1
|
Deng Z, Wang S, Pei Y, Zhou B, Li J, Hou X, Li B, Liang H. Tuning of Molecular Interactions between Zein and Tannic Acid to Modify Sunflower Sporopollenin Exine Capsules: Enhanced Stability and Targeted Delivery of Bioactive Macromolecules. ACS APPLIED BIO MATERIALS 2021; 4:2686-2695. [PMID: 35014307 DOI: 10.1021/acsabm.0c01623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are multiple obstacles for the storage and digestion of orally administered bioactive macromolecules. This study developed a low-cost and sustained-release delivery system (sporopollenin exine capsules with zein/tannic acid modification) of proteins with excellent storage stability, and at the same time provided insights into the sustained-release mechanism through exploring the interaction between zein and tannic acid (TA). β-Galactosidase (β-Gal) was utilized as a model protein and loaded into sporopollenin exine capsules (SECs), which were then coated with the zein/TA system. Under the optimized zein/TA conditions, the zein/TA system showed better performance than the zein alone system in the sustained release of β-Gal, with the residual activity of about 70.26% after 24 h of simulated digestion. Evaluation of the storage stability demonstrated a β-Gal residual activity of nearly 90% for 28 days at 25 °C. Additionally, FTIR analysis demonstrated that the stability of the zein/TA system depends on both hydrogen bonding and certain covalent bonding through the Schiff-base reaction, and the sustained release is regulated by the bonding strength.
Collapse
Affiliation(s)
- Ziyu Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shishuai Wang
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan 430056, China
| | - Yaqiong Pei
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan 430056, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education; National "111" Center for Cellular Regulation and Molecular Pharmaceutics; Hubei Key Laboratory of Industrial Microbiology; School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xinyao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.,Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430068, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
2
|
Carboxymethylpachymaran-zein coated plant microcapsules-based β-galactosidase encapsulation system for long-term effective delivery. Food Res Int 2020; 128:108867. [DOI: 10.1016/j.foodres.2019.108867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
|
3
|
Deng Z, Pei Y, Wang S, Zhou B, Li J, Hou X, Li J, Li B, Liang H. Carboxymethylpachymaran entrapped plant-based hollow microcapsules for delivery and stabilization of β-galactosidase. Food Funct 2019; 10:4782-4791. [PMID: 31313784 DOI: 10.1039/c9fo00649d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
β-Galactosidase (β-Gal) as a dietary supplement can alleviate symptoms of lactose intolerance. However, β-Gal is deactivated due to the highly acidic conditions and proteases in the digestive tract. In this work, β-Gal was encapsulated into L. clavatum sporopollenin exine capsules (SECs) to fabricate an oral-controlled release system and increase the stability of β-Gal in the digestive tract. The SEC extraction process was optimized. A 3-hour vacuum loading was determined as the optimal loading time. Five different initial ratios of SECs : β-Gal were optimized with the maximum enzyme retention rate reaching 79.40 ± 1.96%. Furthermore, β-Gal-loaded SECs entrapped in carboxymethylpachymaran (CMP) could control the release of β-Gal under simulated gastrointestinal conditions (SGC). The optimal enzyme retention rate reached 65.33 ± 1.46% within 24 h under SGC. Collectively, these results indicated that the entrapped SECs could be used as an effective oral delivery vehicle of β-Gal to improve its performance as a dietary supplement in the digestion of lactose.
Collapse
Affiliation(s)
- Ziyu Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | | | | | | | | | | | |
Collapse
|