1
|
Patil P, Rahangdale M, Sawant K. Atorvastatin loaded glycerosomal patch as an effective transdermal drug delivery: optimization and evaluation. Ther Deliv 2024:1-20. [PMID: 39431521 DOI: 10.1080/20415990.2024.2408218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: The study explores glycerosomes as effective vesicular systems for transdermal delivery of atorvastatin (ATO) to overcome drawbacks related to its oral administration.Methodology: The objectives of this study were to formulate, by thin-film hydration method, optimize using definitive screening design and evaluate ATO-loaded glycerosomes (ATOG) which were then incorporated into patch followed by the evaluation of glycerosomes containing different concentration of glycerol.Results & discussion: Vesicle size, Polydispersity index (PDI), zeta potential, entrapment efficiency and loading capacity of spherical ATOG (0-30%w/w) showed 137.3-192d.nm, 0.292-0.403, -3.81 to-6.76mV, 80.03-92.77% and 5.80-6.40%, respectively. In-vitro release study showed sustained release, increased skin permeability and better cell viability than pure drug. ATOG patches showed greater skin permeability than pure drug and ATO-liposomal patches.Conclusion: The study concludes that ATOGs are promising for effective transdermal delivery.
Collapse
Affiliation(s)
- Pravin Patil
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Mrunal Rahangdale
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Krutika Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| |
Collapse
|
2
|
Patil P, Vankani A, Sawant K. Design, optimization and characterization of atorvastatin loaded chitosan-based polyelectrolyte complex nanoparticles based transdermal patch. Int J Biol Macromol 2024; 274:133219. [PMID: 38897514 DOI: 10.1016/j.ijbiomac.2024.133219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
AIM Atorvastatin (ATO) loaded chitosan-based polyelectrolyte complex nanoparticles (PECN) incorporated transdermal patch was developed to enhance its skin permeability and bioavailability. METHODOLOGY The ATO loaded PECN were prepared by ionic gelation method and optimized by Box-Behnken design. The optimized batches were evaluated for physicochemical characteristics, in vitro, ex vivo, cell line and stability studies. The optimized ATO-PECN were incorporated into transdermal patches by solvent evaporation method and evaluated for their physicochemical properties, ex vivo skin permeation, in vivo pharmacokinetics and stability study. RESULTS The optimized batch of ATO-PECN had average size of 219.2 ± 5.98 nm with 82.68 ± 2.63 % entrapment and 25.41 ± 3.29 mV zeta potential. ATO-PECN showed sustained drug release and higher skin permeation. The cell line study showed that ATO-PECN increased the cell permeability of ATO as compared to ATO suspension. ATO-PECN loaded transdermal patch showed higher skin permeation. The in vivo pharmacokinetic study revealed that the ATO-PECN transdermal patch showed significant (p < 0.05) increase in pharmacokinetic parameters as compared to marketed oral tablet, confirming enhancement in bioavailability of ATO. CONCLUSIONS The results of the present work concluded that the ATO-PECN loaded transdermal patch is a promising novel drug delivery system for poorly bioavailable drugs.
Collapse
Affiliation(s)
- Pravin Patil
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| | - Ankit Vankani
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| | - Krutika Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India.
| |
Collapse
|
3
|
Fouad SA, Khatab ST, Teaima MH, El-Nabarawi MA, Abdelmonem R. Nanosized ethosomal dispersions for enhanced transdermal delivery of nebivolol using intradermal/transfollicular sustained reservoir: in vitro evaluation, confocal laser scanning microscopy, and in vivo pharmacokinetic studies. Pharm Dev Technol 2024; 29:40-51. [PMID: 38078863 DOI: 10.1080/10837450.2023.2294278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Nebivolol (NBV), a BCS class II anti-hypertensive drug, suffers from limited solubility and oral bioavailability. Nanosized ethosomes were adopted as an approach to solubilize and deliver NBV transdermally, as a substitute to oral route. Ethosomal dispersions were prepared employing thin film hydration method. Formulation variables were adjusted to obtain entrapment efficiency; EE > 50%, particle size; PS < 100 nm, zeta potential; ZP > ±25 mV, and polydispersity index; PDI < 0.5. The optimized ethosomal dispersion (OED) showed accepted EE 86.46 ± 0.15%, PS 73.50 ± 0.08 nm, ZP 33.75 ± 1.20 mV, and PDI 0.31 ± 0.07. It also showed enhanced cumulative amount of NBV permeated at 8 h (Q8) 71.26 ± 1.46% and 24 h (Q24) 98.18 ± 1.02%. TEM images denoted spherical vesicles with light colored lipid bi-layer and dark core. Confocal laser scanning microscopy showed deeply localized intradermal and transfollicular permeation of the fluorolabelled OED (FL-OED). Nanosized FL-OED (<100 nm) can permeate through hair follicles creating a drug reservoir for enhanced systemic absorption. OED formulated into transdermal patch (OED-TP1) exhibited accepted physicochemical properties including; thickness 0.14 ± 0.01 mm, folding endurance 151 ± 0.07, surface pH 5.80 ± 0.15, drug content 98.64 ± 2.01%, mucoadhesion 8534 ± 0.03, Q8 87.61 ± 0.11%, and Q24 99.22 ± 0.24%. In vivo pharmacokinetic studies showed significantly enhanced bioavailability of OED-TP1 by 7.9 folds compared to oral Nevilob® tablets (p = 0.0002). It could be concluded that OED-TP1 can be a promising lipid nanocarrier TDDS for NBV and an efficacious alternative route of administration for hypertensive patients suffering from dysphagia.
Collapse
Affiliation(s)
- Shahinaze A Fouad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Sara T Khatab
- The General Authority for Health Insurance, Giza, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo, Egypt
| |
Collapse
|
4
|
Jaiswal R, Wadetwar R. Nanostructured lipid carriers mediated transdermal delivery of trandolapril as an impeccable therapeutic approach against hypertension: Development, characterization and in vivo evaluation. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
5
|
Raghavendra Naveen N, Anitha P, Gowthami B, Goudanavar P, Fattepur S. QbD assisted formulation design and optimization of thiol pectin based Polyethyleneglycol and Montmorillonite(PEG/MMT) nanocomposite films of neomycin sulphate for wound healing. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: a critical analysis. Drug Deliv Transl Res 2022; 12:2649-2666. [PMID: 35499715 DOI: 10.1007/s13346-022-01152-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Natural biodegradable polymers generally include polysaccharides (starch, alginate, chitin/chitosan, hyaluronic acid derivatives, etc.) and proteins (collagen, gelatin, fibrin, etc.). In transdermal drug delivery systems (TDDS), these polymers play a vital role in controlling the device's drug release. It is possible that natural polymers can be used for TDDS to attain predetermined drug delivery rates due to their physicochemical properties. These polymers can be employed to market products and scale production because they are readily available and inexpensive. As a result of these polymers, new pharmaceutical delivery systems can be developed that is both regulated and targeted. The focus of this article is the application of a biodegradable polymeric platform based on natural polymers for TDDS. Due to their biocompatibility and biodegradability, natural biodegradable polymers are frequently used in biomedical applications. Additionally, these natural biodegradable polymers are being studied for their characteristics and behaviors.
Collapse
|
7
|
Hassan I, Gani A, Ahmad M, Banday J. Extraction of polysaccharide from Althea rosea and its physicochemical, anti-diabetic, anti-hypertensive and antioxidant properties. Sci Rep 2022; 12:17116. [PMID: 36224240 PMCID: PMC9556774 DOI: 10.1038/s41598-022-20134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/08/2022] [Indexed: 01/04/2023] Open
Abstract
The valorization of new polymer sources from underutilized plants as structuring, encapsulating, and texturizing agents for food and nutraceutical applications is gaining attention. This provides an opportunity where inexpensive plant-sourced biopolymers can play an impactful role, on both ecological and economic aspects performing equivalently effectual yet cost-effective substitutes to synthetic polymers. With this aim, we explored the use of mucilage from Althea rosea and reveal its physicochemical, in vitro antidiabetic and antihypertensive activity. Besides, structural, micrometric, crystallization, and anti-microbial properties was also seen. We determined the probable structure of the extracted mucilage by FTIR which confirmed the residues of saccharides as galactose and uronic acid with α and β configurations. It consists of 78.26% carbohydrates, 3.51% ashes, and 3.72% proteins. Here, we show that the mucilage offered protection to DNA against the oxidative damage caused by (-OH) radicals and the morphology of the mucilage particles displayed a fibrillary material settled in a net-like, tangled structure. Our results demonstrate that the reconstituted mucilage powder exhibited good water holding capacity (2.89 g water/g mucilage), solubility (27.33%), and oil holding capacity (1.79 g oil/g mucilage). Moreover, high emulsifying property (95.83%) and foaming capacity (17.04%) was noted. Our results indicate that A.rosea mucilage can potentially serve as economical and eco-friendly hydrocolloid substitute for the food and nutraceutical industry owing to its functional, hypo-lipidemic, anti-hyperglycemic, antioxidant, and anti-bacterial properties.
Collapse
Affiliation(s)
- Ifra Hassan
- grid.412997.00000 0001 2294 5433Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir 190006 India
| | - Adil Gani
- grid.412997.00000 0001 2294 5433Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir 190006 India
| | - Mudasir Ahmad
- grid.412997.00000 0001 2294 5433Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir 190006 India
| | - Javid Banday
- National Instituteof Technology, Hazratbal, Srinagar, Jammu & Kashmir 190006 India
| |
Collapse
|
8
|
Ahmad A, Ahmad M, Minhas MU, Sarfraz M, Sohail M, Khan KU, Tanveer S, Ijaz S. Synthesis and Evaluation of Finasteride-Loaded HPMC-Based Nanogels for Transdermal Delivery: A Versatile Nanoscopic Platform. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2426960. [PMID: 35909483 PMCID: PMC9325624 DOI: 10.1155/2022/2426960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Herein, we report nanogels comprising diverse feed ratio of polymer hydroxypropyl methylcellulose (HPMC), monomer acrylic acid (AA), and cross-linker methylene bisacrylamide (MBA) fabricated for transdermal delivery of finasteride (FIN). Free radical solution polymerization method with subsequent condensation was employed for the synthesis using ammonium per sulfate (APS) and sodium hydrogen sulfite (SHS) as initiators. Carbopol-940 gel (CG) was formulated as assisting platform to deliver FIN nanogels transdermally. Developed formulations were evaluated by several in vitro, ex vivo, and in vivo parameters such as particle size and charge distribution analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffractogram (XRD), rheological testing, in vitro swelling and drug release, and ex vivo skin permeation, irritation, and toxicity assessment. The results endorsed the nanogel formation (117.3 ± 29.113 nm), and the impact of synthesizing method was signified by high yield of nanogels (≈91%). Efficient response for in vitro swelling and FIN release was revealed at pH 5.5 and 7.4. Skin irritation and toxicity assessment ensured the biocompatibility of prepared nanocomposites. On the basis of the results obtained, it can be concluded that the developed nanogels were stable with excellent drug permeation profile across skin.
Collapse
Affiliation(s)
- Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Mahmood Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road Sargodha City, Punjab, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy Al Ain University, Al Ain Campus, Al Ain, UAE
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060 KPK, Pakistan
| | | | - Sana Tanveer
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
9
|
Effects of Taro (Colocasia esculenta) Water-Soluble Non-Starch Polysaccharide, Lactobacillus acidophilus, Bifidobacterium breve, Bifidobacterium infantis, and Their Synbiotic Mixtures on Pro-Inflammatory Cytokine Interleukin-8 Production. Nutrients 2022; 14:nu14102128. [PMID: 35631269 PMCID: PMC9147535 DOI: 10.3390/nu14102128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
In the past decades, the regulation of pro-inflammatory cytokine production, including interleukin-8 (IL-8), has been the goal of many targeted therapeutic interventions for Necrotising enterocolitis (NEC), a gastrointestinal disease commonly associated with a very low birth weight in preterm infants. In this study, the ability to regulate the production of IL-8 of the water-soluble non-starch polysaccharide (WS-NSP) from taro corm (Tc-WS-NSP) extracted using a conventional (CE) or improved conventional (ICE) extraction method, of the probiotics Lactobacillus acidophilus, Bifidobacterium breve, and Bifidobacterium infantis, and their synbiotic mixtures were evaluated. The TNF-α stimulated HT-29 cells were incubated with undigested or digested Tc-WS-NSPs (CE or ICE), probiotics, and their synbiotic mixtures with Klebsiella oxytoca, an NEC-positive-associated pathogen. Overall, the synbiotic mixtures of digested Tc-WS-NSP-ICE and high bacterial concentrations of L. acidophilus (5.57 × 109), B. breve (2.7 × 108 CFU/mL), and B. infantis (1.53 × 108) demonstrated higher (42.0%, 45.0%, 43.1%, respectively) ability to downregulate IL-8 compared to the sole use of Tc-WS-NSPs (24.5%), or the probiotics L. acidophilus (32.3%), B. breve (37.8%), or B. infantis (33.1%). The ability demonstrated by the Tc-WS-NSPs, the probiotics, and their synbiotics mixtures to downregulate IL-8 production in the presence of an NEC-positive-associated pathogen may be useful in the development of novel prophylactic agents against NEC.
Collapse
|
10
|
Pradeep HK, Patel DH, Onkarappa HS, Pratiksha CC, Prasanna GD. Role of nanocellulose in industrial and pharmaceutical sectors - A review. Int J Biol Macromol 2022; 207:1038-1047. [PMID: 35364203 DOI: 10.1016/j.ijbiomac.2022.03.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
Lignocellulosic biomass from agricultural residues serves as the critical component to replace synthetic polymeric materials in the coming future. Agricultural residues can be used to obtain cellulose by delignification followed by bleaching. Further, cellulose is converted into nanocellulose by various methods. Nanocellulose is used in multiple pharmaceutical applications as a polymer in hydrogels, transdermal drug delivery systems, aerogels, wound healing dressing materials, as superdisintegrants in fast dissolving tablets, emulgel, microparticles, gels, foams, thickening agents, stabilizers, cosmetics, medical implants, tissue engineering, liposomes, food and composites, etc. This review provides detailed knowledge about the nature of nanocellulose regarding its high surface area, high polymerization, loading, and binding capacity of hydrophilic and hydrophobic active pharmaceutical ingredients and significance of various applications of nanocellulose. Biocompatible and non-toxic, it makes it an ideal material for applications in the biomedical field. A significant advantage is a biocompatibility, which is non-toxic for many biomedical applications.
Collapse
Affiliation(s)
- H K Pradeep
- Department of Pharmaceutics, Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat, India.
| | - Dipti H Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat, India
| | - H S Onkarappa
- Department of Chemistry, GM Institute of Technology, Davanagere, Karnataka, India
| | - C C Pratiksha
- Department of Pharmaceutics, GM Institute of Pharmaceutical Sciences and Research, Davanagere, Karnataka, India
| | - G D Prasanna
- Department of Physics, Davangere University, Davanagere, Karnataka, India
| |
Collapse
|
11
|
A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers (Basel) 2022; 14:polym14061163. [PMID: 35335495 PMCID: PMC8949670 DOI: 10.3390/polym14061163] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Taro (Colocasia esculenta) is an important source of carbohydrates as an energy source and is used as a staple food throughout the world. It is rich in mucilage and starch granules, making it a highly digestible ingredient. Mucilage can act as a matrix and a thickening, binding, emulsifying, or foaming agent in food, pharmaceutical, and several other fields of research. Moreover, mucilage can be extracted from several living organisms and has excellent functional properties, such as water-holding, oil-holding, and swelling capacities. Therefore, these remarkable functional properties make mucilage a promising ingredient with possible industrial applications. Furthermore, several extraction techniques, including enzyme-assisted, ultrasonication, microwave-assisted, aquatic, and solvent extraction methods, are used to obtain quantitative amounts of taro mucilage. Coldwater extraction with ethanol precipitation can be considered an effective and cost-effective technique to obtain high-quality mucilage with suitable industrial applications, whereas the ultrasonication method is more expensive but results in a higher amount of mucilage than other emerging techniques. Mucilage can also be used as a fat replacer or reducer, dye remover, coating agent, and antioxidating agent. Therefore, in this review, we detail the key properties related to the extraction techniques, chemical composition, and characterization of taro mucilage, along with its suitable applications and health benefits.
Collapse
|
12
|
Samanta AP, Ali MS, Orasugh JT, Ghosh SK, Chattopadhyay D. Crosslinked nanocollagen-cellulose nanofibrils reinforced electrospun polyvinyl alcohol/methylcellulose/polyethylene glycol bionanocomposites: study of material properties and sustained release of ketorolac tromethamine. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Abuelella KE, Abd-Allah H, Soliman SM, Abdel-Mottaleb MMA. Polysaccharide Based Biomaterials for Dermal Applications. FUNCTIONAL BIOMATERIALS 2022:105-127. [DOI: 10.1007/978-981-16-7152-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Anwar M, Mros S, McConnell M, Bekhit AEDA. Effects of extraction methods on the digestibility, cytotoxicity, prebiotic potential and immunomodulatory activity of taro (Colocasia esculenta) water-soluble non-starch polysaccharide. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Agrawal MB, Patel MM. Design, development and in vivo evaluation of clozapine loaded adhesive diffusion controlled system for the treatment of schizophrenia. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Singha LR, Das MK. Effect of Mesua ferrea Linn. seed kernel oil on percutaneous absorption of Diltiazem hydrochloride through pig ear epidermis: A mechanistic study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Utilization of ultrasound and pulse electric field for the extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta) peel. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Joshi R, Garud N. Development, optimization and characterization of flurbiprofen matrix transdermal drug delivery system using Box–Behnken statistical design. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00199-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Present investigation for research was to develop matrix-type transdermal drug delivery system of flurbiprofen (FBP) with the various ratio of matrix polymers (hydrophilic and hydrophobic), the concentration of plasticizer and natural penetration enhancer by Box–Behnken statistical design to investigate the combined outcome of selected independent variables for effective management of rheumatoid arthritis.
The influence of a binary mixture of polymers, plasticizer and penetration enhancer on physicochemical considerations including thickness, tensile strength, percent elongation, weight variation, percent moisture content, percent moisture uptake, water vapour transmission rate, folding endurance, drug content, in vitro drug dissolution study and then ex vivo drug permeation study was evaluated.
Results
The study demonstrated that the tensile strength of films improved by matrix polymer ratio and to a slighter gradation in the rise of plasticizer and natural penetration enhancer. Ex vivo drug permeation study was accompanied via excised porcine skin as a permeation barrier in Franz diffusion cell. Ex vivo drug permeation study indicated that matrix polymer ratio (HPMC K15M:ERL100) at 3:1 and natural penetration enhancer (d-limonene) at highest concentration 7.5% w/w containing formulation FBPT7 delivered maximum flux and supplementary improved the permeation of drug. The result of the skin irritation test revealed that the developed formulation is free from any type of skin irritation effects like erythema and oedema.
Conclusion
Based on the findings of this research, it can be established that a well-controlled release and very effective skin penetration of the drug was accomplished by the film FBPT7 in the existence of permeation enhancers for prolonged periods.
Collapse
|
19
|
Kumar R, Sinha V, Dahiya L, Sarwal A. Transdermal delivery of duloxetine-sulfobutylether-β-cyclodextrin complex for effective management of depression. Int J Pharm 2021; 594:120129. [DOI: 10.1016/j.ijpharm.2020.120129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/15/2023]
|
20
|
Jayaramudu T, Varaprasad K, Pyarasani RD, Reddy KK, Akbari-Fakhrabadi A, Carrasco-Sánchez V, Amalraj J. Hydroxypropyl methylcellulose-copper nanoparticle and its nanocomposite hydrogel films for antibacterial application. Carbohydr Polym 2021; 254:117302. [DOI: 10.1016/j.carbpol.2020.117302] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023]
|
21
|
Calle J, Gasparre N, Benavent-Gil Y, Rosell CM. Aroids as underexplored tubers with potential health benefits. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:319-359. [PMID: 34311903 DOI: 10.1016/bs.afnr.2021.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Colocasia esculenta (L.) Schott and Xanthosoma sagittifolium (L.) Schott are the most popular tubers among the Araceas family. Their chemical composition related to their nutritional benefits could make these rhizomes a valid option for the nutritional and technological improvement of food products. This chapter provide a clarification about the correct nomenclature of both tubers giving an insight around the principle components and their health effects. The scientific literature review has primarily highlighted several in vitro and animal studies where the consumption (leaves and whole tuber) of Colocasia esculenta (L.) Schott and Xanthosoma sagittifolium (L.) Schott was related with certain antihyperglycemic, antihypertensive, hypoglycemic and prebiotic effects. Owing to their functional properties, different component from these rhizomes, specially starch, mucilage and powders are being used by the food industry. Their ability to behave as thickener and gelling agent has allowed their incorporation in baked food, food paste and beverages. This chapter suggests the development of more research around these rhizomes since they could potentially play, with other crops, an important role in the future sustainable strategies to feed the planet.
Collapse
Affiliation(s)
- Jehannara Calle
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain; Food research Institute for the Food Industry (IIIA), La Habana, Cuba
| | - Nicola Gasparre
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Yaiza Benavent-Gil
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
22
|
Abdel Monem A, Fayek N, Mouneir S, Abdelwahab S, Eltanbouly N. Colocasia esculenta L. schott corm mucilage: A selective COX-2 inhibitor for treatment of irritable bowel syndrome. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_488_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Anwar M, Birch EJ, Ding Y, Bekhit AED. Water-soluble non-starch polysaccharides of root and tuber crops: extraction, characteristics, properties, bioactivities, and applications. Crit Rev Food Sci Nutr 2020; 62:2309-2341. [DOI: 10.1080/10408398.2020.1852388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mylene Anwar
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Department of Food Science, Central Mindanao University, Musuan, Maramag, Bukidnon, Philippines
| | - Edward John Birch
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, PR China
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, PR China
| | | |
Collapse
|
24
|
Agrawal MB, Patel MM. Optimization and in vivo evaluation of quetiapine-loaded transdermal drug delivery system for the treatment of schizophrenia. Drug Dev Ind Pharm 2020; 46:1819-1831. [PMID: 32896163 DOI: 10.1080/03639045.2020.1821051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The prevailing studies were carried out to formulate and optimize the quetiapine transdermal matrix patch by the usage of Box-Behnken design for ameliorated bioavailability when contrasted with conventional drug delivery. The Box-Behnken design with three-level and three-factor was utilized to explore the intermingle impact of critical attributes on tensile strength, in vitro drug release, and flux. Optimized formulation was characterized for Fourier transform infrared, differential scanning calorimetry, in vivo pharmacokinetics, and skin irritation along with stability studies. The inference of the finalized batch (F14) depicted the flux of 51.81 ± 0.32 µg/h/cm2, TS of 6.46 ± 0.56 MPa, and the % drug release after 20 h of 82.98 ± 1.48% with no remarkable variation even after 6 months stability studies. Correlation between predicted and the observed values of the dependent variables was very closer. Optimized quetiapine transdermal patch did not exert any symptoms of skin irritation. The bioavailability of quetiapine was enhanced almost 4.59 times after topical delivery when contrasted with the conventional dosage form. The outputs of the research work divulged that the developed matrix patch of quetiapine for transdermal drug delivery can be a propitious opportunity that affords effective treatment of schizophrenia. Novelty statement The oral route is not suitable for the drugs having extensive first-pass metabolism which leads to reduced bioavailability. For the parenteral route, invasiveness causes the patient noncompliance while sterility contributes to the cost factor. Moreover, the treatment of schizophrenic patients is a challenging task for caregivers and doctors. Hence, the transdermal patch of quetiapine was developed to bypass the biotransformation of drugs and thereby to enhance the bioavailability as well as to provide sustained drug delivery which ultimately reduces the dosage frequency.
Collapse
Affiliation(s)
- Milan B Agrawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
25
|
Souza de Araujo GR, de Oliveira Porfírio L, Santos Silva LA, Gomes Santana D, Ferreira Barbosa P, Pereira Dos Santos C, Narain N, Vitorino Sarmento VH, de Souza Nunes R, Ting E, Moreira Lira AA. In situ microemulsion-gel obtained from bioadhesive hydroxypropyl methylcellulose films for transdermal administration of zidovudine. Colloids Surf B Biointerfaces 2020; 188:110739. [PMID: 31901623 DOI: 10.1016/j.colsurfb.2019.110739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
This study aims to develop in situ microemulsion-gel (ME-Gel) obtained from hydroxypropyl methylcellulose (HPMC) films for transdermal administration of Zidovudine (AZT). Firstly, HPMC films containing propylene glycol (PG) and eucalyptus oil (EO) were obtained and characterized. Later, a pseudo-ternary phase diagram composed of water, EO, tween 80 and PG was obtained and one microemulsion (ME) with a similar proportion of the film components was obtained. ME was transformed in ME-Gel by the incorporation of HPMC. Finally, HPMC films were hydrated with Tween 80 solution to yield in situ ME-Gel and its effect on AZT skin permeation was compared with HPMC film hydrated with water (F5hyd). The results showed that the ME and ME-Gel presented a droplet size of 16.79 and 122.13 μm, respectively, polydispersity index (PDI) < 0.39 and pH between 5.10 and 5.40. The incorporation of HPMC resulted in viscosity about 2 times higher than the use of ME. The presence of AZT did not alter the formulation properties. The in situ ME-Gel promoted a two-fold increase in the permeated amount of AZT compared to F5hyd. The results suggest that it was possible to obtain an ME-Gel in situ from HPMC films and that its effect on transdermal permeation of AZT was significant.
Collapse
Affiliation(s)
| | | | | | | | - Paula Ferreira Barbosa
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Elizabeth Ting
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | |
Collapse
|
26
|
Dave V, Sohgaura A, Tak K, Reddy KR, Thylur RP, Ramachandraiah K, Sadhu V. Ethosomal polymeric patch containing losartan potassium for the treatment of hypertension: in-vitro and in-vivo evaluation. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab4fa4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Chauhan MK, Sharma PK. Optimization and characterization of rivastigmine nanolipid carrier loaded transdermal patches for the treatment of dementia. Chem Phys Lipids 2019; 224:104794. [DOI: 10.1016/j.chemphyslip.2019.104794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/02/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|
28
|
Evaluation of thermal degradation and melt crystallization behavior of taro mucilage and its graft copolymer with poly(lactide). SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Orasugh JT, Dutta S, Das D, Pal C, Zaman A, Das S, Dutta K, Banerjee R, Ghosh SK, Chattopadhyay D. Sustained release of ketorolac tromethamine from poloxamer 407/cellulose nanofibrils graft nanocollagen based ophthalmic formulations. Int J Biol Macromol 2019; 140:441-453. [DOI: 10.1016/j.ijbiomac.2019.08.143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
|
30
|
Patel DK, Dutta SD, Lim KT. Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv 2019; 9:19143-19162. [PMID: 35516880 PMCID: PMC9065078 DOI: 10.1039/c9ra03261d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023] Open
Abstract
Nanocellulose, derived from cellulose hydrolysis, has unique optical and mechanical properties, high surface area, and good biocompatibility. It is frequently used as a reinforcing agent to improve the native properties of materials. The presence of functional groups in its surface enables the alteration of its behavior and its use under different conditions. Nanocellulose is typically used in the form of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), or bacterial nanocellulose (BNC). CNCs and CNFs have a high aspect ratio with typical lengths of ∼100-250 nm and 0.1-2 μm, respectively; BNC is nanostructured cellulose produced by bacteria. Nanohybrid materials are a combination of organic or inorganic nanomaterials with macromolecules forming a single composite and typically exhibit superior optical, thermal, and mechanical properties to those of native polymers, owing to the greater interactions between the macromolecule matrix and the nanomaterials. Excellent biocompatibility and biodegradability make nanocellulose an ideal material for applications in biomedicine. Unlike native polymers, nanocellulose-based nanohybrids exhibit a sustained drug release ability, which can be further optimized by changing the content or chemical environment of the nanocellulose, as well as the external stimuli, such as the pH and electric fields. In this review, we describe the process of extraction of nanocellulose from different natural sources; its effects on the structural, morphological, and mechanical properties of polymers; and its various applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- The Institute of Forest Science, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
31
|
|
32
|
Isolation, characterization, and microwave assisted surface modification of Colocasia esculenta (L.) Schott mucilage by grafting polylactide. Int J Biol Macromol 2018; 119:1090-1097. [DOI: 10.1016/j.ijbiomac.2018.08.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022]
|
33
|
Taro starch (Colocasia esculenta) and citric acid modified taro starch as tablet disintegrating agents. Int J Biol Macromol 2018; 118:397-405. [DOI: 10.1016/j.ijbiomac.2018.06.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 11/23/2022]
|
34
|
Luu E, Ita KB, Morra MJ, Popova IE. The Influence of Microneedles on the Percutaneous Penetration of Selected Antihypertensive Agents: Diltiazem Hydrochloride and Perindopril Erbumine. Curr Drug Deliv 2018; 15:1449-1458. [PMID: 30058488 PMCID: PMC6340158 DOI: 10.2174/1567201815666180730125941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well documented in the scientific literature that high blood pressure can lead to cardiovascular disease. Untreated hypertension has clinical consequences such as coronary artery disease, stroke or kidney failure. Diltiazem hydrochloride (DH), a calcium-channel blocker, and perindopril erbumine (PE), an inhibitor of the angiotensin converting enzyme are used for the management of hypertension. OBJECTIVE This project will examine the effect of microneedle rollers on the transport of DH and PE across pig ear skin. The use of the transcutaneous route of administration reduces and in sometimes eliminates the trauma and pain associated with injections. Furthermore, there is increased patient compliance. The purpose of this project was to study the effect of stainless steel microneedles on the transdermal delivery of DH and PE. METHOD We utilized vertical Franz diffusion cells to study in vitro transport of DH and PE across microneedle- treated pig ear skin. Confocal laser scanning microscopy (CLSM) was used to characterize microchannel depth. Transdermal flux values were determined from the slope of the linear portion of the cumulative amount versus time curve. RESULTS There was a 113.59-fold increase in the transdermal permeation of DH following the application of microneedle roller compared to passive diffusion. CONCLUSION In the case of PE, there was an 11.99-fold increase in the drug transport across pig skin following the application of microneedle rollers in comparison with passive diffusion. Student's t-test and Mann-Whitney's rank sum test were used to determine statistically significant differences between experimental and control groups.
Collapse
Affiliation(s)
- Emmy Luu
- College of Pharmacy, Touro University California, Mare Island-Vallejo, CA, United States
| | - Kevin B Ita
- College of Pharmacy, Touro University California, Mare Island-Vallejo, CA, United States
| | - Matthew J Morra
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, ID 83844-2339, United States
| | - Inna E Popova
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, ID 83844-2339, United States
| |
Collapse
|
35
|
Mohd Zuki SA, Abd Rahman N, Abu Bakar NF. Nanocrystal cellulose as drug excipient in transdermal patch for wound healing: an overview. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2018; 334:012046. [DOI: 10.1088/1757-899x/334/1/012046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
36
|
Orasugh JT, Saha NR, Sarkar G, Rana D, Mishra R, Mondal D, Ghosh SK, Chattopadhyay D. Synthesis of methylcellulose/cellulose nano-crystals nanocomposites: Material properties and study of sustained release of ketorolac tromethamine. Carbohydr Polym 2018. [PMID: 29525153 DOI: 10.1016/j.carbpol.2018.01.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Non-toxic nanocomposites based bio-films obtained from methylcellulose (MC) can reduce environmental problems associated with synthetic polymers. A new facile route for the isolation of cellulose nano-crystals (CNC) from jute waste is successfully utilized here. The fabrication of CNC reinforced MC nanocomposites by film casting technique and the studies of the effect of CNC on the properties of the MC based nanocomposites have been reported. The synthesized nanocomposites have shown improved UV resistance, mechanical, barrier, and thermal properties. FTIR results established the physicochemical compatibility between the drug, MC and CNC in nanocomposites. In vitro permeation studies performed by using Franz diffusion cell revealed diffusion mediated sustained drug release from the devices due to the presence of interaction between MC and CNC through H-bonding, electrostatic interaction between the hydrophilic polymer/CNC chains with the drug and the formation of tortuous path. The nanocomposites can be used for edible packaging and transdermal drug delivery.
Collapse
Affiliation(s)
- Jonathan Tersur Orasugh
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, WB, India; Department of Jute and Fiber Technology, Institute of Jute Technology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, WB, India; Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700 098, WB, India.
| | - Nayan Ranjan Saha
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, WB, India.
| | - Gunjan Sarkar
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, WB, India.
| | - Dipak Rana
- Department of Chemical and Biological Engineering, Industrial Membrane Research Institute, University of Ottawa, 161 Louis Pasteur St., Ottawa, ON, K1N 6N5, Canada.
| | - Roshnara Mishra
- Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, WB, India.
| | - Dibyendu Mondal
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, WB, India.
| | - Swapan Kumar Ghosh
- Department of Jute and Fiber Technology, Institute of Jute Technology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, WB, India; Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700 098, WB, India.
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, WB, India; Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700 098, WB, India.
| |
Collapse
|
37
|
Anirudhan T, Nair AS, S.S G. The role of biopolymer matrix films derived from carboxymethyl cellulose, sodium alginate and polyvinyl alcohol on the sustained transdermal release of diltiazem. Int J Biol Macromol 2018; 107:779-789. [DOI: 10.1016/j.ijbiomac.2017.09.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 11/26/2022]
|
38
|
Dutta K, Das B, Orasugh JT, Mondal D, Adhikari A, Rana D, Banerjee R, Mishra R, Kar S, Chattopadhyay D. Bio-derived cellulose nanofibril reinforced poly(N-isopropylacrylamide)-g-guar gum nanocomposite: An avant-garde biomaterial as a transdermal membrane. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Dutta K, Das B, Mondal D, Adhikari A, Rana D, Kumar Chattopadhyay A, Banerjee R, Mishra R, Chattopadhyay D. An ex situ approach to fabricating nanosilica reinforced polyacrylamide grafted guar gum nanocomposites as an efficient biomaterial for transdermal drug delivery application. NEW J CHEM 2017. [DOI: 10.1039/c7nj01713h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel biocompatible TDDS based on nano-silica reinforced polyacrylamide grafted guar-gum nanocomposite.
Collapse
Affiliation(s)
- Koushik Dutta
- Department of Polymer Science and Technology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Beauty Das
- Department of Polymer Science and Technology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Dipankar Mondal
- Department of Polymer Science and Technology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Arpita Adhikari
- Department of Polymer Science and Technology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Dipak Rana
- Department of Chemical and Biological Engineering
- Industrial Membrane Research Institute
- University of Ottawa
- 161 Louis Pasteur St
- Ottawa
| | - Atis Kumar Chattopadhyay
- Faculty Council For PG & UG Studies in Science
- Jadavpur University, 188 Raja S. C. Mallick Road
- Kolkata
- India
| | - Rajdeb Banerjee
- Department of Physiology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Roshnara Mishra
- Department of Physiology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology
- University of Calcutta
- 92 A.P.C. Road
- Kolkata 700009
- India
| |
Collapse
|
40
|
Sarkar G, Orasugh JT, Saha NR, Roy I, Bhattacharyya A, Chattopadhyay AK, Rana D, Chattopadhyay D. Cellulose nanofibrils/chitosan based transdermal drug delivery vehicle for controlled release of ketorolac tromethamine. NEW J CHEM 2017. [DOI: 10.1039/c7nj02539d] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellulose nanofibrils (CNFs) have attracted attention as a promising material in the biomedical field because of their outstanding properties such as hydrophilicity, biocompatibility, biodegradability, and high surface area.
Collapse
Affiliation(s)
- Gunjan Sarkar
- Department of Polymer Science and Technology, University of Calcutta
- Kolkata 700009
- India
| | - Jonathan T. Orasugh
- Department of Polymer Science and Technology, University of Calcutta
- Kolkata 700009
- India
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta
- Kolkata 700098
| | - Nayan R. Saha
- Department of Polymer Science and Technology, University of Calcutta
- Kolkata 700009
- India
| | - Indranil Roy
- Department of Polymer Science and Technology, University of Calcutta
- Kolkata 700009
- India
| | - Amartya Bhattacharyya
- Department of Polymer Science and Technology, University of Calcutta
- Kolkata 700009
- India
| | - Atis K. Chattopadhyay
- Faculty Council For PG & UG Studies in Science, Jadavpur University
- Kolkata-700032
- India
| | - Dipak Rana
- Department of Chemical and Biological Engineering, Industrial Membrane Research Institute, University of Ottawa
- Ottawa
- Canada
| | | |
Collapse
|
41
|
Sarkar G, Saha NR, Roy I, Bhattacharyya A, Adhikari A, Rana D, Bhowmik M, Bose M, Mishra R, Chattopadhyay D. Cross-linked methyl cellulose/graphene oxide rate controlling membranes for in vitro and ex vivo permeation studies of diltiazem hydrochloride. RSC Adv 2016. [DOI: 10.1039/c5ra26358a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Permeability characteristics of the anti-hypertensive drug, diltiazem hydrochloride, from uncross-linked and cross-linked methylcellulose (MC)/graphene oxide (GO) rate controlling membranes (RCMs) were investigated.
Collapse
Affiliation(s)
- Gunjan Sarkar
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Nayan Ranjan Saha
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Indranil Roy
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Amartya Bhattacharyya
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Arpita Adhikari
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Dipak Rana
- Department of Chemical and Biological Engineering
- Industrial Membrane Research Institute
- University of Ottawa
- Ottawa
- Canada
| | | | - Madhura Bose
- Department of Physiology
- University of Calcutta
- Kolkata 700009
- India
| | - Roshnara Mishra
- Department of Physiology
- University of Calcutta
- Kolkata 700009
- India
| | | |
Collapse
|
42
|
Parhi R, Suresh P. Formulation optimization and characterization of transdermal film of simvastatin by response surface methodology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:331-41. [DOI: 10.1016/j.msec.2015.08.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/24/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022]
|
43
|
Saha NR, Sarkar G, Roy I, Bhattacharyya A, Rana D, Dhanarajan G, Banerjee R, Sen R, Mishra R, Chattopadhyay D. Nanocomposite films based on cellulose acetate/polyethylene glycol/modified montmorillonite as nontoxic active packaging material. RSC Adv 2016. [DOI: 10.1039/c6ra17300d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nontoxic biodegradable nanocomposite as active packaging applications.
Collapse
Affiliation(s)
- Nayan Ranjan Saha
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Gunjan Sarkar
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Indranil Roy
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Amartya Bhattacharyya
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Dipak Rana
- Department of Chemical and Biological Engineering
- Industrial Membrane Research Institute
- University of Ottawa
- Ottawa
- Canada
| | | | - Rajdeb Banerjee
- Department of Physiology
- University of Calcutta
- Kolkata 700009
- India
| | - Ramkrishna Sen
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| | - Roshnara Mishra
- Department of Physiology
- University of Calcutta
- Kolkata 700009
- India
| | | |
Collapse
|
44
|
Saha NR, Sarkar G, Roy I, Rana D, Bhattacharyya A, Adhikari A, Mukhopadhyay A, Chattopadhyay D. Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities. Carbohydr Polym 2015; 136:1218-27. [PMID: 26572465 DOI: 10.1016/j.carbpol.2015.10.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
Films based on methylcellulose (MC) and pectin (PEC) of different ratios were prepared. MC/PEC (90:10) (MP10) gave the best results in terms of mechanical properties. Sodium montmorillonite (MMT) (1, 3 and 5 wt%) was incorporated in the MP10 matrix. The resulting films were characterized by X-ray diffraction and transmission electron microscopy, and it was found that nanocomposites were intercalated in nature. Mechanical studies established that addition of 3 wt% MMT gave best results in terms of mechanical properties. However, thermo-gravimetric and dynamic mechanical analysis proved that decomposition and glass transition temperature increased with increasing MMT concentration from 1 to 5 wt%. It was also observed that moisture absorption and water vapor permeability studies gave best result in the case of 3 wt% MMT. Optical clarity of the nanocomposite films was not much affected with loading of MMT. In vitro drug release studies showed that MC/PEC/MMT based films can be used for controlled transdermal drug delivery applications.
Collapse
Affiliation(s)
- Nayan Ranjan Saha
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Gunjan Sarkar
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Indranil Roy
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Dipak Rana
- Department of Chemical and Biological Engineering, Industrial Membrane Research Institute, University of Ottawa, 161 Louis Pasteur St. , Ottawa, ON K1N 6N5, Canada
| | - Amartya Bhattacharyya
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Arpita Adhikari
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Asis Mukhopadhyay
- Department of Jute and Fiber Technology, Institute of Jute Technology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India.
| |
Collapse
|
45
|
Parhi R, Suresh P. Transdermal delivery of Diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model. J Adv Res 2015; 7:539-50. [PMID: 27222758 DOI: 10.1016/j.jare.2015.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022] Open
Abstract
The present investigation focused on the development of Diltiazem HCl (DTH) matrix film and its characterization by in-vitro, ex-vivo and in-vivo methods. Films were prepared by solvent casting method by taking different ratios of hydroxypropyl methylcellulose K4M (HPMC K4M) and Eudragit RS100. Various parameters of the films were analyzed such as mechanical property using tensile tester, interaction study by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA), in-vitro drug release through cellulose acetate membrane, ex-vivo permeation study using abdominal skin of rat employing Franz diffusion cell, and in-vivo antihypertensive activity using rabbit model. The FTIR studies confirmed the absence of interaction between DTH and selected polymers. Thermal analysis showed the shifting of endothermic peak of DTH in film, indicating the dispersion of DTH in molecular form throughout the film. Incorporation of 1,8-cineole showed highest flux (89.7 μg/cm(2)/h) of DTH compared to other penetration enhancers such as capsaicin, dimethyl sulfoxide (DMSO), and N-methyl pyrrolidone (NMP). Photomicrographs of histology study on optimized formulation (DF9) illustrated disruption of stratum corneum (SC) supporting the ex-vivo results. The in-vivo antihypertensive activity results demonstrated that formulation DF9 was effective in reducing arterial blood pressure in normotensive rabbits. SEM analysis of films kept for stability study (40 ± 2 °C/75% ± 5%RH for 3 months) revealed the formation of drug crystals which may be due to higher temperature. The findings of the study provide a better alternative dosage form of DTH for the effective treatment of hypertension with enhanced patient compliance.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Institute of Pharmacy, GITAM University, Gandhi Nagar Campus, Rushikunda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Padilam Suresh
- Institute of Pharmacy and Technology, Salipur 754202, Cuttack, Odisha, India
| |
Collapse
|