1
|
Parisi C, Laneri F, Fraix A, Sortino S. Multifunctional Molecular Hybrids Photoreleasing Nitric Oxide: Advantages, Pitfalls, and Opportunities. J Med Chem 2024; 67:16932-16950. [PMID: 39009572 DOI: 10.1021/acs.jmedchem.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The multifaceted role nitric oxide (NO) plays in human physiology and pathophysiology has opened new scenarios in biomedicine by exploiting this free radical as an unconventional therapeutic against important diseases. The difficulties in handling gaseous NO and the strict dependence of the biological effects on its doses and location have made the light-activated NO precursors, namely NO photodonors (NOPDs), very appealing by virtue of their precise spatiotemporal control of NO delivery. The covalent integration of NOPDs and additional functional components within the same molecular skeleton through suitable linkers can lead to an intriguing class of multifunctional photoactivatable molecular hybrids. In this Perspective, we provide an overview of the recent advances in these molecular constructs, emphasizing those merging NO photorelease with targeting, fluorescent reporting, and phototherapeutic functionalities. We will highlight the rational design behind synthesizing these molecular hybrids and critically describe the advantages, drawbacks, and opportunities they offer in biomedical research.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
2
|
Balogh A, Bódi-Jakus M, Karl VR, Bellák T, Széky B, Farkas J, Lamberto F, Novak D, Fehér A, Zana M, Dinnyés A. Establishment of human pluripotent stem cell-derived cortical neurosphere model to study pathomechanisms and chemical toxicity in Kleefstra syndrome. Sci Rep 2024; 14:22572. [PMID: 39343771 PMCID: PMC11439915 DOI: 10.1038/s41598-024-72791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
In the present study, we aimed to establish and characterize a mature cortical spheroid model system for Kleefstra syndrome (KS) using patient-derived iPSC. We identified key differences in the growth behavior of KS spheroids determined by reduced proliferation marked by low Ki67 and high E-cadherin expression. Conversely, in the spheroid-based neurite outgrowth assay KS outperformed the control neurite outgrowth due to higher BDNF expression. KS spheroids were highly enriched in VGLUT1/2-expressing glutamatergic and ChAT-expressing cholinergic neurons, while TH-positive catecholamine neurons were significantly underrepresented. Furthermore, high NMDAR1 expression was also detected in the KS spheroid, similarly to other patients-derived neuronal cultures, denoting high NMDAR1 expression as a general, KS-specific marker. Control and KS neuronal progenitors and neurospheres were exposed to different toxicants (paraquat, rotenone, bardoxolone, and doxorubicin), and dose-response curves were assessed after acute exposure. Differentiation stage and compound-specific differences were detected with KS neurospheres being the most sensitive to paraquat. Altogether this study describes a robust 3D model system expressing the disease-specific markers and recapitulating the characteristic pathophysiological traits. This platform is suitable for testing developing brain-adverse environmental effects interactions, drug development, and screening towards individual therapeutic strategies.
Collapse
Grants
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
- 2020-1.1.5.-GYORSÍTÓSÁV-2021-00016 Hungarian National Research, Development, and Innovation Fund
Collapse
Affiliation(s)
- Andrea Balogh
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | | | | | - Tamás Bellák
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6724, Hungary
| | - Balázs Széky
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - János Farkas
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Federica Lamberto
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, H-2100, Hungary
| | - David Novak
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Anita Fehér
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Melinda Zana
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - András Dinnyés
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary.
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, H-2100, Hungary.
| |
Collapse
|
3
|
Liu Y, Yu D, Ge X, Huang L, Pan PY, Shen H, Pettigrew RI, Chen SH, Mai J. Novel platinum therapeutics induce rapid cancer cell death through triggering intracellular ROS storm. Biomaterials 2024; 314:122835. [PMID: 39276409 DOI: 10.1016/j.biomaterials.2024.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Induction of reactive oxygen species (ROS) production in cancer cells plays a critical role for cancer treatment. However, therapeutic efficiency remains challenging due to insufficient ROS production of current ROS inducers. We designed a novel platinum (Pt)-based drug named "carrier-platin" that integrates ultrasmall Pt-based nanoparticles uniformly confined within a poly(amino acids) carrier. Carrier-platin dramatically triggered a burst of ROS in cancer cells, leading to cancer cell death as quick as 30 min. Unlike traditional Pt-based drugs which induce cell apoptosis through DNA intercalation, carrier-platin with superior ROS catalytic activities induces a unique pattern of cancer cell death that is neither apoptosis nor ferroptosis and operates independently of DNA damage. Importantly, carrier-platin demonstrates superior anti-tumor efficacy against a broad spectrum of cancers, particularly those with multidrug resistance, while maintaining minimal systemic toxicity. Our findings reveal a distinct mechanism of action of Pt in cancer cell eradication, positioning carrier-platin as a novel category of anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Yongbin Liu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| | - Dongfang Yu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Xueying Ge
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Lingyi Huang
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Roderic I Pettigrew
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA; Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Zhang T, Yin K, Niu X, Bai X, Wang Z, Ji M, Yuan B. Development of Bivalent Aptamer-DNA Carrier-Doxorubicin Conjugates for Targeted Killing of Esophageal Squamous Cell Carcinoma Cells. Int J Mol Sci 2024; 25:7959. [PMID: 39063201 PMCID: PMC11276760 DOI: 10.3390/ijms25147959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Esophageal cancer ranks the seventh in cancer incidence and the sixth in cancer death. Esophageal squamous cell carcinoma (ESCC) accounts for approximately 90% of the total cases of esophageal cancer. Chemotherapy is the most effective drug-based method for treatment of esophageal cancer. However, severe side effects of traditional chemotherapy limit its treatment efficacy. Targeted chemotherapy can deliver chemotherapeutic drugs to cancer cells and specifically kill these cells with reduced side effects. In the work, the bivalent aptamer-DNA carrier (BAD) was designed by using an ESCC cell-specific aptamer as the recognition molecule and a GC base-rich DNA sequence as the drug carrier. With doxorubicin (Dox) as chemotherapeutic drugs, the bivalent aptamer-DNA-Dox conjugate (BADD) was constructed for targeted killing of ESCC cells. Firstly, the truncated A2(35) aptamer with a retained binding ability was obtained through optimization of an intact A2(80) aptamer and was used to fuse with DNA carrier sequences for constructing the BAD through simple DNA hybridization. The results of gel electrophoresis and flow cytometry analysis showed that the BAD was successfully constructed and had a stronger binding affinity than monovalent A2(35). Then, the BAD was loaded with Dox drugs to construct the BADD through noncovalent intercalation. The results of fluorescence spectra and flow cytometry assays showed that the BADD was successfully constructed and can bind to target cells strongly. Confocal imaging further displayed that the BADD can be specifically internalized into target cells and release Dox. The results of CCK-8 assays, Calcein AM/PI staining, and wound healing assays demonstrated that the BADD can specifically kill target cells, but not control cells. Our results demonstrate that the developed BADD can specifically deliver doxorubicin to target ESCC cells and selectively kill these cells, offering a potentially effective strategy for targeted chemotherapy of ESCC.
Collapse
Affiliation(s)
- Tianlu Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Kai Yin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Xidong Niu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Xue Bai
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Zhaoting Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Mengmeng Ji
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Baoyin Yuan
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Bisht A, Avinash D, Sahu KK, Patel P, Das Gupta G, Kurmi BD. A comprehensive review on doxorubicin: mechanisms, toxicity, clinical trials, combination therapies and nanoformulations in breast cancer. Drug Deliv Transl Res 2024:10.1007/s13346-024-01648-0. [PMID: 38884850 DOI: 10.1007/s13346-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Doxorubicin is a key treatment for breast cancer, but its effectiveness often comes with significant side effects. Its actions include DNA intercalation, topoisomerase II inhibition, and reactive oxygen species generation, leading to DNA damage and cell death. However, it can also cause heart problems and low blood cell counts. Current trials aim to improve doxorubicin therapy by adjusting doses, using different administration methods, and combining it with targeted treatments or immunotherapy. Nanoformulations show promise in enhancing doxorubicin's effectiveness by improving drug delivery, reducing side effects, and overcoming drug resistance. This review summarizes recent progress and difficulties in using doxorubicin for breast cancer, highlighting its mechanisms, side effects, ongoing trials, and the potential impact of nanoformulations. Understanding these different aspects is crucial in optimizing doxorubicin's use and improving outcomes for breast cancer patients. This review examines the toxicity of doxorubicin, a drug used in breast cancer treatment, and discusses strategies to mitigate adverse effects, such as cardioprotective agents and liposomal formulations. It also discusses clinical trials evaluating doxorubicin-based regimens, the evolving landscape of combination therapies, and the potential of nanoformulations to optimize delivery and reduce systemic toxicity. The review also discusses the potential of liposomes, nanoparticles, and polymeric micelles to enhance drug accumulation within tumor tissues while sparing healthy organs.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Dubey Avinash
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Chaumuhan, Mathura, 281406, UP, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
6
|
Zhao W, Wang C, Zhu Y, Wang Q, Xu X, Shao Z, Chen M, Feng Y, Meng X. Visualized Tracking and Multidimensional Assessing of Mitochondria-Associated Pyroptosis in Cancer Cells by a Small-Molecule Fluorescent Probe. Anal Chem 2024; 96:6381-6389. [PMID: 38593059 DOI: 10.1021/acs.analchem.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Pyroptosis is closely related to the development and treatment of various cancers; thus, comprehensive studies of the correlations between pyroptosis and its inductive or inhibitive factors can provide new ideas for the intervention and diagnosis of tumors. The dysfunction of mitochondria may induce pyroptosis in cancer cells, which can be reflected by the fluctuations of the microenvironmental parameters in mitochondria as well as the changes of mitochondrial DNA level and morphology, etc. To precisely track and assess the mitochondria-associated pyroptosis process, simultaneous visualization of changes in multiphysiological parameters in mitochondria is highly desirable. In this work, we reported a nonreaction-based, multifunctional small-molecule fluorescent probe Mito-DK with the capability of crosstalk-free response to polarity and mtDNA as well as mitochondrial morphology. Accurate assessment of mitochondria-associated pyroptosis induced by palmitic acid/H2O2 was achieved through monitoring changes in mitochondrial multiple parameters with the help of Mito-DK. In particular, the pyroptosis-inducing ability of an antibiotic doxorubicin and the pyroptosis-inhibiting capacity of an anticancer agent puerarin were evaluated by Mito-DK. These results provide new perspectives for visualizing mitochondria-associated pyroptosis and offer new approaches for screening pyroptosis-related anticancer agents.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Chengyuan Wang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xianyun Xu
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Zonglong Shao
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man Chen
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiangming Meng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
7
|
Linders AN, Dias IB, López Fernández T, Tocchetti CG, Bomer N, Van der Meer P. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. NPJ AGING 2024; 10:9. [PMID: 38263284 PMCID: PMC10806194 DOI: 10.1038/s41514-024-00135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
The population of cancer survivors is rapidly increasing due to improving healthcare. However, cancer therapies often have long-term side effects. One example is cancer therapy-related cardiac dysfunction (CTRCD) caused by doxorubicin: up to 9% of the cancer patients treated with this drug develop heart failure at a later stage. In recent years, doxorubicin-induced cardiotoxicity has been associated with an accelerated aging phenotype and cellular senescence in the heart. In this review we explain the evidence of an accelerated aging phenotype in the doxorubicin-treated heart by comparing it to healthy aged hearts, and shed light on treatment strategies that are proposed in pre-clinical settings. We will discuss the accelerated aging phenotype and the impact it could have in the clinic and future research.
Collapse
Affiliation(s)
- Annet Nicole Linders
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands
| | - Itamar Braga Dias
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands
| | - Teresa López Fernández
- Division of Cardiology, Cardiac Imaging and Cardio-Oncology Unit, La Paz University Hospital, IdiPAZ Research Institute, Madrid, Spain
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Federico II University, Naples, Italy
- Centre for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
- Interdepartmental Centre of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
- Interdepartmental Hypertension Research Centre (CIRIAPA), Federico II University, Naples, Italy
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands
| | - Peter Van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands.
| |
Collapse
|
8
|
Shukla A, Kumari S, Sankar M, Nair MS. Insights into the mechanism of binding of doxorubicin and a chlorin compound with 22-mer c-Myc G quadruplex. Biochim Biophys Acta Gen Subj 2023; 1867:130482. [PMID: 37821013 DOI: 10.1016/j.bbagen.2023.130482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The interaction of small molecules with G quadruplexes is in focus due to its role in molecular recognition and therapeutic drug design. Stabilization of G-quadruplex structures in the promoter regions of oncogenes by small molecule binding has been demonstrated as a potential approach for cancer therapy. METHODS In this study, electronic spectroscopy (ultraviolet-visible, fluorescence, circular dichroism), differential scanning calorimetry, and molecular modeling were employed to explore the interactions between the chemotherapy drug doxorubicin and a chlorin compound 5,10,15,20-tetraphenyl-[2,3]-[bis(carboxy)-methano]chlorin (H2TPC(DAC)), and the c-Myc 22-mer G quadruplex DNA. RESULTS Spectroscopic studies indicated external binding of the compounds with partial stacking at the end quartets. Calorimetric studies and temperature dependent circular dichroism data displayed increased melting temperatures of G quadruplex structure on binding with the compounds. Circular dichroism spectra indicated that the G quadruplex structure is intact upon ligand binding. Both the compounds showed binding affinities of the order of 106 M-1. Fluorescence lifetime studies revealed static quenching as major mechanism for fluorescence quenching. Polymerase chain reaction stop assay hinted that binding of both ligands under study could inhibit the amplification of the DNA sequence. CONCLUSION Results show that doxorubicin and H2TPC(DAC) bind to the 22-mer c-Myc quadruplex structure with good affinity and induce stability. SIGNIFICANCE Doxorubicin and H2TPC(DAC) have demonstrated their affinity towards c-Myc G quadruplex DNA, stabilizing it and inhibiting expression and polymerization. The results can be of practical use in designing new analogs for the two compounds, which can become potent anti-cancer agents targeting the c-Myc GQ structure.
Collapse
Affiliation(s)
- Aishwarya Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Soni Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
9
|
Patricelli C, Lehmann P, Oxford JT, Pu X. Doxorubicin-induced modulation of TGF-β signaling cascade in mouse fibroblasts: insights into cardiotoxicity mechanisms. Sci Rep 2023; 13:18944. [PMID: 37919370 PMCID: PMC10622533 DOI: 10.1038/s41598-023-46216-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-β) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-β signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-β inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-β1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs, suggesting an antifibrotic activity by DOX in these fibroblasts. However, DOX only inhibited the TGF-β1 induced expression of COL1 in NIH3T3 cells but not in CFs. In addition, we observed that DOX treatment reduced the expression of BMP1 in NIH3T3 but not primary cardiac fibroblasts. No significant changes in SMAD2 protein expression and phosphorylation in either cells were observed after DOX treatment. Finally, DOX inhibited the expression of Atf4 gene and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 genes in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Conner Patricelli
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, 83725-1512, USA
| | - Parker Lehmann
- Idaho College of Osteopathic Medicine, Meridian, ID, 83642-8046, USA
| | - Julia Thom Oxford
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, 83725-1512, USA
- Biomolecular Research Center, Boise State University, Boise, ID, 83725-1511, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725-1511, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA.
| |
Collapse
|
10
|
Homami E, Goliaei B, Shariatpanahi SP, Habibi-Kelishomi Z. Alternating electric fields can improve chemotherapy treatment efficacy in blood cancer cell U937 (non-adherent cells). BMC Cancer 2023; 23:861. [PMID: 37700230 PMCID: PMC10496298 DOI: 10.1186/s12885-023-11339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Recent achievements in cancer therapy are the use of alternating electrical fields at intermediate frequencies (100-300 kHz) and low intensities (1-3 V/cm), which specifically target cell proliferation while affecting different cellular activities depending on the frequency used. METHODS In this article, we examine the effect of electric fields on spherical suspended cells and propose the combination of Daunorubicin, a chemotherapy agent widely used in the treatment of acute myeloid leukemia, with electric field exposure. U937 cells were subjected to an electric field with a frequency of 200 kHz and an intensity of 0.75 V/cm, or to a combination of Daunorubicin and electric field exposure, resulting in a significant reduction in cell proliferation. Furthermore, the application of an electric field to U937 cells increased Daunorubicin uptake. RESULTS Apoptosis and DNA damage were induced by the electric field or in conjunction with Daunorubicin. Notably, normal cells exposed to an electric field did not show significant damage, indicating a selective effect on dividing cancer cells (U937). Moreover, the electric field affects the U937 cell line either alone or in combination with Daunorubicin. This effect may be due to increased membrane permeability. CONCLUSIONS Our findings suggest that the use of electric fields at intermediate frequencies and low intensities, either alone or in combination with Daunorubicin, has potential as a selective anti-cancer therapy for dividing cancer cells, particularly in the treatment of acute myeloid leukemia. Further research is needed to fully understand the underlying mechanisms and to optimize the use of this therapy.
Collapse
Affiliation(s)
- Elham Homami
- Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran, Iran.
| | | | - Zahra Habibi-Kelishomi
- Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran, Iran
| |
Collapse
|
11
|
Patricelli C, Lehmann P, Oxford JT, Pu X. Doxorubicin-Induced Modulation of TGF-β Signaling Cascade in Mouse Fibroblasts: Insights into Cardiotoxicity Mechanisms. RESEARCH SQUARE 2023:rs.3.rs-3186393. [PMID: 37546862 PMCID: PMC10402200 DOI: 10.21203/rs.3.rs-3186393/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-β) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-β signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-β inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-β1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs. Moreover, we observed that DOX inhibited the TGF-β1 induced expression of BMP1 in NIH3T3 cells, while BMP1 levels remained high in CFs, and that TGF-β1 induces the phosphorylation of SMAD2 in both NIH3T3 cells and CFs. While DOX treatment diminished the extent of phosphorylation, the reduction did not reach statistical significance. DOX also inhibited the TGF-β1 induced expression of COL1 in NIH3T3 cells and CFs. Finally, DOX inhibited the TGF-β1 induced expression of Atf4 and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-β signaling pathway. Understanding the underlying mechanisms of the ability of DOX to modulate gene expression and signaling pathways in fibroblasts holds promise for future development of targeted therapeutic strategies to mitigate DOX-induced cardiotoxicity specifically affecting CFs.
Collapse
|
12
|
Piorecka K, Kurjata J, Gostynski B, Kazmierski S, Stanczyk WA, Marcinkowska M, Janaszewska A, Klajnert-Maculewicz B. Is acriflavine an efficient co-drug in chemotherapy? RSC Adv 2023; 13:21421-21431. [PMID: 37465576 PMCID: PMC10350790 DOI: 10.1039/d3ra02608f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer is a global health problem being the second worldwide cause of deaths right after cardiovascular diseases. The main methods of cancer treatment involve surgery, radiation and chemotherapy with an emphasis on the latter. Thus development of nanochemistry and nanomedicine in a search for more effective and safer cancer treatment is an important area of current research. Below, we present interaction of doxorubicin and acriflavine and the cytotoxicity of these drug nano-complexes towards cervical cancer (HeLa) cells. Experimental results obtained from NMR measurements and fluorescence spectroscopy show that the drugs' interaction was due to van der Waals forces, formation of hydrogen bonds and π-π stacking. Quantum molecular simulations confirmed the experimental results with regard to existing π-π stacking. Additionally it was shown that, at the level of theory applied (DFT, triple zeta basis set), the stacking interactions comprise the most preferable interactions (the lowest ΔG ca. -12 kcal mol-1) both between the molecules forming the acriflavine system and between the other component - another drug (doxorubicin) dimer. Biological tests performed on HeLa cells showed high cytotoxicity of the complexes, comparable to free drugs (ACF and DOX), both after 24 and 48 hours of incubation. For non-cancerous cells, a statistically significant difference in the cytotoxicity of drugs and complexes was observed in the case of a short incubation period. The results of the uptake study showed significantly more efficient cellular uptake of acriflavine than doxorubicin, whether administered alone or in combination with an anthracycline. The mechanism determining the selective uptake of acriflavine and ACF : DOX complexes towards non-cancer and cancer cells should be better understood in the future, as it may be of key importance in the design of complexes with toxic anti-cancer drugs.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Jan Kurjata
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Bartłomiej Gostynski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Slawomir Kazmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 Lodz 90-363 Poland
| | - Monika Marcinkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska St. 90-236 Lodz Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska St. 90-236 Lodz Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz 141/143 Pomorska St. 90-236 Lodz Poland
| |
Collapse
|
13
|
Fortuni B, Ricci M, Vitale R, Inose T, Zhang Q, Hutchison JA, Hirai K, Fujita Y, Toyouchi S, Krzyzowska S, Van Zundert I, Rocha S, Uji-I H. SERS Endoscopy for Monitoring Intracellular Drug Dynamics. ACS Sens 2023; 8:2340-2347. [PMID: 37219991 DOI: 10.1021/acssensors.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Understanding the dynamics and distribution of medicinal drugs in living cells is essential for the design and discovery of treatments. The tools available for revealing this information are, however, extremely limited. Here, we report the application of surface-enhanced Raman scattering (SERS) endoscopy, using plasmonic nanowires as SERS probes, to monitor the intracellular fate and dynamics of a common chemo-drug, doxorubicin, in A549 cancer cells. The unique spatio-temporal resolution of this technique reveals unprecedented information on the mode of action of doxorubicin: its localization in the nucleus, its complexation with medium components, and its intercalation with DNA as a function of time. Notably, we were able to discriminate these factors for the direct administration of doxorubicin or the use of a doxorubicin delivery system. The results reported here show that SERS endoscopy may have an important future role in medicinal chemistry for studying the dynamics and mechanism of action of drugs in cells.
Collapse
Affiliation(s)
- Beatrice Fortuni
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Monica Ricci
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raffaele Vitale
- U. Lille, CNRS, LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Cité Scientifique, F-59000 Lille, France
| | - Tomoko Inose
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Qiang Zhang
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - James Andell Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Hirai
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Yasuhiko Fujita
- Toray Research Center, Inc., Sonoyama 3-3-7, Otsu, Shiga 520-8567, Japan
| | - Shuichi Toyouchi
- Research Institute for Light-Induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Sandra Krzyzowska
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Indra Van Zundert
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hiroshi Uji-I
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
14
|
Liu B, Guo C, Ke C, Chen K, Dang Z. Colloidal stability and aggregation behavior of CdS colloids in aquatic systems: Effects of macromolecules, cations, and pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161814. [PMID: 36708836 DOI: 10.1016/j.scitotenv.2023.161814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Redox-dynamic environments such as river floodplains and paddy fields have been demonstrated to be important sources of CdS colloids. To date, the aggregation kinetics of CdS colloids had not yet been studied, and the structure and properties of macromolecules on the interaction between different macromolecules and CdS colloids, as well as the aggregation behavior of CdS colloids are unclear. This study investigated the colloidal stability of CdS colloids in model aqueous systems with various solution chemistry and representative of macromolecules. The results showed that increased electrolyte concentration destabilized CdS colloids by charge screening, with the cationic effect following Ca2+ > Mg2+ > K+ > Na+; Higher solution pH stabilized CdS colloids by raising the critical coagulation concentration from 33 to 56 mM NaCl. Electron microscopy and spectroscopy verified the strong interaction between macromolecules and CdS colloids, and macromolecule adsorbed on the surface of CdS to form a protective layer called "NOM corona". The interaction between macromolecules and CdS induced distinct aggregation behaviors in NaCl and CaCl2 solutions. The steric repulsion generated by "NOM corona" significantly stabilized CdS colloids in NaCl solution, and the stabilizing order was consistent with the adsorbing capacity of macromolecules on CdS colloids, namely Bovine serum albumin (BSA) > sodium alginate (SA) > calf thymus DNA (DNA) > Suwannee River humic acid (HA). BSA and DNA also inhibited CdS colloids aggregation in the CaCl2 solution due to the balance of steric hindrance, cation bridging, and electrostatic repulsion. For HA and SA, Ca2+ bridging and EDL compression contributed to their destabilization of CdS colloids in CaCl2 solution. Macromolecules concentration affect corona formation that alter stability of CdS colloids. There results showed that the complex influences of solution chemistry and macromolecules on fate and transport of CdS colloids in environment. The findings will help to understand the potential risks of CdS colloids in environment.
Collapse
Affiliation(s)
- Bingcheng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Kai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
15
|
Alniss HY, Chu C, Ramadan WS, Msallam YA, Srinivasulu V, El-Awady R, Macgregor RB, Al-Tel TH. Interaction of an anticancer benzopyrane derivative with DNA: Biophysical, biochemical, and molecular modeling studies. Biochim Biophys Acta Gen Subj 2023; 1867:130347. [PMID: 36958685 DOI: 10.1016/j.bbagen.2023.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND SIMR1281 is a potent anticancer lead candidate with multi- target activity against several proteins; however, its mechanism of action at the molecular level is not fully understood. Revealing the mechanism and the origin of multitarget activity is important for the rational identification and optimization of multitarget drugs. METHODS We have used a variety of biophysical (circular dichroism, isothermal titration calorimetry, viscosity, and UV DNA melting), biochemical (topoisomerase I & II assays) and computational (molecular docking and MD simulations) methods to study the interaction of SIMR1281 with duplex DNA structures. RESULTS The biophysical results revealed that SIMR1281 binds to dsDNA via an intercalation-binding mode with an average binding constant of 3.1 × 106 M-1. This binding mode was confirmed by the topoisomerases' inhibition assays and molecular modeling simulations, which showed the intercalation of the benzopyrane moiety between DNA base pairs, while the remaining moieties (thiazole and phenyl rings) sit in the minor groove and interact with the flanking base pairs adjacent to the intercalation site. CONCLUSIONS The DNA binding characteristics of SIMR1281, which can disrupt/inhibit DNA function as confirmed by the topoisomerases' inhibition assays, indicate that the observed multi-target activity might originate from ligand intervention at nucleic acids level rather than due to direct interactions with multiple biological targets at the protein level. GENERAL SIGNIFICANCE The findings of this study could be helpful to guide future optimization of benzopyrane-based ligands for therapeutic purposes.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
| | - Chen Chu
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Taleb H Al-Tel
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
16
|
Żelechowska-Matysiak K, Wawrowicz K, Wierzbicki M, Budlewski T, Bilewicz A, Majkowska-Pilip A. Doxorubicin- and Trastuzumab-Modified Gold Nanoparticles as Potential Multimodal Agents for Targeted Therapy of HER2+ Cancers. Molecules 2023; 28:molecules28062451. [PMID: 36985421 PMCID: PMC10058186 DOI: 10.3390/molecules28062451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Recently, targeted nanoparticles (NPs) have attracted much attention in cancer treatment due to their high potential as carriers for drug delivery. In this article, we present a novel bioconjugate (DOX–AuNPs–Tmab) consisting of gold nanoparticles (AuNPs, 30 nm) attached to chemotherapeutic agent doxorubicin (DOX) and a monoclonal antibody, trastuzumab (Tmab), which exhibited specific binding to HER2 receptors. The size and shape of synthesized AuNPs, as well as their surface modification, were analyzed by the TEM (transmission electron microscopy) and DLS (dynamic light scattering) methods. Biological studies were performed on the SKOV-3 cell line (HER2+) and showed high specificity of binding to the receptors and internalization capabilities, whereas MDA-MB-231 cells (HER2−) did not. Cytotoxicity experiments revealed a decrease in the metabolic activity of cancer cells and surface area reduction of spheroids treated with DOX–AuNPs–Tmab. The bioconjugate induced mainly cell cycle G2/M-phase arrest and late apoptosis. Our results suggest that DOX–AuNPs–Tmab has great potential for targeted therapy of HER2-positive tumors.
Collapse
Affiliation(s)
- Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Kamil Wawrowicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Tadeusz Budlewski
- Isotope Therapy Department, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
- Isotope Therapy Department, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
- Correspondence:
| |
Collapse
|
17
|
Kim H, Kwak M. Structures and Applications of Nucleic Acid-Based Micelles for Cancer Therapy. Int J Mol Sci 2023; 24:1592. [PMID: 36675110 PMCID: PMC9861421 DOI: 10.3390/ijms24021592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Nucleic acids have become important building blocks in nanotechnology over the last 30 years. DNA and RNA can sequentially build specific nanostructures, resulting in versatile drug delivery systems. Self-assembling amphiphilic nucleic acids, composed of hydrophilic and hydrophobic segments to form micelle structures, have the potential for cancer therapeutics due to their ability to encapsulate hydrophobic agents into their core and position functional groups on the surface. Moreover, DNA or RNA within bio-compatible micelles can function as drugs by themselves. This review introduces and discusses nucleic acid-based spherical micelles from diverse amphiphilic nucleic acids and their applications in cancer therapy.
Collapse
Affiliation(s)
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
18
|
Hanke M, Grundmeier G, Keller A. Direct visualization of the drug loading of single DNA origami nanostructures by AFM-IR nanospectroscopy. NANOSCALE 2022; 14:11552-11560. [PMID: 35861612 DOI: 10.1039/d2nr02701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The efficient loading of DNA nanostructures with intercalating or groove-binding drugs is an important prerequisite for various applications in drug delivery. However, unambiguous verification and quantification of successful drug loading is often rather challenging. In this work, AFM-IR nanospectroscopy is thus employed to directly visualize the loading of DNA origami nanostructures with the photosensitizer methylene blue (MB). Single MB-loaded DNA origami nanostructures can be clearly resolved in high-resolution infrared (IR) maps and the occurrence of MB-specific IR absorption correlates well with the topographic signals of the DNA origami nanostructures. The intensity of the recorded MB absorption bands furthermore scales with the MB concentration used for MB loading. By comparing single- and multilayer DNA origami nanostructures, it is also shown that the IR signal intensity of the loaded MB increases with the thickness of the DNA origami nanostructures. This indicates that also DNA double helices located in the core of bulky 3D DNA origami nanostructures are accessible for MB loading. AFM-IR nanospectroscopy thus has the potential to become an invaluable tool for quantifying drug loading of DNA origami nanostructures and optimizing drug loading protocols.
Collapse
Affiliation(s)
- Marcel Hanke
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
19
|
Alarcón LP, Andrada HE, Olivera ME, Fernando Silva O, Dario Falcone R. Carrier in carrier: Catanionic vesicles based on amphiphilic cyclodextrins complexed with DNA as nanocarriers of doxorubicin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Feng R, Zhu L, Teng F, Wang M, Chen S, Song Z, Li H. Phenylboronic acid-modified polymaleic anhydride-F127 micelles for pH-activated targeting delivery of doxorubicin. Colloids Surf B Biointerfaces 2022; 216:112559. [PMID: 35576880 DOI: 10.1016/j.colsurfb.2022.112559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/17/2022] [Accepted: 05/08/2022] [Indexed: 01/24/2023]
Abstract
Phenylboronic acid (PBA) is a tumor-targeting molecule which selectively recognizes sialic acid (SA) overexpressed in tumors. In the study, PBA, F127 and ethanolamine were conjugated with poly(maleic anhydride) by one-step reaction to form amphiphilic polymer for doxorubicin encapsulation. Two drug-carrying micelles with different mass ratio of polymer to drug were prepared by dialysis method to study effect of PBA on doxorubicin release, tumor-targeting and antitumor activity. The study results showed that doxorubicin release from the formulations was acid-sensitive and affected by the polymer dosage, and its acid-induced release behavior improved its insertion into DNA base pairs. Formulation with high polymer dosage showed better tumor targeting and antitumor activity, and activity of inhibiting HepG2 with higher content of SA-containing glycosphingolipids was higher than that of anti-B16. In vivo studies on the activity of B16-bearing mice showed that the doxorubicin-loaded micelles could inhibit the tumor growth and were safer than free doxorubicin. Thus, the PBA-modified nano-polymer micelles have potential biomedical applications due to their nanostructure and tumor-targeting ability.
Collapse
Affiliation(s)
- Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Li Zhu
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Fangfang Teng
- Guangrao People's Hospital, No. 180 Huayuan road, Guangrao county, Dongying 257300, Shandong Province, PR China
| | - Min Wang
- Guangrao People's Hospital, No. 180 Huayuan road, Guangrao county, Dongying 257300, Shandong Province, PR China
| | - Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| |
Collapse
|
21
|
Nieminen V, Juntunen M, Naarala J, Luukkonen J. Static or 50 Hz magnetic fields at 100 μT do not modify the clonogenic survival of doxorubicin-treated MCF-7 cancer cells. Bioelectrochemistry 2022; 147:108196. [DOI: 10.1016/j.bioelechem.2022.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
22
|
Zhao F, Qian Y, Li H, Yang Y, Wang J, Yu W, Li M, Cheng W, Shan L. Amentoflavone-loaded nanoparticles enhanced chemotherapy efficacy by inhibition of AKR1B10. NANOTECHNOLOGY 2022; 33:385101. [PMID: 35697009 DOI: 10.1088/1361-6528/ac7810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Therapeutic nanoparticles can be combined with different anticancer drugs to achieve a synergistic therapy and avoid the limitations of traditional medicine and thus have clinical prospects for cancer. Herein, an effective nanoplatform was developed for self-assembling AMF@DOX-Fe3+-PEG nanoparticles (ADPF NPs) via the coordination of ferric ions (Fe3+), amentoflavone (AMF), doxorubicin (DOX), and PEG-polyphenol. The ADPF NPs possessed high drug loading efficiency, good stability and dispersion in water, prolonged blood circulation, and pH-dependent release, which leading to targeted drug transport and enhanced drug accumulation in the tumor. The AMF from the ADPF NPs could inhibit the expression of the Aldo-keto reductase family 1B10 (AKR1B10) and nuclear factor-kappa B p65 (NF-κB p65), which reduced the cardiotoxicity induced by DOX and enhanced the chemotherapy efficacy. This study established a new strategy of combining drug therapy with a nanoplatform. This new strategy has a wide application prospect in clinical tumor therapy.
Collapse
Affiliation(s)
- Fang Zhao
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Yumei Qian
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Hongxia Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Yang Yang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Jing Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Weixiong Yu
- Anhui Xinximeng Biological Technology Co., Ltd, Suzhou 234000, People's Republic of China
| | - Min Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Wei Cheng
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Lingling Shan
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| |
Collapse
|
23
|
Costa EA, Gonçalves AP, Batista JAD, Bazoni RF, Santos AA, Rocha MS. New Insights into the Mechanism of Action of the Drug Chloroquine: Direct Interaction with DNA and Cytotoxicity. J Phys Chem B 2022; 126:3512-3521. [PMID: 35533378 DOI: 10.1021/acs.jpcb.2c01119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloroquine (CLQ) and hydroxychloroquine (HCLQ) are compounds largely employed in the treatment of various human diseases for decades. Nevertheless, a number of intrinsic details concerning their mechanisms of action, especially at the molecular level, are still unknown or have presented controversial results in the literature. Using optical tweezers, here, we investigate at the single-molecule level the molecular mechanism of action of the drug CLQ in its intrinsic interaction with the double-stranded (ds)DNA molecule, one of its targets inside cells, determining the binding modes and the physicochemical (binding) parameters of the interaction. In particular, we show that the ionic strength of the surrounding medium strongly influences such interaction, changing even the main binding mode. In addition, the cytotoxicity of CLQ against three different cell lines was also investigated here, allowing one to evaluate and compare the effect of the drug on the cell viability. In particular, we show that CLQ is highly cytotoxic at a very low (a few micromolar) concentration range for all cell lines tested. These results were rigorously compared to the equivalent ones obtained for the closely related compound hydroxychloroquine (HCLQ), allowing a critical comparison between the action of these drugs at the molecular and cellular levels.
Collapse
Affiliation(s)
- Ethe A Costa
- Departamento de Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Amanda P Gonçalves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Josiane A D Batista
- Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36.036-900, Brazil
| | - Raniella F Bazoni
- Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, São Mateus, Espírito Santo 29.932-900, Brazil
| | - Anésia A Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Márcio S Rocha
- Departamento de Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
24
|
Azimzadeh M, Aghili Z, Jannat B, Jafari S, Rafizadeh Tafti S, Nasirizadeh N. Nanocomposite of electrochemically reduced graphene oxide and gold nanourchins for electrochemical DNA detection. IET Nanobiotechnol 2022; 16:190-198. [PMID: 35442560 PMCID: PMC9178657 DOI: 10.1049/nbt2.12086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 12/19/2022] Open
Abstract
A nanocomposite of graphene oxide and gold nanourchins has been used here to modify the surface of a screen‐printed carbon electrode to enhance the sensitivity of the electrochemical DNA detection system. A specific single‐stranded DNA probe was designed based on the target DNA sequence and was thiolated to be self‐assembled on the surface of the gold nanourchins placed on the modified electrode. Doxorubicin was used as an electrochemical label to detect the DNA hybridisation using differential pulse voltammetry (DPV). The assembling process was confirmed using scanning electron microscopy (SEM) imaging, cyclic voltammetry (CV), and the EIS method. The high sensitivity of the proposed system led to a low detection limit of 0.16 fM and a wide linear range from 0.5 to 950.0 fM. The specificity of the DNA hybridisation and the signalling molecule (haematoxylin) caused very high selectivity towards the target DNA than other non‐specific sequences.
Collapse
Affiliation(s)
- Mostafa Azimzadeh
- Halal Research Center of IRI, MOH, Tehran, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Aghili
- Food & Drug Control Reference Laboratories Center, FDA, MOH, Tehran, Iran
| | | | - Saeid Jafari
- Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Saeed Rafizadeh Tafti
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Navid Nasirizadeh
- Halal Research Center of IRI, MOH, Tehran, Iran.,Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
25
|
Bhangu SK, Fernandes S, Beretta GL, Tinelli S, Cassani M, Radziwon A, Wojnilowicz M, Sarpaki S, Pilatis I, Zaffaroni N, Forte G, Caruso F, Ashokkumar M, Cavalieri F. Transforming the Chemical Structure and Bio-Nano Activity of Doxorubicin by Ultrasound for Selective Killing of Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107964. [PMID: 35100658 DOI: 10.1002/adma.202107964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Reconfiguring the structure and selectivity of existing chemotherapeutics represents an opportunity for developing novel tumor-selective drugs. Here, as a proof-of-concept, the use of high-frequency sound waves is demonstrated to transform the nonselective anthracycline doxorubicin into a tumor selective drug molecule. The transformed drug self-aggregates in water to form ≈200 nm nanodrugs without requiring organic solvents, chemical agents, or surfactants. The nanodrugs preferentially interact with lipid rafts in the mitochondria of cancer cells. The mitochondrial localization of the nanodrugs plays a key role in inducing reactive oxygen species mediated selective death of breast cancer, colorectal carcinoma, ovarian carcinoma, and drug-resistant cell lines. Only marginal cytotoxicity (80-100% cell viability) toward fibroblasts and cardiomyocytes is observed, even after administration of high doses of the nanodrug (25-40 µg mL-1 ). Penetration, cytotoxicity, and selectivity of the nanodrugs in tumor-mimicking tissues are validated by using a 3D coculture of cancer and healthy cells and 3D cell-collagen constructs in a perfusion bioreactor. The nanodrugs exhibit tropism for lung and limited accumulation in the liver and spleen, as suggested by in vivo biodistribution studies. The results highlight the potential of this approach to transform the structure and bioactivity of anticancer drugs and antibiotics bearing sono-active moieties.
Collapse
Affiliation(s)
- Sukhvir Kaur Bhangu
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Soraia Fernandes
- International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, 65691, Czechia
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, Milan, 20133, Italy
| | - Stella Tinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, Milan, 20133, Italy
| | - Marco Cassani
- International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, 65691, Czechia
| | - Agata Radziwon
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marcin Wojnilowicz
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sophia Sarpaki
- BIOEMTECH, 27 Neapoleos st., Lefkippos Attica Technology Park - N.C.S.R. Demokritos, Athens, 15341, Greece
| | - Irinaios Pilatis
- BIOEMTECH, 27 Neapoleos st., Lefkippos Attica Technology Park - N.C.S.R. Demokritos, Athens, 15341, Greece
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, Milan, 20133, Italy
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, 65691, Czechia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", via della ricerca scientifica 1, Rome, 00133, Italy
| |
Collapse
|
26
|
Kim JS, Arango AS, Shah S, Arnold WR, Tajkhorshid E, Das A. Anthracycline derivatives inhibit cardiac CYP2J2. J Inorg Biochem 2022; 229:111722. [PMID: 35078036 PMCID: PMC8860876 DOI: 10.1016/j.jinorgbio.2022.111722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
Anthracycline chemotherapeutics are highly effective, but their clinical usefulness is hampered by adverse side effects such as cardiotoxicity. Cytochrome P450 2J2 (CYP2J2) is a cytochrome P450 epoxygenase in human cardiomyocytes that converts arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acid (EET) regioisomers. Herein, we performed biochemical studies to understand the interaction of anthracycline derivatives (daunorubicin, doxorubicin, epirubicin, idarubicin, 5-iminodaunorubicin, zorubicin, valrubicin, and aclarubicin) with CYP2J2. We utilized fluorescence polarization (FP) to assess whether anthracyclines bind to CYP2J2. We found that aclarubicin bound the strongest to CYP2J2 despite it having large bulky groups. We determined that ebastine competitively inhibits anthracycline binding, suggesting that ebastine and anthracyclines may share the same binding site. Molecular dynamics and ensemble docking revealed electrostatic interactions between the anthracyclines and CYP2J2, contributing to binding stability. In particular, the glycosamine groups in anthracyclines are stabilized by binding to glutamate and aspartate residues in CYP2J2 forming salt bridge interactions. Furthermore, we used iterative ensemble docking schemes to gauge anthracycline influence on EET regioisomer production and anthracycline inhibition on AA metabolism. This was followed by experimental validation of CYP2J2-mediated metabolism of anthracycline derivatives using liquid chromatography tandem mass spectrometry fragmentation analysis and inhibition of CYP2J2-mediated AA metabolism by these derivatives. Taken together, we use both experimental and theoretical methodologies to unveil the interactions of anthracycline derivatives with CYP2J2. These studies will help identify alternative mechanisms of how anthracycline cardiotoxicity may be mediated through the inhibition of cardiac P450, which will aid in the design of new anthracycline derivatives with lower toxicity.
Collapse
Affiliation(s)
- Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Andres S Arango
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Swapnil Shah
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Aditi Das
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
27
|
Goswami S, Ghosh R, Prasanthan P, Kishore N. Mode of interaction of altretamine with calf thymus DNA: biophysical insights. J Biomol Struct Dyn 2022; 41:3728-3740. [PMID: 35343872 DOI: 10.1080/07391102.2022.2054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Insights into drug-DNA interactions have importance in medicinal chemistry as it has a major role in the evolution of new therapeutic drugs. Therefore, binding studies of small molecules with DNA are of significant interest. Spectroscopy, coupled with measurements of viscosity and molecular docking studies were employed to obtain mechanistic insights into the binding of altretamine with calf thymus DNA (CT-DNA). The UV-visible spectroscopic measurements study confirmed altretamine-CT-DNA complex formation with affinity constant ([15.68 ± 0.04] × 103 M-1), a value associated with groove binding phenomenon. The associated thermodynamic signatures suggest enthalpically driven interactions. The values of standard molar free energy change (ΔGmo) -(23.93 ± 0.23) kJ mol-1, enthalpy change (ΔvHHmo) -(50.84 ± 0.19) kJ mol-1 and entropy change (ΔSmo) -(90.29 ± 0.12) JK-1 mol-1 indicate the binding is thermodynamically favorable and an important role of the hydrogen bonds and Van der Waals interactions in the binding of altretamine with CT-DNA. Circular dichroism spectroscopy indicated insignificant conformational changes in the DNA backbone upon interaction with altretamine suggesting no distortion and/or unstacking of the base pairs in the DNA helix. UV-melting study suggested that the thermal stability of the DNA backbone is not affected by the binding of the drug. Competitive displacement assays with ethidium bromide, Hoechst-33258 and DAPI established the binding of altretamine with CT-DNA in the minor groove. The mode of binding was further confirmed by viscosity and molecular docking studies. Molecular docking further ascertained binding of altretamine in the minor groove of the CT-DNA, preferably with the A-T rich sequences.
Collapse
Affiliation(s)
- Sathi Goswami
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra, India
| |
Collapse
|
28
|
Chanphai P, Tajmir-Riahi HA. DNA acidification by citric acid and gallic acid: acid binding site and DNA structural dynamics. J Biomol Struct Dyn 2022; 40:2389-2394. [DOI: 10.1080/07391102.2020.1835730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- P. Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois, Rivières, Trois-Rivières (Québec), Canada
| | - H. A. Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois, Rivières, Trois-Rivières (Québec), Canada
| |
Collapse
|
29
|
Investigation of interactions of doxorubicin with purine nucleobases by molecular modeling. J Mol Model 2022; 28:69. [PMID: 35218423 DOI: 10.1007/s00894-022-05031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
Doxorubicin, an anthracycline antibiotic with anti-tumor activity, is produced by the bacterium Streptomyces peucetius. The interactions between doxorubicin and genetic material and the details of the intercalation with DNA have been controversial issues. Thus, the interactions of doxorubicin with purine nucleobases were studied by quantum mechanical methods. Initially, conformer analyses of doxorubicin were performed with Spartan 08 software and 319 different conformers from 422 initial structures for doxorubicin were obtained. Geometry optimizations and frequency analyses were performed for each structure using density functional theory (DFT) at B3LYP/6-31G** level using Gaussian 09 software. The most stable 20 conformers of doxorubicin and tautomers of purine nucleobases were optimized again with ɷB97XD/6-31G** level and their interactions were also analyzed at the same level. The Discovery Studio 3.5 Visualizer was used to draw the initial and optimized structures of investigated geometries. The noncovalent interactions (NCIs) were visualized by calculating reduced density gradient (RDG) with Multiwfn program. The color-filled isosurfaces and RDG scatter maps of most stable interaction geometries were plotted by Visual Molecular Dynamics (VMD) software and Gnuplot 5.3 software, respectively. This study showed that adenine, guanine, and hypoxanthine nucleobases interact with doxorubicin by forming strong hydrogen bonds and π-π interactions. Considering the normal cellular conditions, the effect of solvent (water) on the interaction geometries were also analyzed and when compared to gas phase it was determined that the movements of the molecules were restricted and there was a minimal change between initial and optimized structures in the aqueous phase.
Collapse
|
30
|
Marvi PK, Amjad-Iranagh S, Halladj R. Molecular Dynamics Assessment of Doxorubicin Adsorption on Surface-Modified Boron Nitride Nanotubes (BNNTs). J Phys Chem B 2021; 125:13168-13180. [PMID: 34813340 DOI: 10.1021/acs.jpcb.1c07052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Loading therapeutic agents on nanocarriers in order to protect them during drug delivery and exclusively targeting damaged tissues has gained substantial significance in biology realms in the past decade. Boron nitride nanotubes have given a new lease on designing nano delivery systems by virtue of their unique properties. The studies are still ongoing to thoroughly identify their chemical characteristics. In this study, we probed into the efficacy of boron nitride nanotubes and the impact of their surface modification by hydroxyl and amine functional groups in interaction with an anticancer drug model, i.e., doxorubicin. Defining the altered electronic properties of the nanotubes as well as the distribution of partial charges were carried out through density functional theory calculations, following the simulation of the drug loading process via molecular dynamics algorithms. The primary outcomes are inferred from systematical energies, van der Waals and electrostatic interactions, radial distribution functions, the number of hydrogen bonds, mean square displacement, diffusion coefficients, and binding free energies. Negative values of van der Waals energies imply a rapid, exothermic adsorption process whereby the contribution of these driving forces is more dominant than electrostatic ones. Ultimately, the values of overall diffusion coefficients of drugs and binding free energies, performed by the MM/PBSA approach, corroborate that the hydroxyl and amine-functionalized nanotubes reinforce the binding strength of the complexes to an approximate extent.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Sepideh Amjad-Iranagh
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Rouein Halladj
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| |
Collapse
|
31
|
Lan X, Guo Q, Liu Z, Liu K, He J, Li R, Sun H, Yao W, Wang L. Facile preparation of nanomicelles using polymyxin E for enhanced antitumor effects. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:329-341. [PMID: 34606738 DOI: 10.1080/09205063.2021.1989568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chemotherapy is a major cancer treatment that uses antitumor drugs to kill fast-growing cancer cells. Many kinds of drug carriers have been developed to deliver and achieve controlled release of small-molecule therapeutic agents. However, many therapeutic agent carriers need complex preparation process. The natural polypeptides may serve as proper drug carriers. More specifically, polymyxin E (PE) is a kind of natural antibiotic lipopeptides. It is commonly used to treat infections caused by multidrug-resistant Gram-negative bacteria. Herein, we present a facile method to prepare DOX-loaded polymyxin E micelles (PE-DOX micelles) to enhance the therapeutic effect of anticancer drug doxorubicin (DOX). The hydrodynamic sizes and zeta potential of the prepared nanomedicine (PE-DOX micelles) were 142.0 nm and 6.47 mV, respectively. The release of DOX from PE-DOX micelles was faster at pH 5.5 than that at pH 7.4. Furthermore, PE exhibited negligible cytotoxicity to A549 cells and HeLa cells within 50 μg/mL, while PE-DOX micelles caused higher cytotoxicity than that of free DOX. Moreover, the intravenously injected PE-DOX micelles showed good biocompatibility and obvious antitumor effect after 14 days' treatment in vivo. The PE-DOX micelles have great potential to be used as anticancer agent in the future.
Collapse
Affiliation(s)
- Xifa Lan
- First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Quanling Guo
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Zhiwei Liu
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Kai Liu
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Jinfeng He
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Ruyu Li
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | | | - Wenxiu Yao
- First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
32
|
Seitz I, Shaukat A, Nurmi K, Ijäs H, Hirvonen J, Santos HA, Kostiainen MA, Linko V. Prospective Cancer Therapies Using Stimuli-Responsive DNA Nanostructures. Macromol Biosci 2021; 21:e2100272. [PMID: 34614301 DOI: 10.1002/mabi.202100272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Nanostructures based on DNA self-assembly present an innovative way to address the increasing need for target-specific delivery of therapeutic molecules. Currently, most of the chemotherapeutics being used in clinical practice have undesired and exceedingly high off-target toxicity. This is a challenge in particular for small molecules, and hence, developing robust and effective methods to lower these side effects and enhance the antitumor activity is of paramount importance. Prospectively, these issues could be tackled with the help of DNA nanotechnology, which provides a route for the fabrication of custom, biocompatible, and multimodal structures, which can, to some extent, resist nuclease degradation and survive in the cellular environment. Similar to widely employed liposomal products, the DNA nanostructures (DNs) are loaded with selected drugs, and then by employing a specific stimulus, the payload can be released at its target region. This review explores several strategies and triggers to achieve targeted delivery of DNs. Notably, different modalities are explained through which DNs can interact with their respective targets as well as how structural changes triggered by external stimuli can be used to achieve the display or release of the cargo. Furthermore, the prospects and challenges of this technology are highlighted.
Collapse
Affiliation(s)
- Iris Seitz
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Kurt Nurmi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| |
Collapse
|
33
|
Baig MMFA, Dissanayaka WL, Zhang C. 2D DNA nanoporous scaffold promotes osteogenic differentiation of pre-osteoblasts. Int J Biol Macromol 2021; 188:657-669. [PMID: 34371047 DOI: 10.1016/j.ijbiomac.2021.07.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 01/06/2023]
Abstract
Biofunctional materials with nanomechanical parameters similar to bone tissue may promote the adherence, migration, proliferation, and differentiation of pre-osteoblasts. In this study, deoxyribonucleic acid (DNA) nanoporous scaffold (DNA-NPS) was synthesized by the polymerization of rectangular and double-crossover (DX) DNA tiles. The diagonally precise polymerization of nanometer-sized DNA tiles (A + B) through sticky end cohesion gave rise to a micrometer-sized porous giant-sheet material. The synthesized DNA-NPS exhibited a uniformly distributed porosity with a size of 25 ± 20 nm. The morphology, dimensions, sectional profiles, 2-dimensional (2D) layer height, texture, topology, pore size, and mechanical parameters of DNA-NPS have been characterized by atomic force microscopy (AFM). The size and zeta potential of DNA-NPS have been characterized by the zeta sizer. Cell biocompatibility, proliferation, and apoptosis have been evaluated by flow cytometry. The AFM results confirmed that the fabricated DNA-NPS was interconnected and uniformly porous, with a surface roughness of 0.125 ± 0.08035 nm. The elastic modulus of the DNA-NPS was 22.45 ± 8.65 GPa, which was comparable to that of native bone tissue. DNA-NPS facilitated pre-osteoblast adhesion, proliferation, and osteogenic differentiation. These findings indicated the potential of 2D DNA-NPS in promoting bone tissue regeneration.
Collapse
Affiliation(s)
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
34
|
Du BW, Chu CY, Lin CC, Ko FH. The Multifunctionally Graded System for a Controlled Size Effect on Iron Oxide-Gold Based Core-Shell Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1695. [PMID: 34203315 PMCID: PMC8308135 DOI: 10.3390/nano11071695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
We report that Fe3O4@Au core-shell nanoparticles (NPs) serve as a multifunctional molecule delivery platform. This platform is also suitable for sensing the doxorubicin (DOX) through DNA hybridization, and the amount of carried DOX molecules was determined by size-dependent Fe3O4@Au NPs. The limits of detection (LODs) for DOX was found to be 1.839 nM. In our approach, an Au nano-shell coating was coupled with a specially designed DNA sequence using thiol bonding. By means of a high-frequency magnetic field (HFMF), a high release percentage of such a molecule could be efficiently achieved in a relatively short period of time. Furthermore, the thickness increase of the Au nano-shell affords Fe3O4@Au NPs with a larger surface area and a smaller temperature increment due to shielding effects from magnetic field. The change of magnetic property may enable the developed Fe3O4@Au-dsDNA/DOX NPs to be used as future nanocarrier material. More importantly, the core-shell NP structures were demonstrated to act as a controllable and efficient factor for molecule delivery.
Collapse
Affiliation(s)
- Bo-Wei Du
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (B.-W.D.); (C.-Y.C.)
| | - Chih-Yuan Chu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (B.-W.D.); (C.-Y.C.)
| | - Ching-Chang Lin
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan;
| | - Fu-Hsiang Ko
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (B.-W.D.); (C.-Y.C.)
| |
Collapse
|
35
|
Kharb R. Updates on Receptors Targeted by Heterocyclic Scaffolds: New Horizon in Anticancer Drug Development. Anticancer Agents Med Chem 2021; 21:1338-1349. [PMID: 32560614 DOI: 10.2174/1871520620666200619181102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Anticancer is a high priority research area for scientists as cancer is one of the leading causes of death globally. It is pertinent to mention here that conventional anticancer drugs such as methotrexate, vincristine, cyclophosphamide, etoposide, doxorubicin, cisplatin, etc. are not much efficient for the treatment of different types of cancer; also these suffer from serious side effects leading to therapy failure. A large variety of cancerrelated receptors such as carbonic anhydrase, tyrosine kinase, topoisomerase, protein kinase, histone deacetylase, etc. have been identified which can be targeted by anticancer drugs. Heterocycles like oxadiazole, thiazole, thiadiazole, indole, pyridine, pyrimidine, benzimidazole, etc. play a pivotal role in modern medicinal chemistry because they have a broad spectrum of pharmacological activities including prominent anticancer activity. Therefore, it was considered significant to explore heterocyclic compounds reported in recent most literature which can bind effectively with the cancer-related receptors. This will not only provide a targeted approach to deal with cancer but also the safety profile of the drugs can be further improved. The information provided in this manuscript may be found useful for the design and development of anticancer drugs.
Collapse
Affiliation(s)
- Rajeev Kharb
- Centre for Pharmaceutical Chemistry & Pharmaceutical Analysis, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida-201313, Uttar Pradesh, India
| |
Collapse
|
36
|
Chiou JT, Huang NC, Huang CH, Wang LJ, Lee YC, Shi YJ, Chang LS. NOXA-mediated degradation of MCL1 and BCL2L1 causes apoptosis of daunorubicin-treated human acute myeloid leukemia cells. J Cell Physiol 2021; 236:7356-7375. [PMID: 33982799 DOI: 10.1002/jcp.30407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Daunorubicin (DNR) is used clinically to treat acute myeloid leukemia (AML), while the signaling pathways associated with its cytotoxicity are not fully elucidated. Thus, we investigated the DNR-induced death pathway in the human AML cell lines U937 and HL-60. DNR-induced apoptosis in U937 cells accompanied by downregulation of MCL1 and BCL2L1, upregulation of Phorbol-12-myristate-13-acetate-induced protein 1 (NOXA), and mitochondrial depolarization. DNR induced NOX4-mediated reactive reactive oxygen species (ROS) production, which in turn inactivated Akt and simultaneously activated p38 mitogen-activated protein kinase (MAPK). Activated p38 MAPK and inactivated Akt coordinately increased GSK3β-mediated cAMP response element-binding protein (CREB) phosphorylation, which promoted NOXA transcription. NOXA upregulation critically increased the proteasomal degradation of MCL1 and BCL2L1. The same pathway was also responsible for the DNR-induced death of HL-60 cells. Restoration of MCL1 or BCL2L1 expression alleviated DNR-induced mitochondrial depolarization and cell death. Furthermore, ABT-199 (a BCL2 inhibitor) synergistically enhanced the cytotoxicity of DNR in AML cell lines. Notably, DNR-induced DNA damage was not related to NOXA-mediated degradation of MCL1 and BCL2L1. Collectively, these results indicate that the upregulation of NOXA expression through the NOX4-ROS-p38 MAPK-GSK3β-CREB axis results in the degradation of MCL1 and BCL2L1 in DNR-treated U937 and HL-60 cells. This signaling pathway may provide insights into the mechanism underlying DNR-triggered apoptosis in AML cells.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Nan-Chieh Huang
- Department of Family Medicine, Zuoying Branched of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Zhang B, Wan S, Peng X, Zhao M, Li S, Pu Y, He B. Human serum albumin-based doxorubicin prodrug nanoparticles with tumor pH-responsive aggregation-enhanced retention and reduced cardiotoxicity. J Mater Chem B 2021; 8:3939-3948. [PMID: 32236239 DOI: 10.1039/d0tb00327a] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Doxorubicin (DOX) is a widely-used anticancer drug, but its cardiotoxicity severely hampers its potency in chemotherapy. Herein, human serum albumin (HSA) is engaged as a biocompatible nanocarrier to load a pH-sensitive DOX prodrug, DMDOX, generating HSA-DMDOX nanoparticles via self-assembly driven by hydrophobic interactions. HSA-DMDOX disperses well in a physiological environment (∼40 nm) but aggregates in a tumor acidic microenvironment (pH 6.5, ∼140 nm) owing to the hydrophobicity increase of DMDOX by protonation of carboxylic groups. In vitro anticancer study showed that HSA-DMDOX exhibited enhanced cellular uptake by 4T1 cells and superior cytotoxicity in comparison to HSA-DOX nanoparticles. In vivo study suggested that HSA-DMDOX achieved long blood circulation, aggregation enhanced tumor retention, comparable antitumor efficacy and reduced cardiotoxicity relative to free DOX. Our work presents a facile and effective approach to delivering anthracyclines by HSA-based tumor pH-responsive nanoparticles with aggregation-enhanced tumor retention and reduced toxicity.
Collapse
Affiliation(s)
- Boya Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Shiyu Wan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyu Peng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Mingying Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Sai Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
38
|
Zhou D, Liu S, Hu Y, Yang S, Zhao B, Zheng K, Zhang Y, He P, Mo G, Li Y. Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy. J Mater Chem B 2021; 8:3801-3813. [PMID: 32227025 DOI: 10.1039/d0tb00143k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lack of sufficient tumor penetration of the current nanomedicines is a major reason limiting their clinical success in cancer therapy. In this work, we aimed at the development of a novel biodegradable nanoplatform for the selective and controlled delivery of anticancer agents, with improved tumor permeability and the ability to release ultrasmall nanovesicles in the tumor microenvironment. To this end, positively charged nanogels were obtained through the double-crosslinking of chitosan with an ionic physical gelator and a disulfide-containing chemical crosslinker. After conjugation to an anionic oligomer, the cationic nanogels were transformed into negatively charged nanocarriers (CTCP), enabling effective encapsulation of the cationic anticancer agent doxorubicin (DOX) to generate a biodegradable nanomedicine (DOX@CTCP). DOX@CTCP could maintain sustained DOX release and decreased DOX toxicity. Upon arrival at the tumor tissue, the reductive and lysozyme-high microenvironment drives the cleavage of the nanomedicine to release DOX-carrying nanoblocks of smaller size, which together with their acidic-protonable feature achieves an effective therapeutic delivery into cancer cells. The nanomedicine described here showed excellent biocompatibility/biosafety and enhanced in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Dong Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Sainan Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yongjun Hu
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Shiwei Yang
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Bing Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Kaikai Zheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Peixin He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Guoyan Mo
- China Key Laboratory of TCM Resource and Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Yulin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules of Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China. and The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
39
|
Improving Breast Cancer Treatment Specificity Using Aptamers Obtained by 3D Cell-SELEX. Pharmaceuticals (Basel) 2021; 14:ph14040349. [PMID: 33918832 PMCID: PMC8068899 DOI: 10.3390/ph14040349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional spheroids of non-malignant MCF10A and malignant SKBR3 breast cells were used for subsequent 3D Cell-SELEX to generate aptamers for specific binding and treatment of breast cancer cells. Using 3D Cell-SELEX combined with Next-Generation Sequencing and bioinformatics, ten abundant aptamer families with specific structures were identified that selectively bind to SKBR3, and not to MCF10A cells. Multivalent aptamer polymers were synthesized by co-polymerization and analyzed for binding performance as well as therapeutic efficacy. Binding performance was determined by confocal fluorescence imaging and revealed specific binding and efficient internalization of aptamer polymers into SKBR3 spheroids. For therapeutic purposes, DNA sequences that intercalate the cytotoxic drug doxorubicin were co-polymerized into the aptamer polymers. Viability tests show that the drug-loaded polymers are specific and effective in killing SKBR3 breast cancer cells. Thus, the 3D-selected aptamers enhanced the specificity of doxorubicin against malignant over non-malignant breast cells. The innovative modular DNA aptamer platform based on 3D Cell SELEX and polymer multivalency holds great promise for diagnostics and treatment of breast cancer.
Collapse
|
40
|
Baig MMFA, Zhang C, Akhtar MF, Saleem A, Mudassir J. The effective transfection of a low dose of negatively charged drug-loaded DNA-nanocarriers into cancer cells via scavenger receptors. J Pharm Anal 2021; 11:174-182. [PMID: 34012693 PMCID: PMC8116213 DOI: 10.1016/j.jpha.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
DNA-nanotechnology-based nano-architecture scaffolds based on circular strands were designed in the form of DNA-nanowires (DNA-NWs) as a polymer of DNA-triangles. Circularizing a scaffold strand (84-NT) was the critical step followed by annealing with various staple strands to make stiff DNA-triangles. Atomic force microcopy (AFM), native polyacrylamide gel electrophoresis (PAGE), UV-analysis, MTT-assay, flow cytometry, and confocal imaging were performed to assess the formulated DNA-NWs and cisplatin (CPT) loading. The AFM and confocal microscopy images revealed a uniform shape and size distribution of the DNA-NWs, with lengths ranging from 2 to 4 μm and diameters ranging from 150 to 300 nm. One sharp band at the top of the lane (500 bp level) with the loss of electrophoretic mobility during the PAGE (native) gel analysis revealed the successful fabrication of DNA-NWs. The loading efficiency of CPT ranged from 66.85% to 97.35%. MTT and flow cytometry results showed biocompatibility of the blank DNA-NWs even at 95% concentration compared with the CPT-loaded DNA-NWs. The CPT-loaded DNA-NWs exhibited enhanced apoptosis (22%) compared to the apoptosis (7%) induced by the blank DNA-NWs. The release of CPT from the DNA-NWs was sustained at < 75% for 6 h in the presence of serum, demonstrating suitability for systemic applications. The IC50 of CPT@DNA-NWs was reduced to 12.8 nM CPT, as compared with the free CPT solution exhibiting an IC50 of 51.2 nM. Confocal imaging revealed the targetability, surface binding, and slow internalization of the DNA-NWs in the scavenger-receptor-rich cancer cell line (HepG2) compared with the control cell line.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical & Pharmaceutical Engineering of Stem Cells Research, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong, PR China
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Chengfei Zhang
- Laboratory of Biomedical & Pharmaceutical Engineering of Stem Cells Research, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong, PR China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60000, Pakistan
| |
Collapse
|
41
|
Label-free spectral imaging to study drug distribution and metabolism in single living cells. Sci Rep 2021; 11:2703. [PMID: 33526869 PMCID: PMC7851119 DOI: 10.1038/s41598-021-81817-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/05/2021] [Indexed: 12/03/2022] Open
Abstract
During drug development, evaluation of drug and its metabolite is an essential process to understand drug activity, stability, toxicity and distribution. Liquid chromatography (LC) coupled with mass spectrometry (MS) has become the standard analytical tool for screening and identifying drug metabolites. Unlike LC/MS approach requiring liquifying the biological samples, we showed that spectral imaging (or spectral microscopy) could provide high-resolution images of doxorubicin (dox) and its metabolite doxorubicinol (dox’ol) in single living cells. Using this new method, we performed measurements without destroying the biological samples. We calculated the rate constant of dox translocating from extracellular moiety into the cell and the metabolism rate of dox to dox’ol in living cells. The translocation rate of dox into a single cell for spectral microscopy and LC/MS approaches was similar (~ 1.5 pM min−1 cell−1). When compared to spectral microscopy, the metabolism rate of dox was underestimated for about every 500 cells using LC/MS. The microscopy approach further showed that dox and dox’ol translocated to the nucleus at different rates of 0.8 and 0.3 pM min−1, respectively. LC/MS is not a practical approach to determine drug translocation from cytosol to nucleus. Using various methods, we confirmed that when combined with a high-resolution imaging, spectral characteristics of a molecule could be used as a powerful approach to analyze drug metabolism. We propose that spectral microscopy is a new method to study drug localization, translocation, transformation and identification with a resolution at a single cell level, while LC/MS is more appropriate for drug screening at an organ or tissue level.
Collapse
|
42
|
Fraix A, Parisi C, Failla M, Chegaev K, Spyrakis F, Lazzarato L, Fruttero R, Gasco A, Sortino S. NO release regulated by doxorubicin as the green light-harvesting antenna. Chem Commun (Camb) 2021; 56:6332-6335. [PMID: 32435776 DOI: 10.1039/d0cc02512g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report for the first time a NO photodonor (NOPD) operating with the widely used chemotherapeutic agent doxorubicin (DOX) as the light-harvesting antenna. This permits NO uncaging from an N-nitroso appendage upon selective excitation of DOX with highly biocompatible green light, without precluding its typical red emission. This NOPD effectively binds DNA and photodelivers NO nearby, representing an intriguing candidate for potential multimodal therapeutic applications based on the combination of DOX and NO.
Collapse
Affiliation(s)
- Aurore Fraix
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Cristina Parisi
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Mariacristina Failla
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125 Catania, Italy. and Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Roberta Fruttero
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Alberto Gasco
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
43
|
Baig MMFA, Zhang C, Akhtar MF, Saleem A, Nisar N. Treatment of Wilms’ nephroblastoma cancer cells via EGFR targeting of dactinomycin loaded DNA-nanowires. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-020-00509-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Huang X, Blum NT, Lin J, Shi J, Zhang C, Huang P. Chemotherapeutic drug-DNA hybrid nanostructures for anti-tumor therapy. MATERIALS HORIZONS 2021; 8:78-101. [PMID: 34821291 DOI: 10.1039/d0mh00715c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Compared to traditional drug delivery systems, DNA nanostructure-based drug delivery systems have several advantages including programmable sequences, precise size and shape, high drug payloads, excellent biocompatibility and biodegradability. To date, a wide range of chemotherapeutic drug-DNA hybrid nanostructures have been developed for anti-tumor therapy. In this review, the constructions of various DNA nanostructures for anticancer drug delivery are firstly summarized. Next, the anticancer drug loading methods for DNA nanostructures are presented. Then, the recent applications of chemotherapeutic drug-DNA hybrid nanostructures for drug delivery are highlighted. In the end, the challenges and opportunities of the chemotherapeutic drug-DNA hybrid nanostructure-based delivery system are discussed. The designs of drug-DNA hybrid systems, including the constructions of nanostructures and the strategies for drug loading, largely influence the efficiency of drug delivery. Recent studies have focused on the development of novel drug-DNA hybrid systems to acquire more precise and efficient therapy for various diseases. A systematic review of the design strategies of chemotherapeutic drug-DNA hybrid nanostructures will benefit the innovation and development of the chemotherapeutic drug-based chemotherapy in clinics.
Collapse
Affiliation(s)
- Xiangang Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | | | | | | | | | | |
Collapse
|
45
|
Saran R, Wang Y, Li ITS. Mechanical Flexibility of DNA: A Quintessential Tool for DNA Nanotechnology. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7019. [PMID: 33302459 PMCID: PMC7764255 DOI: 10.3390/s20247019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The mechanical properties of DNA have enabled it to be a structural and sensory element in many nanotechnology applications. While specific base-pairing interactions and secondary structure formation have been the most widely utilized mechanism in designing DNA nanodevices and biosensors, the intrinsic mechanical rigidity and flexibility are often overlooked. In this article, we will discuss the biochemical and biophysical origin of double-stranded DNA rigidity and how environmental and intrinsic factors such as salt, temperature, sequence, and small molecules influence it. We will then take a critical look at three areas of applications of DNA bending rigidity. First, we will discuss how DNA's bending rigidity has been utilized to create molecular springs that regulate the activities of biomolecules and cellular processes. Second, we will discuss how the nanomechanical response induced by DNA rigidity has been used to create conformational changes as sensors for molecular force, pH, metal ions, small molecules, and protein interactions. Lastly, we will discuss how DNA's rigidity enabled its application in creating DNA-based nanostructures from DNA origami to nanomachines.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| | - Yong Wang
- Department of Physics, Materials Science and Engineering Program, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Isaac T. S. Li
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| |
Collapse
|
46
|
Perez-Guaita D, Chrabaszcz K, Malek K, Byrne HJ. Multimodal vibrational studies of drug uptake in vitro: Is the whole greater than the sum of their parts? JOURNAL OF BIOPHOTONICS 2020; 13:e202000264. [PMID: 32888394 DOI: 10.1002/jbio.202000264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Herein, we investigated the use of multimodal Raman and infrared (IR) spectroscopic microscopy for the elucidation of drug uptake and subsequent cellular responses. Firstly, we compared different methods for the analysis of the combined data. Secondly, we evaluated whether the combined analysis provided enough benefits to justify the fusion of the data. A459 cells inoculated with doxorubicin (DOX) at different times were fixed and analysed using each technique. Raman spectroscopy provided high sensitivity to DOX and enabled an accurate estimation of the drug uptake at each time point, whereas IR provided a better insight into the resultant changes in the biochemical composition of the cell. In terms of benefits of data fusion, 2D correlation analysis allowed the study of the relationship between IR and Raman variables, whereas the joint analysis of IR and Raman enabled the correlation of the different variables to be monitored over time. In summary, the complementary nature of IR and Raman makes the combination of these vibrational techniques an appealing tool to follow drug kinetics and cellular response.
Collapse
Affiliation(s)
- David Perez-Guaita
- FOCAS Research Institute, Technological University Dublin, Dublin 8, Ireland
| | | | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin 8, Ireland
| |
Collapse
|
47
|
Nicolson F, Ali A, Kircher MF, Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001669. [PMID: 33304747 PMCID: PMC7709992 DOI: 10.1002/advs.202001669] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/27/2020] [Indexed: 05/12/2023]
Abstract
In the last two decades, DNA has attracted significant attention toward the development of materials at the nanoscale for emerging applications due to the unparalleled versatility and programmability of DNA building blocks. DNA-based artificial nanomaterials can be broadly classified into two categories: DNA nanostructures (DNA-NSs) and DNA-functionalized nanoparticles (DNA-NPs). More importantly, their use in nanotheranostics, a field that combines diagnostics with therapy via drug or gene delivery in an all-in-one platform, has been applied extensively in recent years to provide personalized cancer treatments. Conveniently, the ease of attachment of both imaging and therapeutic moieties to DNA-NSs or DNA-NPs enables high biostability, biocompatibility, and drug loading capabilities, and as a consequence, has markedly catalyzed the rapid growth of this field. This review aims to provide an overview of the recent progress of DNA-NSs and DNA-NPs as theranostic agents, the use of DNA-NSs and DNA-NPs as gene and drug delivery platforms, and a perspective on their clinical translation in the realm of oncology.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Akbar Ali
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| | - Moritz F. Kircher
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
- Department of RadiologyBrigham and Women's Hospital & Harvard Medical SchoolBostonMA02215USA
| | - Suchetan Pal
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| |
Collapse
|
48
|
Baig MMFA, Lai WF, Akhtar MF, Saleem A, Mikrani R, Farooq MA, Ahmed SA, Tahir A, Naveed M, Abbas M, Ansari MT. Targeting folate receptors (α1) to internalize the bleomycin loaded DNA-nanotubes into prostate cancer xenograft CWR22R cells. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Identifying a gold nanoparticle as a proactive carrier for transport of a doxorubicin-peptide complex. Colloids Surf B Biointerfaces 2020; 194:111155. [DOI: 10.1016/j.colsurfb.2020.111155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
|
50
|
Baig MMFA, Lai WF, Ashraf S, Saleem A, Akhtar MF, Mikrani R, Naveed M, Siddique F, Taleb A, Mudassir J, Khan GJ, Ansari MT. The integrin facilitated internalization of fibronectin-functionalized camptothecin-loaded DNA-nanofibers for high-efficiency anticancer effects. Drug Deliv Transl Res 2020; 10:1381-1392. [PMID: 32661832 DOI: 10.1007/s13346-020-00820-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Camptothecin (CMPT) in a free form is extremely cytotoxic as well as hydrophobic drug, and is considered to be highly contagious for systemic administration. The fibronectin (FN)-functionalized DNA-based nanocarrier has been designed to load CMPT and target integrin (αvβ3) receptors which are highly expressed on the A549 cancer cells. Here, we report DNA nanocarrier in the form of DNA-nanofibers (DNA-NFs) capable of loading CMPT via strand intercalation in the GC (base pairs)-rich regions of the DNA duplex. Hence, our keen purpose was to explore the potential of DNA-NFs to load CMPT and assess the improvements of the outcomes in terms of enhanced therapeutic effects to integrin-rich A549 cancer cells with reduced cytotoxic effects to integrin-lacking HEK293 cells. DNA-NFs were formulated as a polymer of DNA triangles. DNA triangles arranged in a programmed way through the complementary overhangs present at the vertices. DNA triangles were primarily obtained through the annealing of the freshly circularized scaffold strands with the three distinct staple strands of specific sequences. The polymerized triangular tiles instead of forming two-dimensional nanosheets underwent self-coiling to give rise to DNA-NF-shaped structures. Flow cytometry and MTT assays were performed to observe cytotoxic and apoptotic effects on integrin-rich A549 cancer cells compared with the integrin-deficient HEK293 cells. AFM, native-page, and confocal experiments confirmed the polymerization of DNA triangles and the morphology of the resulting nanostructures. AFM and confocal images revealed the length of DNA-NFs to be 3-6 μm and the width from 70 to 110 nm. CMPT loading (via strands intercalation) in GC-rich regions of DNA-NFs and the FN functionalization (TAMRA tagged; red fluorescence) via amide chemistry using amino-modified strands of DNA-NFs were confirmed through the UV-shift analysis (> 10 nm shift) and confocal imaging. Blank DNA-NFs were found to be highly biocompatible in 2-640 μM concentrations. MTT assay and flow cytometry experiments revealed that CMPT-loaded DNA-NFs showed a dose-dependent decrease in the cell viability to integrin-rich A549 cancer cells compared with the integrin-deficient HEK293 cells. Conclusively, FN-functionalized, CMPT-loaded DNA-NFs effectively destroyed integrin-rich A549 cancer cells in a targeted manner compared with integrin-deficient HEK293 cells. Grapical abstract.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan.
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Saba Ashraf
- Nishtar Medical University and Hospital, Multan, 60000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Reyaj Mikrani
- School of Basic Medicine, and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Farhan Siddique
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Abdoh Taleb
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Ghulam Jilany Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54570, Pakistan
| | - Muhammad Tayyab Ansari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| |
Collapse
|