10.1094/cchem-87-4-0370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Avi Goldstein
- Department of Food Science, University of Guelph, Guelph, Canada
| | | | - Koushik Seetharaman
- Department of Food Science, University of Guelph, Guelph, Canada
- Corresponding author. E‐mail address:
| |
Collapse
|
43
|
Laohaphatanaleart K, Piyachomkwan K, Sriroth K, Santisopasri V, Bertoft E. A Study of the Internal Structure in Cassava and Rice Amylopectin. STARCH-STARKE 2009. [DOI: 10.1002/star.200900154] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Structural characterization of wheat starch granules differing in amylose content and functional characteristics. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
|
46
|
Kong X, Bertoft E, Bao J, Corke H. Molecular structure of amylopectin from amaranth starch and its effect on physicochemical properties. Int J Biol Macromol 2008; 43:377-82. [DOI: 10.1016/j.ijbiomac.2008.07.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
|
47
|
Koroteeva DA, Kiseleva VI, Krivandin AV, Shatalova OV, Błaszczak W, Bertoft E, Piyachomkwan K, Yuryev VP. Structural and thermodynamic properties of rice starches with different genetic background. Int J Biol Macromol 2007; 41:534-47. [PMID: 17719628 DOI: 10.1016/j.ijbiomac.2007.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/06/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
High-sensitivity differential scanning microcalorimetry (HSDSC), small-angle X-ray scattering (SAXS), light (LM) and scanning electronic (SEM) microscopy techniques were used to study the defectiveness of different supramolecular structures in starches extracted from 11 Thai cultivars of rice differing in level of amylose and amylopectin defects in starch crystalline lamellae. Despite differences in chain-length distribution of amylopectin macromolecules and amylose level in starches, the invariance in the sizes of crystalline lamellae, amylopectin clusters and granules was established. The combined analysis of DSC, SAXS, LM and SEM data for native starches, as well as the comparison of the thermodynamic data for native and annealed starches, allowed to determine the structure of defects and the localization of amylose chains in crystalline and amorphous lamellae, defectiveness of lamellae, clusters and granules. It was shown that amylose "tie chains", amylose-lipid complexes located in crystalline lamellae, defective ends of double helical chains dangling from crystallites inside amorphous lamellae ("dangling" chains), as well as amylopectin chains with DP 6-12 and 25-36 could be considered as defects. Their accumulation can lead to a formation of remnant granules. The changes observed in the structure of amylopectin chains and amylose content in starches are reflected in the interconnected alterations of structural organization on the lamellar, cluster and granule levels.
Collapse
Affiliation(s)
- Dasha A Koroteeva
- Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina str. 4, 119334 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|