1
|
Wang B, Huang B, Yang B, Ye L, Zeng J, Xiong Z, Chen Y, Guo S, Yang Y, Ma W, Zhu M, Jia X, Feng L. Structural elucidation of a novel polysaccharide from Ophiopogonis Radix and its self-assembly mechanism in aqueous solution. Food Chem 2023; 402:134165. [DOI: 10.1016/j.foodchem.2022.134165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
|
2
|
Zhang M, Chen Y, Chen R, Wen Y, Huang Q, Liu Y, Zhao C. Research status of the effects of natural oligosaccharides on glucose metabolism. EFOOD 2022. [DOI: 10.1002/efd2.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Minjiao Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yaobin Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Ruoxin Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Department of Analytical and Food Chemistry, Nutrition and Bromatology Group, Faculty of Sciences Universidade de Vigo Ourense Spain
| | - Qihui Huang
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Department of Analytical and Food Chemistry, Nutrition and Bromatology Group, Faculty of Sciences Universidade de Vigo Ourense Spain
| | - Yuanyuan Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
3
|
Exploring the Regulatory Mechanism of Modified Huanglian Maidong Decoction on Type 2 Diabetes Mellitus Biological Network Based on Systematic Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1768720. [PMID: 34335798 PMCID: PMC8292042 DOI: 10.1155/2021/1768720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Objective To explore the mechanism of modified Huanglian Maidong decoction (Maidong-Sanqi-Huanglian Compounds, MSHCs) intervention in type 2 diabetes mellitus (T2DM). Method This study used PubChem and SciFinder to collect the molecular structure of MSHCs, used PharmMapper to predict the potential targets of MSHC, and combined them with the T2DM gene to construct MSHC-T2DM protein-protein interaction (PPI) network. The plugin MCODE in Cytoscape 3.7.1 was then used to perform cluster analysis on the MSHC-T2DM PPI network. The genes and targets were input into DAVID for Gene Ontology (GO) and pathway enrichment analysis. Finally, animal experiments were performed to verify the therapeutic effect of MSHC on T2DM. Results Several T2DM-related targets, clusters, signaling pathways, and biological processes are found. The experimental results showed that compared with the blank group, the content of fasting blood glucose (FBG) in the model group was higher (P < 0.01). Compared with the model group, the content of FBG decreased and the insulin level increased in the MSHC medium-dose (0.15 g/kg) and high-dose (0.45 g/kg) groups and metformin group after 4 weeks of drug administration (P < 0.05). MSHC can also improve blood liquid levels and inflammatory factor levels (P < 0.05). Conclusion MSHC may achieve therapeutic effects through regulating the T2DM-related targets, biological processes, and pathways, such as insulin resistance, energy metabolism, oxidative stress, and inflammation, found in this research.
Collapse
|
4
|
Li T, Li H, Wu Y, Wu Q, Zhao G, Cai Z, Pu F, Li B. Efficacy and safety of Shenqi Jiangtang Granules plus oral hypoglycemic agent in patients with type 2 diabetes mellitus: A protocol for systematic review and meta-analysis of 15 RCTs. Medicine (Baltimore) 2021; 100:e23578. [PMID: 33592826 PMCID: PMC7870258 DOI: 10.1097/md.0000000000023578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Shenqi Jiangtang Granules (SQJTG) has been widely used to treat patients with type 2 diabetes mellitus (T2DM). But whether there exists sufficient evidence on the efficacy of SQJTG in the treatment of T2DM is unclear. In order to assess the effects of SQJTG for T2DM, a systematic review and meta-analysis of randomized controlled trials (RCTs) were carried out. METHODS Eight databases, namely, PubMed, The Cochrane Library, EMBASE, Web of Science, Chinese National Knowledge Infrastructure, Chinese Scientific Journals Full-Text Database, CBM, and Wanfang database were searched up to May 2020. According to the Cochrane standards, the selection of study, the extraction of data, the assessment of study quality, and the analyses of data were carried out strictly. Then a fixed or random effects model was applied to analyze the outcomes. RESULTS Fifteen studies (N = 1392) in total conformed the inclusion criteria to this meta-analysis. Two subgroups were identified, based on different dose of SQJTG: oral hypoglycemic agent (OHA) vs OHA plus SQJTG (1 g); OHA vs. OHA plus SQJTG (1.5-3 g). The pooled results showed that, in comparison with OHA, OHA plus SQJTG significantly reduced fasting plasma glucose in both 1 g subgroup and 1.5-3 g subgroup; 2-hour post-meal blood glucose was also greatly reduced in the SQJTG 1 g subgroup and the SQJTG 1.5-3 g subgroup. Compared with OHA, SQJTG 1 g subgroup significantly reduced levels of glycated hemoglobin A1c, as well as the SQJTG 1.5-3 g subgroup. Homeostasis model-insulin resistance index was also reduced in both SQJTG 1 g subgroup and SQJTG 1.5-3 g subgroup; SQJTG group can also significantly reduce the total adverse events especially in reducing the incidence of hypoglycemia. CONCLUSIONS SQJTG is an effective and safe complementary treatment for T2DM patients. This meta-analysis provides an evidence for the treatment in patients with T2DM. While owing to the high heterogeneity and the trials' small sample size, it's crucial to perform large-scale and strict designed studies.
Collapse
Affiliation(s)
- Tianli Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District
- Beijing University of Chinese medicine, Chaoyang District
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District
| | - Hongzheng Li
- Beijing University of Chinese medicine, Chaoyang District
- Department of Cardiology, Guang’an men hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing
| | - Yang Wu
- Beijing University of Chinese medicine, Chaoyang District
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District
| | - Qian Wu
- Department of Cardiology, Guang’an men hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing
| | - Guozhen Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District
- Beijing University of Chinese medicine, Chaoyang District
| | - Zhaolun Cai
- Department of Gastroenterology, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fenglan Pu
- Beijing University of Chinese medicine, Chaoyang District
| | - Bo Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District
| |
Collapse
|
5
|
Yu K, Liu W, Zhang N, Cheng X, Zhou S, Zuo T, Kang S, Wei F, Ma S. A Novel Method to Identify Three Quality Grades of Herbal Medicine Ophiopogonis Radix by Microscopic Quantification. Front Pharmacol 2021; 11:591310. [PMID: 33584266 PMCID: PMC7878543 DOI: 10.3389/fphar.2020.591310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Maidong, the root tuber of Ophiopogon japonicus (Thunb.) Ker Gawl., is a commonly used herbal medicine in China. There are three quality grades of Maidong according to traditional opinion and modern research studies: superior quality (Zhe-Maidong), medium quality (Chuan-Maidong), and poorest quality (Chuan-Maidong with paclobutrazol, which is a kind of plant growth regulator). However, no efficient way to distinguish the three quality grades of Maidong exists; thus, the herbal markets and botanical pharmacies are flooded with Chuan-Maidong with paclobutrazol. To ensure the safety and quality of Maidong, a comparative microscopic study was performed on three quality grades of Maidong. The result was to establish a microscopic quantification method based on the area ratio between xylem and pith to distinguish the three quality grades of Maidong. Subsequently, Maidong from regional markets was evaluated by this method. In this study, we developed a novel quantification method to identify the three quality grades of Maidong, which could in turn make efforts on the quality improvement of Maidong. Our study is the first to demonstrate that microscopic technology could be used to distinguish different quality grades of a specific herbal medicine.
Collapse
Affiliation(s)
- Kunzi Yu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Wei Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Nanping Zhang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shiyu Zhou
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Tiantian Zuo
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuai Kang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
6
|
Zhao J, Li Y, Xin L, Sun M, Yu C, Shi G, Bao T, Liu J, Ni Y, Lu R, Wu Y, Fang Z. Clinical Features and Rules of Chinese Herbal Medicine in Diabetic Peripheral Neuropathy Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5795264. [PMID: 32724325 PMCID: PMC7382735 DOI: 10.1155/2020/5795264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To analyse the clinical features of diabetic peripheral neuropathy (DPN) and employ data mining technology to explore the rules of Chinese herbal medicine (CHM) therapy. METHODS The clinical data of 216 patients with DPN and qi-yin deficiency syndrome were obtained, and the clinical features of the patients were assessed by cluster analysis. Relevant information was entered into the clinical diagnosis and treatment collection system, and data mining techniques were used to analyse the drug frequency, core CHM, CHM pair, and so on. RESULTS In this study, glycated haemoglobin (HbA1c) and homocysteine (HCY) were closely related to the pathogenesis of DPN. Overall, 162 patients had typical DPN syndrome characteristics, and we analysed 216 prescriptions, including 182 CHM. The frequencies of prescription of Astragalus membranaceus, Ligusticum wallichii, Poria cocos, and Radix Rehmanniae were greater than 45%. A Bayesian network analysis diagram showed that the 9 most common core CHM included Astragalus membranaceus, Ligusticum wallichii, Poria cocos, atractylodes rhizome, and Salvia miltiorrhiza Bge. According to the association rules of CHM, Radix Ophiopogon is used for Codonopsis pilosula; Astragalus membranaceus and atractylodes rhizome for Rehmannia are also frequently used. Astragalus membranaceus and Cinnamomi Ramulus or Ligusticum wallichii and Moutan bark were highly related to a decreased Michigan Diabetic Neuropathy Score. CONCLUSION HbA1c and HCY are related risk factors for DPN. Numbness is a typical syndrome characteristic. Astragalus membranaceus is a monarch CHM and is used most frequently.
Collapse
Affiliation(s)
- Jindong Zhao
- Department of Endocrine Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Yan Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Ling Xin
- Department of Information, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Min Sun
- School of Life Sciences, Anhui University, Hefei 230039, China
| | - Chanjuan Yu
- Department of Endocrine Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Guobin Shi
- Department of Endocrine Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Taotao Bao
- Department of Endocrine Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jian Liu
- Department of Endocrine Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Yingqun Ni
- Department of Endocrine Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - RuiMin Lu
- Department of Endocrine Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Yuanyuan Wu
- Department of Endocrine Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Zhaohui Fang
- Department of Endocrine Disease, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| |
Collapse
|
7
|
Zhang L, Luo Z, Cui S, Xie L, Yu J, Tang D, Ma X, Mou Y. Residue of Paclobutrazol and Its Regulatory Effects on the Secondary Metabolites of Ophiopogon japonicas. Molecules 2019; 24:E3504. [PMID: 31569613 PMCID: PMC6804066 DOI: 10.3390/molecules24193504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Currently, paclobutrazol is excessively used in the planting process of Ophiopogon japonicus (O. japonicus) due to its important role in regulating the growth of tuber roots, ultimately increasing the yield and shortening the growth cycle of Ophiopogonis Radix. For insight into this process and the potential risks of paclobutrazol and its mediated consequences on the secondary metabolites in Ophiopogonis Radix, corresponding high performance liquid chromatography-tandem mass spectrometric methods (HPLC-MS/MS) were developed in this study and then applied to Ophiopogonis Radix, soil, and water samples. The results demonstrated the detection of different levels of paclobutrazol residue were in Ophiopogonis Radix, soil, and water samples. In addition, the quantitative results of the secondary metabolites showed that paclobutrazol significantly decreased four steroidal saponins in Ophiopogonis Radix, especially ophiopogonin D, where the content was decreased from 824.87 to 172.50 mg/kg. Concurrently, ophiopogonanone C, a flavonoid in Ophiopogonis Radix, also significantly decreased from 2.66 to 1.33 mg/kg. In conclusion, the residual paclobutrazol and its negative regulation on the secondary metabolism of Ophiopogonis Radix brings potential hazards to the environment and human health. These results provide more comprehensive data that can be used for the reassessment of the use of paclobutrazol in O. japonicus and the formulation of related standards.
Collapse
Affiliation(s)
- Lixia Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jing Hong 666100, China.
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Jing Yu
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jing Hong 666100, China.
| | - Deying Tang
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jing Hong 666100, China.
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yan Mou
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jing Hong 666100, China.
| |
Collapse
|
8
|
Zhu D, Yan Q, Liu J, Wu X, Jiang Z. Can functional oligosaccharides reduce the risk of diabetes mellitus? FASEB J 2019; 33:11655-11667. [PMID: 31415188 DOI: 10.1096/fj.201802802rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes significantly affects the life quality and length of patients with diabetes, and almost half of the 4 million people who die from diabetes are under the age of 60. Because of the increasing number of patients with diabetes and the side effects of antidiabetic drugs, the search for new dietary supplementation from natural resources, especially functional oligosaccharides, has attracted much attention among scientific researchers. Functional oligosaccharides are potential antidiabetic treatments because of their nondigestible, low-calorie, and probiotic features. The antidiabetic activity of multiple functional oligosaccharides such as fructo-oligosaccharides, galacto-oligosaccharides, and xylo-oligosaccharides has been reviewed in this paper. Molecular mechanisms involved in the antidiabetic activity of oligosaccharides have been systematically discussed from multiple perspectives, including the improvement of pancreas function, α-glucosidase inhibition, the relief of insulin and leptin resistance, anti-inflammatory effects, regulation of gut microbiota and hormones, and the intervention of diabetic risk factors. In addition, the antidiabetic effects of functional oligosaccharides through the complex gut-brain-liver axis are summarized. The concepts addressed in this review have important clinical implications, although more works are needed to confirm the antidiabetic mechanisms of functional oligosaccharides, standardize safe dose levels, and clarify their metabolism in the human body.-Zhu, D., Yan, Q., Liu, J., Wu, X., Jiang, Z. Can functional oligosaccharides reduce the risk of diabetes mellitus?
Collapse
Affiliation(s)
- Di Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xia Wu
- College of Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Fang J, Wang X, Lu M, He X, Yang X. Recent advances in polysaccharides from Ophiopogon japonicus and Liriope spicata var. prolifera. Int J Biol Macromol 2018; 114:1257-1266. [PMID: 29634971 DOI: 10.1016/j.ijbiomac.2018.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
O. japonicus and L. spicata var. prolifera are distinguished as sources of highly promising yin-tonifying medicinals, namely Ophiopogonis Radix and Liriopes Radix. Liriopes Radix is generally medicinally used as a substitute for Ophiopogonis Radix in various prescriptions due to their extremely similar nature. Ophiopogonis Radix and Liriopes Radix are both very rich in bioactive polysaccharides, especially β‑fructans. Over the past twelve years, except for work on physical entrapment and chemical modification of obtained β‑fructans, the vast majority of studies are carried out to investigate the bioactivities of O. japonicus polysaccharides (OJP) and L. spicata var. prolifera polysaccharides (LSP), mainly including anti-diabetes, immunomodulation, anti-inflammation, antioxidation, anti-obesity, cardiovascular protection, etc. In addition, OJP and LSP are considered to have the potential to regulate intestinal flora. The main purpose of this review is to provide systematically reorganized information on structural characteristics and bioactivities of OJP and LSP to support their further therapeutic potentials and sanitarian functions.
Collapse
Affiliation(s)
- Jiacheng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China.
| | - Xiaoxiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Mengxin Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Xirui He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an 710069, PR China; Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Xinhua Yang
- Chongqing Jiangbei Hospital of Traditional Chinese Medicine, Chongqing 400020, PR China
| |
Collapse
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
11
|
Wang L, Lin X, Hong Y, Shen L, Feng Y. Hydrophobic mixed solvent induced PLGA-based in situ forming systems for smooth long-lasting delivery of Radix Ophiopogonis polysaccharide in rats. RSC Adv 2017. [DOI: 10.1039/c6ra27676h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To obtain a sustained in vivo release of Radix Ophiopogonis polysaccharide, hydrophobic solvent-induced in situ forming systems were investigated, including the factors affecting drug release and anti-myocardial ischemic activity of a formulation.
Collapse
Affiliation(s)
- LiNa Wang
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
| | - Xiao Lin
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - YanLong Hong
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Lan Shen
- College of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|
12
|
Zhang Y, Ren C, Lu G, Mu Z, Cui W, Gao H, Wang Y. Anti-diabetic effect of mulberry leaf polysaccharide by inhibiting pancreatic islet cell apoptosis and ameliorating insulin secretory capacity in diabetic rats. Int Immunopharmacol 2014; 22:248-57. [DOI: 10.1016/j.intimp.2014.06.039] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023]
|
13
|
Budak NH, Aykin E, Seydim AC, Greene AK, Guzel-Seydim ZB. Functional Properties of Vinegar. J Food Sci 2014; 79:R757-64. [DOI: 10.1111/1750-3841.12434] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Nilgün H. Budak
- Dept. of Food Technology; Egirdir Vocational School; Süleyman Demirel Univ.; Isparta Turkey
| | - Elif Aykin
- Dept. of Food Engineering; Engineering Faculty; Akdeniz Univ.; Antalya Turkey
| | - Atif C. Seydim
- Dept. of Food Engineering; Engineering Faculty; Süleyman Demirel Univ.; Isparta Turkey
| | - Annel K. Greene
- Dept. of Animal and Veterinary Science; Clemson Univ.; Clemson SC U.S.A
| | | |
Collapse
|
14
|
Experimental Evidence for Ion Accumulation Time Affecting Qualitative and Quantitative Analysis of Ophiopogons in Ophiopogon Extract by Hybrid Ion Trap Time-of-Flight Mass Spectrometry. Chromatographia 2013. [DOI: 10.1007/s10337-013-2483-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Antidiabetic activities of oligosaccharides of Ophiopogonis japonicus in experimental type 2 diabetic rats. Int J Biol Macromol 2012; 51:749-55. [DOI: 10.1016/j.ijbiomac.2012.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/07/2012] [Accepted: 07/08/2012] [Indexed: 11/20/2022]
|
16
|
Lee MK, Choi SR, Lee J, Choi YH, Lee JH, Park KU, Kwon SH, Seo KI. Quality Characteristics and Anti-Diabetic Effect of Yacon Vinegar. ACTA ACUST UNITED AC 2012. [DOI: 10.3746/jkfn.2012.41.1.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|