1
|
Lanka G, Bhargavi M, Bathula R, Potlapally SR. Targeting tribbles homolog 3 (TRIB3) protein against type 2 diabetes for the identification of potential inhibitors by in silico screening. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Lanka G, Bathula R, Dasari M, Nakkala S, Bhargavi M, Somadi G, Potlapally SR. Structure-based identification of potential novel inhibitors targeting FAM3B (PANDER) causing type 2 diabetes mellitus through virtual screening. J Recept Signal Transduct Res 2019; 39:253-263. [PMID: 31517548 DOI: 10.1080/10799893.2019.1660897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Type 2 diabetes mellitus is a metabolic disorder that requires potent therapeutic approaches. The FAM3B is a cytokine-like protein also referred to as PANcreatic-DERrived factor (PANDER) which mainly exists in pancreatic islets. In the process of identifying potential inhibitors with the aid of structure-based method PANDER protein is identified as a novel therapeutic target against type 2 diabetes mellitus as it involved in the development of type 2 diabetes by negatively regulating the pancreatic β-cell function and insulin sensitivity in the liver. In the present study, the 3d model of target protein FAM3B was generated by homology modeling technique using the MODELLER9.9 program. The assessment of the structural stability of the 3d model was established by energy minimization technique. The structural quality was evaluated with standard validating protocols. Binding regions of the target protein has been determined by literature and SiteMap tool. In the current study of research, the FAM3B model was subjected to molecular screening with the Asinex-elite database of 14849 output molecules using the Glide virtual screening module in the Schrodinger suite. The final XP descriptor output of 14 molecules was analyzed and prioritized based on molecular interactions at the FAM3B active site. The docking score, binding free energies (Prime MM/GBSA) and bioavailability were undertaken into the consideration to identify lead inhibitors. The identified lead compounds were checked for ADME properties all falling within the permeable ranges. The analysis of results gave the insight to develop the novel therapeutic strategies against type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Goverdhan Lanka
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Revanth Bathula
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Mahendar Dasari
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Sravanthi Nakkala
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Manan Bhargavi
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Gururaj Somadi
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Sarita Rajender Potlapally
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| |
Collapse
|
3
|
He LJ, Zhu YB, Fan QZ, Miao DD, Zhang SP, Liu XP, Zhang C. Shape-based virtual screen for the discovery of novel CDK8 inhibitor chemotypes. Bioorg Med Chem Lett 2019; 29:549-555. [PMID: 30630717 DOI: 10.1016/j.bmcl.2018.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 11/15/2022]
Abstract
With the aim of discovering novel cyclin-dependent kinase 8 (CDK8) inhibitors, a combined similarity search and molecular docking approach was employed, which led to 32 hits. Biological tests led to the discovery of several novel submicromolar inhibitors. In particular, compound C768-0769 (ZC0201) showed good CDK8 inhibitory activity, and compound ZC0201 effectively suppressed HCT-116 colorectal cancer cell proliferation by inducing G1/S transition arrest. Furthermore, modulation of phosphorylated signal transducer and activator of transcription 1 (Ser 727) (STAT1SER727), a pharmacodynamic biomarker of CDK8 activity, demonstrated that ZC0201 may cause G1/S transition arrest through CDK8 activity inhibition. Due to its good cellular activity, ZC0201 may be an ideal lead compound for further modification as a potential cancer therapeutic agent.
Collapse
Affiliation(s)
- Lian-Jun He
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Yi-Bao Zhu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Qing-Zhu Fan
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Dong-Dong Miao
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Sheng-Peng Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Xiao-Ping Liu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China.
| | - Chao Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, PR China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, Anhui 241000, PR China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
4
|
Malikanti R, Vadija R, Veeravarapu H, Mustyala KK, Malkhed V, Vuruputuri U. Identification of small molecular ligands as potent inhibitors of fatty acid metabolism in Mycobacterium tuberculosis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Mondal SI, Mahmud Z, Elahi M, Akter A, Jewel NA, Muzahidul Islam M, Ferdous S, Kikuchi T. Study of intra-inter species protein-protein interactions for potential drug targets identification and subsequent drug design for Escherichia coli O104:H4 C277-11. In Silico Pharmacol 2017; 5:1. [PMID: 28401513 DOI: 10.1007/s40203-017-0021-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/20/2017] [Indexed: 11/29/2022] Open
Abstract
Protein-protein interaction (PPI) and host-pathogen interactions (HPI) proteomic analysis has been successfully practiced for potential drug target identification in pathogenic infections. In this research, we attempted to identify new drug target based on PPI and HPI computation approaches and subsequently design new drug against devastating enterohemorrhagic Escherichia coli O104:H4 C277-11 (Broad), which causes life-threatening food borne disease outbreak in Germany and other countries in Europe in 2011. Our systematic in silico analysis on PPI and HPI of E. coli O104:H4 was able to identify bacterial D-galactose-binding periplasmic and UDP-N-acetylglucosamine 1-carboxyvinyltransferase as attractive candidates for new drug targets. Furthermore, computational three-dimensional structure modeling and subsequent molecular docking finally proposed [3-(5-Amino-7-Hydroxy-[1,2,3]Triazolo[4,5-D]Pyrimidin-2-Yl)-N-(3,5-Dichlorobenzyl)-Benzamide)] and (6-amino-2-[(1-naphthylmethyl)amino]-3,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one) as promising candidate drugs for further evaluation and development for E. coli O104:H4 mediated diseases. Identification of new drug target would be of great utility for humanity as the demand for designing new drugs to fight infections is increasing due to the developing resistance and side effects of current treatments. This research provided the basis for computer aided drug design which might be useful for new drug target identification and subsequent drug design for other infectious organisms.
Collapse
Affiliation(s)
- Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh. .,Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Zabed Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Montasir Elahi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Bunkyō, Tokyo, Japan
| | - Arzuba Akter
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Nurnabi Azad Jewel
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Muzahidul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Sabiha Ferdous
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|
6
|
Ramatenki V, Dumpati R, Vadija R, Vellanki S, Potlapally SR, Rondla R, Vuruputuri U. Identification of New Lead Molecules Against UBE2NL Enzyme for Cancer Therapy. Appl Biochem Biotechnol 2017; 182:1497-1517. [DOI: 10.1007/s12010-017-2414-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
|
7
|
Mustyala KK, Malkhed V, Chittireddy VRR, Vuruputuri U. Identification of Small Molecular Inhibitors for Efflux Protein: DrrA of Mycobacterium tuberculosis. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0427-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
8
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
9
|
Mustyala KK, Malkhed V, Potlapally SR, Chittireddy VR, Vuruputuri U. Macromolecular structure and interaction studies of SigF and Usfx inMycobacterium tuberculosis. J Recept Signal Transduct Res 2014; 34:162-73. [DOI: 10.3109/10799893.2013.868903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Malkhed V, Mustyala KK, Potlapally SR, Vuruputuri U. Identification of novel leads applyingin silicostudies for Mycobacterium multidrug resistant (MMR) protein. J Biomol Struct Dyn 2013; 32:1889-906. [DOI: 10.1080/07391102.2013.842185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Durrant JD, Friedman AJ, Rogers KE, McCammon JA. Comparing neural-network scoring functions and the state of the art: applications to common library screening. J Chem Inf Model 2013; 53:1726-35. [PMID: 23734946 PMCID: PMC3735370 DOI: 10.1021/ci400042y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Indexed: 11/29/2022]
Abstract
We compare established docking programs, AutoDock Vina and Schrödinger's Glide, to the recently published NNScore scoring functions. As expected, the best protocol to use in a virtual-screening project is highly dependent on the target receptor being studied. However, the mean screening performance obtained when candidate ligands are docked with Vina and rescored with NNScore 1.0 is not statistically different than the mean performance obtained when docking and scoring with Glide. We further demonstrate that the Vina and NNScore docking scores both correlate with chemical properties like small-molecule size and polarizability. Compensating for these potential biases leads to improvements in virtual screen performance. Composite NNScore-based scoring functions suited to a specific receptor further improve performance. We are hopeful that the current study will prove useful for those interested in computer-aided drug design.
Collapse
Affiliation(s)
- Jacob D Durrant
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | |
Collapse
|
12
|
Sarita Rajender P, Bhargavi K, Ramasree D, Uma V. 156 A cutting-edge to drug discovery in Cancer; Cyclins as novel, targets - an in silico technique. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Malkhed V, Mustyala KK, Potlapally SR, Vuruputuri U. Modeling of Alternate RNA Polymerase Sigma D Factor and Identification of Novel Inhibitors by Virtual Screening. Cell Mol Bioeng 2012. [DOI: 10.1007/s12195-012-0238-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Towards the virtual screening of BIK inhibitors with the homology-modeled protein structure. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0105-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Mustyala KK, Chitturi AR, Naikal James PS, Vuruputuri U. Pharmacophore mapping and in silico screening to identify new potent leads for A2Aadenosine receptor as antagonists. J Recept Signal Transduct Res 2012; 32:102-13. [DOI: 10.3109/10799893.2012.660532] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Schneider EV, Böttcher J, Blaesse M, Neumann L, Huber R, Maskos K. The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder. J Mol Biol 2011; 412:251-66. [PMID: 21806996 DOI: 10.1016/j.jmb.2011.07.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 01/07/2023]
Abstract
Cyclin-dependent kinase (CDK) 8 associates with cyclin C (CycC) and belongs to the CDK module of the Mediator of transcription, together with MED12 and MED13. CDK8 is involved in the regulation of mRNA transcription and was identified as a potent oncogene in colon cancerogenesis. We have solved the 2.2-Å crystal structure of CDK8/CycC in complex with sorafenib, an anti-cancer drug of clinical relevance. The CDK8 structure reveals a unique CycC recognition helix that explains the specificity of the CDK8/CycC pair and discrimination among the highly promiscuous binding in the CDK/cyclin family. In contrast to all CDKs, the CDK8 activation loop appears not to be phosphorylated. Based on the structure, we discuss an alternate mode of CDK8 activation to the general CDK activation by T-loop phosphorylation. Sorafenib binds to the catalytic cleft of CDK8. It displays a deep pocket binding mode and is the first small molecule to induce a DFG-out conformation in the CDK family, which is actually DMG-out in CDK8.
Collapse
Affiliation(s)
- E V Schneider
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|