1
|
Hao J, Zhu N, Song L, Hong H. Enhanced drug release through nitrendipine/hydroxypropyl methylcellulose solid dispersion via supercritical antisolvent technique. Int J Biol Macromol 2024; 281:136265. [PMID: 39366627 DOI: 10.1016/j.ijbiomac.2024.136265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The poor water solubility of nitrendipine (NT) results in low oral bioavailability, which hinders its practical application. Hydroxypropyl methylcellulose (HPMC) is a prominent drug carrier that has been applied in the biomedical field due to its significant characteristics, such as large surface area, biocompatibility and biodegradability. In this study, an efficient drug delivery system based on the preparation of NT/HPMC solid dispersion using supercritical antisolvent (SAS) technology was proposed. The effect of different operating parameters such as solvent, host guest ratio, concentration, temperature, and pressure on NT/HPMC was optimized to obtain dispersed particles with maximum solubility. The formed solid dispersion presents non-static spherical particles with a high surface area and small particle size. Importantly, in vitro drug release studies have demonstrated that the dissolution and solubility of NT in solid dispersion are significantly enhanced compared to pure drug. In vitro bioactivity experiments showed that the NT/HPMC solid dispersion has good biocompatibility and antibacterial performance. Thus, this study indicates that solid dispersion prepared using SAS technology are considered a promising drug delivery system.
Collapse
Affiliation(s)
- Jianxia Hao
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, Hohhot 010051, China; Key Laboratory of CO(2) Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot 010051, China
| | - Ning Zhu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, Hohhot 010051, China; Key Laboratory of CO(2) Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot 010051, China
| | - Lijun Song
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, Hohhot 010051, China; Key Laboratory of CO(2) Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot 010051, China.
| | - Hailong Hong
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, Hohhot 010051, China; Key Laboratory of CO(2) Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot 010051, China.
| |
Collapse
|
2
|
Ali S, Saokaew P, Aman A, Todsaporn D, Sanachai K, Krusong K, Hannongbua S, Wolschann P, Mahalapbutr P, Rungrotmongkol T. Enhancing solubility and stability of piperine using β-cyclodextrin derivatives: computational and experimental investigations. J Biomol Struct Dyn 2024:1-14. [PMID: 38260962 DOI: 10.1080/07391102.2024.2305696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/20/2023] [Indexed: 01/24/2024]
Abstract
Piperine (PP), a natural alkaloid found in black pepper, possesses significant bioactivities. However, its use in pharmaceutical applications is hindered by low water solubility and susceptibility to UV light degradation. To overcome these challenges, we investigated the potential of β-cyclodextrin (βCD) and its derivatives with dimethyl (DMβCD), hydroxy-propyl (HPβCD) and sulfobutyl-ether (SBEβCD) substitutions to enhance the solubility and stability of PP. This study employed computational and experimental approaches to examine the complexation between PP and βCDs. The results revealed the formation of two types of inclusion complexes: the P-form and M-form involving the insertion of piperidine moiety and the methylene-di-oxy-phenyl moiety, respectively. These complexes primarily rely on van der Waals interactions. Among the three derivatives, the PP/SBEβCD complex exhibited the highest stability followed by HPβCD, as attributed to maximum atom contacts and minimal solvent accessibility. Solubility studies confirmed the formation of inclusion complexes in a 1:1 ratio. Notably, the stability constant of the inclusion complex was approximately two-fold higher with SBEβCD and HPβCD compared to βCD. The DSC thermograms provided confirmation of the formation of the inclusion complex between the host and guest. These findings highlight the potential of βCD derivatives to effectively encapsulate PP, improving its solubility and presenting new opportunities for its pharmaceutical applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saba Ali
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phattharapawn Saokaew
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Aamir Aman
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Duangjai Todsaporn
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Kumar P, Bhardwaj VK, Purohit R. Highly robust quantum mechanics and umbrella sampling studies on inclusion complexes of curcumin and β-cyclodextrin. Carbohydr Polym 2024; 323:121432. [PMID: 37940299 DOI: 10.1016/j.carbpol.2023.121432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 11/10/2023]
Abstract
The poor aqueous solubility of curcumin (CUR) obstructs its wide utilization in nutraceuticals, cosmetics, and pharmaceutical companies. This study is dedicated to investigate the stability of CUR inside the hydrophobic pocket of β-cyclodextrin (β-CD), hydroxypropyl-β-CD (HP-β-CD), and 2,6-Di-O-methyl-β-CD (DM-β-CD). Initially, molecular mechanics (MM) calculations and subsequently quantum mechanical (QM) calculations were performed on inclusion complexes to strengthen the MM results. We performed microsecond timescale MD simulations to observe the structural dynamics of CUR inside the cavity of CDs. We elucidated the most stable binding orientations of CUR inside the cavity of CDs based on binding free energy obtained from the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and umbrella sampling simulations. Furthermore, the two-layered ONIOM (B3LYP/6-311+G(2d,p):PM7) method with CPCM implicit water model was used to derive the complete energetics and thermodynamics of inclusion complexes at 1:1 stoichiometry. Each inclusion reaction was exothermic and spontaneous. The chemical reactivity and kinetic stability of inclusion complexes were described by HOMO-LUMO molecular orbital energies. In conclusion, our studies revealed that HP-β-CD had the highest binding affinity for CUR with the most negative complexation energy (-6520.69 kJ/mol) and Gibb's free energy change (-6448.20 kJ/mol). The atomic-level investigation of noncovalent interactions between CUR and the hydroxypropyl groups in HP-β-CD/CUR complex may be helpful to drive new derivatives of HP-β-CD with better host capacity. The computational strategy adopted here might serve as a benchmark for increasing the solubility of numerous clinically significant molecules.
Collapse
Affiliation(s)
- Pramod Kumar
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
4
|
Tiwari S, Gidwani B, Vyas A. Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Curr Mol Med 2024; 24:876-888. [PMID: 37497706 DOI: 10.2174/1566524023666230727094635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation.
Collapse
Affiliation(s)
- Sakshi Tiwari
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India
| | - Bina Gidwani
- Columbia Institute of Pharmacy, Raipur, C.G., India
| | - Amber Vyas
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India
| |
Collapse
|
5
|
Santos AM, Júnior JA, Cézar SV, Araújo AA, Júnior LJ, Aragón DM, Serafini MR. Cyclodextrin inclusion complexes improving antibacterial drug profiles: an update systematic review. Future Microbiol 2023; 18:1363-1379. [PMID: 37910070 DOI: 10.2217/fmb-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023] Open
Abstract
Aim: The study aimed to review experimental models using cyclodextrins to improve antibacterial drugs' physicochemical characteristics and biological activities. Methods: The following terms and their combinations were used: cyclodextrins and antibacterial agents in title or abstract, and the total study search was conducted over a period up to October 2022. The review was carried out using PubMed, Scopus and Embase databases. A total of 1580 studies were identified, of which 27 articles were selected for discussion in this review. Results: The biological results revealed that the antibacterial effect of the inclusion complexes was extensively improved. Cyclodextrins can enhance the therapeutic effects of antibiotics already existing on the market, natural products and synthetic molecules. Conclusion: Overall, CDs as drug-delivery vehicles have been shown to improve antibiotics solubility, stability, and bioavailability, leading to enhanced antibacterial activity.
Collapse
Affiliation(s)
- Anamaria M Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - José Acn Júnior
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe,São Cristóvão, 49060-100, Sergipe, Brazil
| | - Silvia Vs Cézar
- Department of Pharmacy,Federal University of Sergipe, São Cristóvão, 49060-100, Sergipe, Brazil
| | - Adriano As Araújo
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe,São Cristóvão, 49060-100, Sergipe, Brazil
- Department of Pharmacy,Federal University of Sergipe, São Cristóvão, 49060-100, Sergipe, Brazil
| | - Lucindo Jq Júnior
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe,São Cristóvão, 49060-100, Sergipe, Brazil
| | - Diana M Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Mairim R Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe,São Cristóvão, 49060-100, Sergipe, Brazil
- Department of Pharmacy,Federal University of Sergipe, São Cristóvão, 49060-100, Sergipe, Brazil
| |
Collapse
|
6
|
Aman A, Ali S, Mahalapbutr P, Krusong K, Wolschann P, Rungrotmongkol T. Enhancing solubility and stability of sorafenib through cyclodextrin-based inclusion complexation: in silico and in vitro studies. RSC Adv 2023; 13:27244-27254. [PMID: 37701271 PMCID: PMC10494890 DOI: 10.1039/d3ra03867j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Sorafenib (SOR) is an oral multikinase inhibitor that effectively hampers the growth and spread of cancer cells by targeting angiogenesis and proliferation. However, SOR tablets (Nexavar) have limited oral bioavailability, ranging from 38% to 49%, due to their low water solubility. To address this issue, cyclodextrins (CDs), widely used to enhance the solubility and stability of lipophilic drugs by encapsulating them within their molecular structure, were considered in this study. We focused on β-cyclodextrin (βCD) and its derivatives, including hydroxypropyl-β-cyclodextrin (HPβCD), dimethyl-β-cyclodextrin (DMβCD), sulfobutylether-β-cyclodextrin (SBEβCD), and compared them with γ-cyclodextrin (γCD) for generating inclusion complexes with SOR. The 200 ns molecular dynamics simulations revealed that SOR could form inclusion complexes with all CDs in two possible orientations: pyridine group insertion (P-form) and chlorobenzotrifluoride group insertion (C-form), primarily driven by van der Waals interactions. Among the four βCD derivatives studied, SOR exhibited the highest number of atom contacts with SBEβCD and demonstrated the lowest solvent accessibility within the hydrophobic cavity of SBEβCD. These findings correlated with the highest binding affinity of SOR/SBEβCD complex determined by SIE, MM/GBSA, and MM/PBSA methods. Experimental results further supported our computational predictions, in which SBEβCD exhibited a stability constant of 940 M-1 at 25 °C, surpassing βCD's stability constant of 210 M-1. Taken together, our results suggest that the modified CDs, particularly SBEβCD, hold promising potential as an efficient molecular encapsulating agent for SOR, offering improved solubility and stability for this lipophilic drug.
Collapse
Affiliation(s)
- Aamir Aman
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
| | - Saba Ali
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna 1090 Vienna Austria
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
7
|
Munisamy M, Rathinam B, Shanmugasundaram E, Ganesan V, Narayanan V, Balakrishnan SB, Kaliyamoorthy S, Thambusamy S. β-Cyclodextrin-Encapsulated Rhodamine Derivatives Core-Shell Microspheres-Based Fluorescent Sensor for Au 3+ and Template for Generating Microplates of Gold. MICROMACHINES 2023; 14:1443. [PMID: 37512754 PMCID: PMC10384120 DOI: 10.3390/mi14071443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
We have developed β-cyclodextrin-encapsulated rhodamine derivative core-shell microspheres (β-CD@RH) to improve their aqueous solubility and biocompatibility. The β-CD@RH core-shell microspheres exhibited bright and stable fluorescence with Au3+ ion in aqueous media. The development of triangular and hexagonal gold microplates within an aqueous solution by a simple, one-step, and green chemistry strategy is followed and prepared. Fluorescent imaging of Au3+ in living cells is also successfully demonstrated.
Collapse
Affiliation(s)
- Maniyazagan Munisamy
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630003, India
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | | | - Vigneshkumar Ganesan
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630003, India
| | - Vimalasruthi Narayanan
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630003, India
| | | | - Selvam Kaliyamoorthy
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
| | - Stalin Thambusamy
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630003, India
| |
Collapse
|
8
|
Sahu KM, Patra S, Swain SK. Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review. Int J Biol Macromol 2023; 240:124338. [PMID: 37030461 DOI: 10.1016/j.ijbiomac.2023.124338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Among different form of cyclodextrin (CD), β-CD has been taken a special attraction in pharmaceutical science due to lowest aqueous solubility and adequate cavity size. When β-CD forms inclusion complex with drugs then biopolymers such as polysaccharides in combination plays a vital role as a vehicle for safe release of drugs. It is noticed that, β-CD assisted polysaccharide-based composite achieves better drug release rate through host-guest mechanism. Present review is a critical analysis of this host-guest mechanism for release of drugs from polysaccharide supported β-CD inclusion complex. Various important polysaccharides such as cellulose, alginate, chitosan, dextran, etc. in relevant to drug delivery are logically compared in present review by their association with β-CD. Efficacy of mechanism of drug delivery by different polysaccharides with β-CD is analytically examined in schematic form. Drug release capacity at different pH conditions, mode of drug release, along with characterization techniques adopted by individual polysaccharide-based CD complexes are comparatively established in tabular form. This review may explore better visibility for researchers those are working in the area of controlled release of drugs by vehicle consist of β-CD associated polysaccharide composite through host-guest mechanism.
Collapse
Affiliation(s)
- Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
9
|
Robla S, Calviño RV, Ambrus R, Csaba N. A ready-to-use dry powder formulation based on protamine nanocarriers for pulmonary drug delivery. Eur J Pharm Sci 2023; 185:106442. [PMID: 37019308 DOI: 10.1016/j.ejps.2023.106442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
The use of oral antibiotic therapy for the treatment of respiratory diseases such as tuberculosis has promoted the appearance of side effects as well as resistance to these treatments. The low solubility, high metabolism, and degradation of drugs such as rifabutin, have led to the use of combined and prolonged therapies, which difficult patient compliance. In this work, we develop inhalable formulations from biomaterials such as protamine to improve the therapeutic effect. Rifabutin-loaded protamine nanocapsules (NCs) were prepared by solvent displacement method and were physico-chemically characterized and evaluated for their dissolution, permeability, stability, cytotoxicity, hemocompatibility, internalization, and aerodynamic characteristics after a spray-drying procedure. Protamine NCs presented a size of around 200 nm, positive surface charge, and drug association up to 54%. They were stable as suspension under storage, as well as in biological media and as a dry powder after lyophilization in the presence of mannitol. Nanocapsules showed a good safety profile and cellular uptake with no tolerogenic effect on macrophages and showed good compatibility with red blood cells. Moreover, the aerodynamic evaluation showed a fine particle fraction deposition up to 30% and a mass median aerodynamic diameter of about 5 µm, suitable for the pulmonary delivery of therapeutics.
Collapse
|
10
|
Preparation, characterization and antioxidant activity of inclusion complex loaded with puerarin and corn peptide. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Tachikawa R, Saito H, Moteki H, Kimura M, Kitagishi H, Arce F, See GL, Tanikawa T, Inoue Y. Preparation, Characterization, and In Vitro Evaluation of Inclusion Complexes Formed between S-Allylcysteine and Cyclodextrins. ACS OMEGA 2022; 7:31233-31245. [PMID: 36092555 PMCID: PMC9453967 DOI: 10.1021/acsomega.2c03489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
The present study prepared inclusion complexes of S-allylcysteine (SAC) and cyclodextrin (α, β, γ) by the freeze-drying (FD) method and verified the inclusion behavior of the solid dispersion. Also, the study investigated the effect of SAC/CD complex formation on liver tumor cells. Isothermal titration calorimetry (ITC) measurements confirmed the exothermic titration curve for SAC/αCD, suggesting a molar ratio of SAC/αCD = 1/1, but no exothermic/endothermic reaction was obtained for the SAC/βCD and SAC/γCD system. Powder X-ray diffraction (PXRD) results showed that the characteristic diffraction peaks of SAC and CDs disappeared in FD (SAC/αCD) and FD (SAC/γCD), indicated by a halo pattern. On the other hand, diffraction peaks originating from SAC and βCDs were observed in FD (SAC/βCD). Near-infrared (NIR) absorption spectroscopy results showed that CH and OH groups derived from SAC and OH groups derived from αCD and γCD cavity were shifted, suggesting complex formation due to intermolecular interactions occurring in SAC/αCD and SAC/γCD. Stability test results showed that the stability was maintained with FD (SAC/αCD) over FD (SAC/βCD) and FD (SAC/γCD). In 1H-1H of NOESY NMR measurement, FD (SAC/αCD) was confirmed to have a cross peak at the CH group of the alkene of SAC and the proton (H-3, -5, -6) in the αCD cavity. In FD (SAC/γCD), a cross peak was confirmed at the alkyl group on the carbonyl group side of SAC and the proton (H-3) in the cavity of γCD. From the above, it was suggested that the inclusion mode of SAC is different on FD (SAC/CDs). The results of the hepatocyte proliferation inhibition test using HepG2 cells showed that FD (SAC/βCD) inhibited cell proliferation. On the other hand, FD (SAC/αCD) and FD (SAC/γCD) did not show a significant decrease in the number of viable cells. These results suggest that the difference in the inclusion mode may contribute to the stability and cell proliferation inhibition.
Collapse
Affiliation(s)
- Rino Tachikawa
- Laboratory
of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and
Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| | - Hiroki Saito
- Laboratory
of Clinical Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| | - Hajime Moteki
- Laboratory
of Clinical Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| | - Mitsutoshi Kimura
- Laboratory
of Clinical Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| | - Hiroaki Kitagishi
- Department
of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 6100321, Japan
| | - Florencio Arce
- Pharmaceutical
Research and Drug Development Laboratories, Department of Pharmacy,
School of Health Care Professions, University
of San Carlos, Cebu City 6000, The Philippines
| | - Gerard Lee See
- Pharmaceutical
Research and Drug Development Laboratories, Department of Pharmacy,
School of Health Care Professions, University
of San Carlos, Cebu City 6000, The Philippines
| | - Takashi Tanikawa
- Laboratory
of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and
Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| | - Yutaka Inoue
- Laboratory
of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and
Pharmaceutical Sciences, Josai University, Sakado, Saitama 3500295, Japan
| |
Collapse
|
12
|
Gao S, Feng W, Sun H, Zong L, Li X, Zhao L, Ye F, Fu Y. Fabrication and Characterization of Antifungal Hydroxypropyl-β-Cyclodextrin/Pyrimethanil Inclusion Compound Nanofibers Based on Electrospinning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7911-7920. [PMID: 35748509 DOI: 10.1021/acs.jafc.2c01866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pyrimethanil (PMT) is an anilinopyrimidine bactericide with poor water solubility, which limits its applications. To improve the physical and chemical properties of PMT, hydroxypropyl-β-cyclodextrin/pyrimethanil inclusion compound nanofibers (HPβCD/PMT-IC-NFs) were fabricated via electrospinning. A variety of analytical techniques were used to confirm the formation of the inclusion compound. Scanning electron microscopy image displayed that HPβCD/PMT-IC-NF was homogeneous without particles. Thermogravimetric analysis indicated that the formation of the inclusion compound improved the thermostability of PMT. In addition, the phase solubility test illustrated that the inclusion compound formed by PMT and HPβCD had a stronger water solubility. The antifungal effect test exhibited that HPβCD/PMT-IC-NF had better antifungal properties. The release experiment confirmed that HPβCD/PMT-IC-NF had a sustained-release effect, and the release curve conformed to the first-order kinetic model equation. In short, the fabrication HPβCD/PMT-IC-NF inhibited improved solubility and thermostability of PMT, thus promoting the development of pesticide dosage form to water-based and low-pollution direction.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Weiwei Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Han Sun
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lei Zong
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Silver nanoparticle decorated γ-cyclodextrin with 1,5-dihydroxy naphthalene inclusion complex; as a sensitive fluorescence probe for dual metal ion sensing employing spectrum techniques. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Tablet Formulations of Polymeric Electrospun Fibers for the Controlled Release of Drugs with pH-Dependent Solubility. Polymers (Basel) 2022; 14:polym14102127. [PMID: 35632009 PMCID: PMC9142934 DOI: 10.3390/polym14102127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/01/2022] Open
Abstract
A challenge in the pharmaceutical sector is the development of controlled release dosage forms for oral administration of poorly soluble drugs, in particular, drugs characterized by pH-dependent solubility through the gastrointestinal tract, which itself shows wide variability in terms of environmental pHs. The best approach is to increase the dissolution rate of the drugs at the different pHs and only then modify its release behavior from the pharmaceutical form. This work aims to demonstrate the ability of properly designed polymeric nanofibers in enhancing the release rate of model drugs with different pH-dependent solubility in the different physiological pHs of the gastrointestinal tract. Polymeric nanofibers loaded with meloxicam and carvedilol were prepared using the electrospinning technique and were then included in properly designed tablet formulations to obtain fast or sustained release dosage forms. The nanofibers and the tablets were characterized for their morphological, physico-chemical and dissolution properties. The tablets are able to deliver the dose according to the expected release behavior, and zero-order, first-order, Higuchi, Korsmeyer–Peppas and Hixon–Crowell kinetics models were used to analyze the prevailing release mechanism of the tablets. This study shows that the electrospun fibers can be advantageously included in oral dosage forms to improve their release performances.
Collapse
|
15
|
Chen S, Li Z, Gu Z, Ban X, Hong Y, Cheng L, Li C. Immobilization of β-cyclodextrin glycosyltransferase on gelatin enhances β-cyclodextrin production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Molecular encapsulation of emodin with various β-cyclodextrin derivatives: A computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Yadav M, Sarolia J, Vyas B, Lalan M, Mangrulkar S, Shah P. Amalgamation of Solid Dispersion and Melt Adsorption Technique: Improved In Vitro and In Vivo Performance of Ticagrelor Tablets. AAPS PharmSciTech 2021; 22:257. [PMID: 34676463 DOI: 10.1208/s12249-021-02138-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Ticagrelor (TG) suffers from low peroral bioabsorption (36%) due to P-gp efflux and poor solubility (10 µg/mL). TG solid dispersion adsorbates (TG-SDAs) were formulated using an amalgamation of solid dispersion and melt adsorption techniques which were simple, economic, scalable, and solvent-free. FTIR indicated no incompatibility between drug and excipients. DSC, XRD, and SEM suggested a reduction in TG crystallinity. Q30min from TG-SUSP and TG-conventional tablets was only 2.30% and 6.59% respectively whereas TG-SDA-based tablets exhibited a significantly higher drug release of 86.47%. Caco-2 permeability studies showed 3.83-fold higher permeability of TG from TG-SDAs. TG-SDA-based tablets exhibited relative bioavailability of 748.53% and 153.43% compared to TG-SUSP and TG-conventional tablets respectively in rats. TG-SDA-based tablets were devoid of any cytotoxicity as indicated by MTT assay and exhibited better antiplatelet activity in rats. Enhanced oral bioavailability of TG-SDAs can be attributed to inhibition of P-gp efflux by PEG 4000, increased wettability, and reduced crystallinity of drug leading to improved drug solubility and dissolution. Improved bioabsorption results in a reduction of dose, cost of therapy as well as dose-related side effects. Thus, SDAs can be considered a promising and scalable approach for the improvement of dissolution rate and solubility of TG. TG-SDAs can be translated to an effective and safe dosage form, whereby its rapid onset of action promotes the prevention of heart attack, stroke, and related ill events in individuals with the acute coronary syndrome. However, scale-up, validation, and clinical-studies are necessary for confirmation of the proof-of-concept.
Collapse
|
18
|
Garcinia cambogia Assisted Synthesis of ZnO Nanoparticles Coupled with Chitosan for Antibacterial, Antibiofilm, Cytotoxic, Anticancer and Ecotoxicity Assessment. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02032-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Sid D, Baitiche M, Elbahri Z, Djerboua F, Boutahala M, Bouaziz Z, Le Borgne M. Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: in silico modelling, formulation, characterisation, and in vitro studies. J Enzyme Inhib Med Chem 2021; 36:605-617. [PMID: 33557644 PMCID: PMC8759728 DOI: 10.1080/14756366.2020.1869225] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to prepare and characterise inclusion complexes of a low water-soluble drug, mefenamic acid (MA), with β-cyclodextrin (β-CD). First, the phase solubility diagram of MA in β-CD was drawn from 0 to 21 × 10−3 M of β-CD concentration. A job’s plot experiment was used to determine the stoichiometry of the MA:β-CD complex (2:1). The stability of this complex was confirmed by molecular modelling simulation. Three methods, namely solvent co-evaporation (CE), kneading (KN), and physical mixture (PM), were used to prepare the (2:1) MA:β-CD complexes. All complexes were fully characterised. The drug dissolution tests were established in simulated liquid gastric and the MA water solubility at pH 1.2 from complexes was significantly improved. The mechanism of MA released from the β-CD complexes was illustrated through a mathematical treatment. Finally, two in vitro experiments confirmed the interest to use a (2:1) MA:β-CD complex.
Collapse
Affiliation(s)
- Dounia Sid
- Département de Génie des Procédés, Faculté de Technologie, Laboratoire de Préparation, Modification et Applications des Matériaux Polymériques Multiphasiques, Université Ferhat Abbas Sétif-1, Sétif, Algérie
| | - Milad Baitiche
- Département de Génie des Procédés, Faculté de Technologie, Laboratoire de Préparation, Modification et Applications des Matériaux Polymériques Multiphasiques, Université Ferhat Abbas Sétif-1, Sétif, Algérie
| | - Zineb Elbahri
- Faculty of Exact Sciences, Laboratory of Materials and Catalysis, Djillali Liabès University of Sidi Bel Abbès, Sidi Bel Abbès, Algeria
| | - Ferhat Djerboua
- Département de Génie des Procédés, Faculté de Technologie, Laboratoire de Préparation, Modification et Applications des Matériaux Polymériques Multiphasiques, Université Ferhat Abbas Sétif-1, Sétif, Algérie
| | - Mokhtar Boutahala
- Département de Génie des Procédés, Faculté de Technologie, Laboratoire de Génie des Procédés Chimiques, Université Ferhat Abbas Sétif-1, Sétif, Algérie
| | - Zouhair Bouaziz
- EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Small Molecules for Biological Targets Team, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| |
Collapse
|
20
|
Electrospinning preparation and spectral characterizations of the inclusion complex of ferulic acid and γ-cyclodextrin with encapsulation into polyvinyl alcohol electrospun nanofibers. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Wang Z, Zou W, Liu L, Wang M, Li F, Shen W. Characterization and bacteriostatic effects of β-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning. Food Chem 2020; 338:127980. [PMID: 32927201 DOI: 10.1016/j.foodchem.2020.127980] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022]
Abstract
Quercetin has various biological activities, but its poor water solubility and stability limit its applications. In this study, β-cyclodextrin was used as the host and quercetin was encapsulated in its cavity to prepare an inclusion compound. Then, a nanofilm was formed using electrospinning. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric differential scanning calorimetry (TG-DSC) were used to characterize the properties of the inclusion compound nanofilms. SEM images showed that the nanofilm prepared by optimizing the electrospinning process parameters had a good nanofiber structure. XRD, FTIR and TG/DSC characterization of the nanofilm showed that quercetin was encapsulated in the cavity of β-cyclodextrin and was present in the nanofilm. The quercetin was slowly released from the nanofilm and still had good bacteriostatic effects on Staphylococcus aureus and Escherichia coli, indicating that the process of embedding and electrospinning did not affect the antibacterial activity of quercetin.
Collapse
Affiliation(s)
- Zhan Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, Hubei, PR China
| | - Wei Zou
- Jiangxi Vocational Technical College of Industry & Trade, Nanchang 330038, Jiangxi, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States.
| | - Min Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China
| | - Fang Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, Hubei, PR China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, Hubei, PR China.
| |
Collapse
|
22
|
|
23
|
Pircalabioru GG, Chifiriuc MC. Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedside. Future Microbiol 2020; 15:679-698. [PMID: 32495694 DOI: 10.2217/fmb-2019-0251] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biofilms are highly tolerant to antimicrobial agents and adverse environmental conditions being important reservoirs for chronic and hard-to-treat infections. Nanomaterials exhibit microbiostatic/microbicidal/antipathogenic properties and can be also used for the delivery of antibiofilm agents. However, few of the many promising leads offered by nanotechnology reach clinical studies and eventually, become available to clinicians. The aim of this paper was to review the progress and challenges in the development of nanotechnology-based antibiofilm drug-delivery systems. The main identified challenges are: most papers report only in vitro studies of the activity of different nanoformulations; lack of standardization in the methodological approaches; insufficient collaboration between material science specialists and clinicians; paucity of in vivo studies to test efficiency and safety.
Collapse
Affiliation(s)
- Gratiela G Pircalabioru
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| |
Collapse
|
24
|
Morina D, Sessevmez M, Sinani G, Mülazımoğlu L, Cevher E. Oral tablet formulations containing cyclodextrin complexes of poorly water soluble cefdinir to enhance its bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Mohandoss S, Atchudan R, Edison TNJI, Mishra K, Tamargo RJI, Palanisamy S, Yelithao K, You S, Napoleon AA, Lee YR. Enhancement of solubility, antibiofilm, and antioxidant activity of uridine by inclusion in β-cyclodextrin derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Balakrishnan SB, Thambusamy S. Preparation of silver nanoparticles and riboflavin embedded electrospun polymer nanofibrous scaffolds for in vivo wound dressing application. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Arumugam SP, Balakrishnan SB, Ganesan V, Munisamy M, Kuppu SV, Narayanan V, Baskaralingam V, Jeyachandran S, Thambusamy S. In-vitro dissolution and microbial inhibition studies on anticancer drug etoposide with β-cyclodextrin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:96-105. [DOI: 10.1016/j.msec.2019.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 01/28/2023]
|
28
|
Das S, Subuddhi U. Controlled delivery of ibuprofen from poly(vinyl alcohol)-poly(ethylene glycol) interpenetrating polymeric network hydrogels. J Pharm Anal 2019; 9:108-116. [PMID: 31011467 PMCID: PMC6460300 DOI: 10.1016/j.jpha.2018.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 11/21/2022] Open
Abstract
Hydrogels composed of poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG) were synthesized using glutaraldehyde as crosslinker and investigated for controlled delivery of the common anti-inflammatory drug, ibuprofen (IBF). To regulate the drug delivery, solid inclusion complexes (ICs) of IBF in β-cyclodextrin (β-CD) were prepared and added to the hydrogels. The ICs were prepared by the microwave irradiation method, which is more environmentally benign. The formation of IC was confirmed by various analytical techniques and the synthesized hydrogels were also characterized. Controlled release of drug was achieved from the hydrogels containing the ICs in comparison to the rapid release from hydrogels containing free IBF. The preliminary kinetic analysis emphasized the crucial role of β-CD in the drug release process that influences the polymer relaxation, thereby leading to prolonged release. The cytotoxicity assay validated the hydrogels as non-toxic in nature and hence can be utilized for controlled delivery of IBF.
Collapse
Affiliation(s)
- Subhraseema Das
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| |
Collapse
|
29
|
Das S, Maharana J, Mohanty S, Subuddhi U. Spectroscopic and computational insights into theophylline/β-cyclodextrin complexation: inclusion accomplished by diverse methods. J Microencapsul 2019; 35:667-679. [PMID: 30669907 DOI: 10.1080/02652048.2019.1572239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Current scenario in asthmatic prevalence worldwide calls for a facile, cost-effective, and energy efficient methodology to formulate the potent bronchodilator, theophylline (THP), into an effective dosage forms. Since the uses of THP are severely impeded by its poor aqueous solubility and low bioavailability, solid inclusion complexes (ICs) of THP in β-cyclodextrin (β-CD) were prepared to overcome the limitations. The ICs were developed by conventional methods and also by microwave irradiation method, which is environmentally more benign and requires lesser reaction time. The complexation phenomenon was effectual by the co-precipitation, freeze-drying, and microwave methods as affirmed from various spectroscopic analyses. 1H NMR and molecular docking studies illustrated the total inclusion of THP into β-CD cavity. Better efficacy of the microwaved product was witnessed in terms of drug content, dissolution, and anti-biofilm activities. Thus microwave irradiation can be utilised as a naive and economical methodology to design β-CD-THP dosage formulations.
Collapse
Affiliation(s)
- Subhraseema Das
- a Department of Chemistry , National Institute of Technology Rourkela , Rourkela , India
| | - Jitendra Maharana
- b Department of Agricultural Biotechnology, Distributed Information Centre , Assam Agricultural University , Jorhat , India
| | - Subhrajit Mohanty
- a Department of Chemistry , National Institute of Technology Rourkela , Rourkela , India
| | - Usharani Subuddhi
- a Department of Chemistry , National Institute of Technology Rourkela , Rourkela , India
| |
Collapse
|
30
|
Gürten B, Yenigül E, Sezer AD, Malta S. Complexation and enhancement of temozolomide solubility with cyclodextrins. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000217513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Sonaimuthu M, Balakrishnan SB, Kuppu SV, Veerakanellore GB, Thambusamy S. Spectral and proton transfer behavior of 1,4-dihydroxylanthraquinone in aqueous and confined media; molecular modelling strategy. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Shanmuga priya A, Balakrishnan SB, Veerakanellore GB, Stalin T. In-vitro dissolution rate and molecular docking studies of cabergoline drug with β-cyclodextrin. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Dos Santos Ramos MA, Da Silva PB, Spósito L, De Toledo LG, Bonifácio BV, Rodero CF, Dos Santos KC, Chorilli M, Bauab TM. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine 2018; 13:1179-1213. [PMID: 29520143 PMCID: PMC5834171 DOI: 10.2147/ijn.s146195] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.
Collapse
Affiliation(s)
- Matheus Aparecido Dos Santos Ramos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Patrícia Bento Da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Drugs and Medicines. Araraquara, SP, Brazil
| | - Larissa Spósito
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Luciani Gaspar De Toledo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Bruna Vidal Bonifácio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil
| | - Camila Fernanda Rodero
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Drugs and Medicines. Araraquara, SP, Brazil
| | - Karen Cristina Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Drugs and Medicines. Araraquara, SP, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Drugs and Medicines. Araraquara, SP, Brazil
| | - Taís Maria Bauab
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, Department of Biological Sciences, Araraquara, SP, Brazil
| |
Collapse
|
34
|
Ceborska M, Zimnicka M, Kowalska AA, Dąbrowa K, Repeć B. Structural diversity in the host-guest complexes of the antifolate pemetrexed with native cyclodextrins: gas phase, solution and solid state studies. Beilstein J Org Chem 2017; 13:2252-2263. [PMID: 29114329 PMCID: PMC5669224 DOI: 10.3762/bjoc.13.222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
The complexation of the antifolate pemetrexed (PTX) with native cyclodextrins was studied. This process, along with the findings gathered for the structurally related folic acid was treated as a model for exploiting host–guest interactions of this class of guest molecules in the gas phase, in solution and in the solid state. Mass spectrometry was employed for the investigation of the architecture and relative gas-phase stabilities of these supramolecular complexes. The mode of complexation was further tracked by 1D and 2D NMR proving the formation of the exclusion-type complex with α-CD and pseudorotaxane inclusion-type complexes with β-, and γ-CDs. UV–vis titrations at pH 7.4 gave association constants for the obtained complexes. The stability of the complexes increases in the series: α-CD/PTX < γ-CD/PTX << β-CD/PTX. The association of PTX with a monomer cyclodextrin equivalent – methyl α-D-glucopyranoside – was investigated for a deeper understanding of the type of host–guest interactions. Solid state studies of PTX/CDs were performed using FTIR–ATR and Raman spectroscopy techniques.
Collapse
Affiliation(s)
- Magdalena Ceborska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Magdalena Zimnicka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aneta Aniela Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kajetan Dąbrowa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Barbara Repeć
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
35
|
Tang P, Tang B, Wang Q, Xu K, Xiong X, Li H. Effect of hydroxypropyl-β-cyclodextrin on the bounding of salazosulfapyridine to human serum albumin. Int J Biol Macromol 2016; 92:105-115. [DOI: 10.1016/j.ijbiomac.2016.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
|
36
|
Thaya R, Malaikozhundan B, Vijayakumar S, Sivakamavalli J, Jeyasekar R, Shanthi S, Vaseeharan B, Ramasamy P, Sonawane A. Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microb Pathog 2016; 100:124-132. [DOI: 10.1016/j.micpath.2016.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
|
37
|
de Medeiros AS, Zoppi A, Barbosa EG, Oliveira JI, Fernandes-Pedrosa MF, Longhi MR, da Silva-Júnior AA. Supramolecular aggregates of oligosaccharides with co-solvents in ternary systems for the solubilizing approach of triamcinolone. Carbohydr Polym 2016; 151:1040-1051. [DOI: 10.1016/j.carbpol.2016.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
38
|
Alves AD, Cavaco JS, Guerreiro F, Lourenço JP, Rosa da Costa AM, Grenha A. Inhalable Antitubercular Therapy Mediated by Locust Bean Gum Microparticles. Molecules 2016; 21:molecules21060702. [PMID: 27240337 PMCID: PMC6273308 DOI: 10.3390/molecules21060702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis remains a major global health problem and alternative therapeutic approaches are needed. Considering the high prevalence of lung tuberculosis (80% of cases), the pulmonary delivery of antitubercular drugs in a carrier system capable of reaching the alveoli, being recognised and phagocytosed by alveolar macrophages (mycobacterium hosts), would be a significant improvement to current oral drug regimens. Locust bean gum (LBG) is a polysaccharide composed of galactose and mannose residues, which may favour specific recognition by macrophages and potentiate phagocytosis. LBG microparticles produced by spray-drying are reported herein for the first time, incorporating either isoniazid or rifabutin, first-line antitubercular drugs (association efficiencies >82%). Microparticles have adequate theoretical properties for deep lung delivery (aerodynamic diameters between 1.15 and 1.67 μm). The cytotoxic evaluation in lung epithelial cells (A549 cells) and macrophages (THP-1 cells) revealed a toxic effect from rifabutin-loaded microparticles at the highest concentrations, but we may consider that these were very high comparing with in vivo conditions. LBG microparticles further evidenced strong ability to be captured by macrophages (percentage of phagocytosis >94%). Overall, the obtained data indicated the potential of the proposed system for tuberculosis therapy.
Collapse
Affiliation(s)
- Ana D Alves
- Center for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
| | - Joana S Cavaco
- Center for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
| | - Filipa Guerreiro
- Center for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
- Centre for Marine Sciences (CCMar), University of Algarve, 8005-139 Faro, Portugal.
| | - João P Lourenço
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
- Algarve Chemistry Research Center (CIQA) and Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
| | - Ana M Rosa da Costa
- Algarve Chemistry Research Center (CIQA) and Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
| | - Ana Grenha
- Center for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
- Centre for Marine Sciences (CCMar), University of Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
39
|
Anshakova AV, Vinogradov EV, Sedush NG, Kurtikyan TS, Zhokhov SS, Polshakov VI, Ermolenko YV, Konyukhov VY, Maksimenko OO, Gelperin SE. Intermolecular interactions in rifabutin–2-hydroxypropyl-β-cyclodextrin–water solutions, according to solubility data. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2016. [DOI: 10.1134/s0036024416050058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Annonaceous acetogenins (ACGs) nanosuspensions based on a self-assembly stabilizer and the significantly improved anti-tumor efficacy. Colloids Surf B Biointerfaces 2016; 145:319-327. [PMID: 27209384 DOI: 10.1016/j.colsurfb.2016.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
Annonaceous acetogenins (ACGs) have exhibited antitumor activity against various cancers. However, these substances' poor solubility has limited clinical applications. In this study, hydroxypropyl-beta-cyclodextrin (HP-β-CD) and soybean lecithin (SPC) were self-assembled into an amphiphilic complex. ACGs nanosuspensions (ACGs-NSps) were prepared with a mean particle size of 144.4nm, a zeta potential of -22.9mV and a high drug payload of 46.17% using this complex as stabilizer. The ACGs-NSps demonstrated sustained release in vitro and good stability in plasma as well as simulated gastrointestinal fluid, and met the demand of both intravenous injection and oral administration. The ACGs-NSps demonstrated significantly increased cytotoxicity against Hela and HepG2 cancer cell lines compared to ACGs in solution (in vitro cytotoxicity assay). An in vivo study with H22-tumor bearing mice demonstrated that nanosuspensions significantly improved ACGs' antitumor activity. When orally administered, ACGs-NSps achieved a similar tumor inhibition rate at 1/10th the dose of ACGs in an oil solution (47.94% vs. 49.74%, p>0.05). Improved therapeutic efficacy was further achieved when the ACGs-NSps were intravenously injected into mice (70.31%). With the help of nanosuspension technology, ACGs may be an effective antitumor drug for clinic use.
Collapse
|
41
|
Imperiale JC, Sosnik AD. Cyclodextrin complexes for treatment improvement in infectious diseases. Nanomedicine (Lond) 2016; 10:1621-41. [PMID: 26008196 DOI: 10.2217/nnm.15.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases are a heterogeneous group of maladies that represent a serious burden to healthcare systems worldwide. Most of the available antimicrobial drugs display poor biopharmaceutical properties that compromise their effectiveness. Cyclodextrins (CDs) are cyclic oligosaccharides of glucopyranose formed by a variable number of repeating units that combine a hydrophilic surface with a hydrophobic cavity. The production of drug/CD complexes has become one of the most extensively investigated technology approaches to improve the stability, solubility, dissolution rate and bioavailability of drugs. The present work overviews the applications of CDs for the formulation of anti-infective agents along with the most relevant administration routes. Finally, an update on the complexes with CDs available on the market to treat infectious diseases is presented.
Collapse
|
42
|
Das S, Subuddhi U. Controlled and targeted delivery of diclofenac sodium to the intestine from pH-Responsive chitosan/poly(vinyl alcohol) interpenetrating polymeric network hydrogels. POLYMER SCIENCE SERIES A 2016. [DOI: 10.1134/s0965545x16020048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Novel pimozide-β-cyclodextrin-polyvinylpyrrolidone inclusion complexes for Tourette syndrome treatment. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Das S, Subuddhi U. Studies on the complexation of diclofenac sodium with β–cyclodextrin: Influence of method of preparation. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Duarte A, Martinho A, Luís Â, Figueiras A, Oleastro M, Domingues FC, Silva F. Resveratrol encapsulation with methyl-β-cyclodextrin for antibacterial and antioxidant delivery applications. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Examination of the physicochemical properties of caffeic acid complexed with γ-cyclodextrin. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0564-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Sivakamavalli J, Nirosha R, Vaseeharan B. Purification and Characterization of a Cysteine-Rich 14-kDa Antibacterial Peptide from the Granular Hemocytes of Mangrove Crab Episesarma tetragonum and Its Antibiofilm Activity. Appl Biochem Biotechnol 2015; 176:1084-101. [DOI: 10.1007/s12010-015-1631-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
|
48
|
Anshakova AV, Yermolenko YV, Konyukhov VY, Polshakov VI, Maksimenko OO, Gelperina SE. Intermolecular interactions in rifabutin—2-hydroxypropyl-β-cyclodextrin—water solutions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024415050052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Inoue Y, Sekiya N, Yamamoto M, Iohara D, Hirayama F, Uekama K. Formation of the Ternary Inclusion Complex of Limaprost with α- and β-Cyclodextrins in Aqueous Solution. Chem Pharm Bull (Tokyo) 2015; 63:318-25. [DOI: 10.1248/cpb.c14-00733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuo Inoue
- CMC Regulatory and Analytical R&D, Ono Pharmaceutical Co., Ltd
| | | | | | | | | | | |
Collapse
|
50
|
Mohandoss S, Sivakamavalli J, Vaseeharan B, Stalin T. Fluorometric sensing of Pb2+and CrO42−ions through host–guest inclusion for human lung cancer live cell imaging. RSC Adv 2015. [DOI: 10.1039/c5ra17910f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of an inclusion complex between 1,5-dihydroxyanthraquinone (1,5-DHAQ;1) and β-cyclodextrin (β-CD) in aqueous media has been studied by UV-visible and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- Department of Industrial Chemistry
- School of Chemical Sciences
- Alagappa University
- Karaikudi-630 003
- India
| | - Jeyachandran Sivakamavalli
- Bioinformatics & Biosignal Transduction
- College of Bioscience
- National Cheng Kung University
- Taiwan
- Department of Animal Health and Management
| | | | - Thambusamy Stalin
- Department of Industrial Chemistry
- School of Chemical Sciences
- Alagappa University
- Karaikudi-630 003
- India
| |
Collapse
|