1
|
Gonzalez-Valdivieso J, Vallejo R, Rodriguez-Rojo S, Santos M, Schneider J, Arias FJ, Girotti A. CD44-targeted nanoparticles for co-delivery of docetaxel and an Akt inhibitor against colorectal cancer. BIOMATERIALS ADVANCES 2023; 154:213595. [PMID: 37639856 DOI: 10.1016/j.bioadv.2023.213595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/24/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
New strategies to develop drug-loaded nanocarriers with improved therapeutic efficacy are needed for cancer treatment. Herein we report a novel drug-delivery nanosystem comprising encapsulation of the chemotherapeutic drug docetaxel (DTX) and recombinant fusion of a small peptide inhibitor of Akt kinase within an elastin-like recombinamer (ELR) vehicle. This combined approach is also precisely targeted to colorectal cancer cells by means of a chemically conjugated DNA aptamer specific for the CD44 tumor marker. This 53 nm dual-approach nanosystem was found to selectively affect cell viability (2.5 % survival) and proliferation of colorectal cancer cells in vitro compared to endothelial cells (50 % survival), and to trigger both apoptosis- and necrosis-mediated cell death. Our findings also show that the nanohybrid particles remain stable under physiological conditions, trigger sustained drug release and possess an adequate pharmacokinetic profile after systemic intravenous administration. In vivo assays showed that these dual-approach nanohybrids significantly reduced the number of tumor polyps along the colorectal tract in a murine colorectal cancer model. Furthermore, systemic administration of advanced nanohybrids induced tissue recovery by improving the morphology of gastrointestinal crypts and the tissue architecture. Taken together, these findings indicate that our strategy of an advanced dual-approach nanosystem allows us to achieve successful controlled release of chemotherapeutics in cancer cells and may have a promising potential for colorectal cancer treatment.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain
| | - Reinaldo Vallejo
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; BioEcoUVa, Research Institute on Bioeconomy, High Pressure Process Group, University of Valladolid, Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Mergelina, Valladolid, Spain
| | - Soraya Rodriguez-Rojo
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Process Group, University of Valladolid, Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Mergelina, Valladolid, Spain
| | - Mercedes Santos
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Valladolid, Spain
| | - Jose Schneider
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Department of Obstetrics & Gynecology, University of Valladolid, School of Medicine, Valladolid, Spain
| | - Francisco Javier Arias
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Unidad de excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), University of Valladolid CSIC, Valladolid, Spain.
| | - Alessandra Girotti
- Smart Devices for NanoMedicine Group, University of Valladolid, LUCIA Building, Valladolid, Spain; Unidad de excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), University of Valladolid CSIC, Valladolid, Spain.
| |
Collapse
|
2
|
Wintjens AGWE, Simkens GA, Fransen PPKH, Serafras N, Lenaerts K, Franssen GHLM, de Hingh IHJT, Dankers PYW, Bouvy ND, Peeters A. Intraperitoneal drug delivery systems releasing cytostatic agents to target gastro-intestinal peritoneal metastases in laboratory animals: a systematic review. Clin Exp Metastasis 2022; 39:541-579. [PMID: 35737252 PMCID: PMC9338897 DOI: 10.1007/s10585-022-10173-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
For peritoneal metastases (PM), there are few curative treatment options, and they are only available for a select patient group. Recently, new therapies have been developed to deliver intraperitoneal chemotherapy for a prolonged period, suitable for a larger patient group. These drug delivery systems (DDSs) seem promising in the experimental setting. Many types of DDSs have been explored in a variety of animal models, using different cytostatics. This review aimed to provide an overview of animal studies using DDSs containing cytostatics for the treatment of gastro-intestinal PM and identify the most promising therapeutic combinations. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) guidelines. The 35 studies included revealed similar results: using a cytostatic-loaded DDS to treat PM resulted in a higher median survival time (MST) and a lower intraperitoneal tumor load compared to no treatment or treatment with a ‘free’ cytostatic or an unloaded DDS. In 65% of the studies, the MST was significantly longer and in 24% the tumor load was significantly lower in the animals treated with cytostatic-loaded DDS. The large variety of experimental setups made it impossible to identify the most promising DDS-cytostatic combination. In most studies, the risk of bias was unclear due to poor reporting. Future studies should focus more on improving the clinical relevance of the experiments, standardizing the experimental study setup, and improving their methodological quality and reporting.
Collapse
Affiliation(s)
- Anne G W E Wintjens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands. .,Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Geert A Simkens
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | | - Narcis Serafras
- Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Gregor H L M Franssen
- Department of Education, Content & Support, University Library, Maastricht University, Maastricht, The Netherlands
| | - Ignace H J T de Hingh
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Nicole D Bouvy
- Department of Surgery, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Andrea Peeters
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
3
|
Zhang Y, Wang S, Duan X, Xu X, Gao Y, Zhou J, Xu X, Li J. mPEG-PDLLA Micelles Potentiate Docetaxel for Intraperitoneal Chemotherapy in Ovarian Cancer Peritoneal Metastasis. Front Pharmacol 2022; 13:861938. [PMID: 35462938 PMCID: PMC9019464 DOI: 10.3389/fphar.2022.861938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer is the second most common cause of gynecological cancer death in women. It is usually diagnosed late and accompanied by peritoneal metastasis. For ovarian cancer with peritoneal metastasis, intraperitoneal (IP) chemotherapy can maintain a high drug concentration in the abdominal cavity and reduce local and systemic toxicity. Recently, docetaxel (DTX) has shown broad-spectrum antitumor activity against various malignant tumors, including ovarian cancer with peritoneal metastasis. However, DTX has limited clinical applications due to its poor water solubility, predisposition to hypersensitivity, fluid retention, and varying degrees of neurotoxicity. In this study, we prepared methoxy-poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PDLLA) micelles loaded with DTX and developed an alternative, less toxic, more effective DTX formulation, without Tween 80, and evaluated its pharmacokinetics in the abdominal cavity and its efficacy in ovarian cancer with peritoneal metastasis. The mean diameter of DTX-mPEG-PDLLA was about 25 nm, and the pharmacokinetics of BALB/c mice via IP showed that the plasma exposure of DTX-mPEG-PDLLA was about four times lower than that of DTX. Importantly, DTX-mPEG-PDLLA was significantly more effective than DTX and prolonged the survival period in a SKOV-3 ovarian cancer peritoneal metastasis model. Moreover, the apoptosis rate was significantly increased in vitro. Based on these findings, it is expected that DTX-mPEG-PDLLA can enhance efficacy against ovarian cancer peritoneal metastasis, while reducing toxic side effects, and has the potential to be used in the clinical treatment of peritoneal metastatic cancer.
Collapse
Affiliation(s)
- Yumei Zhang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of VIP Clinic, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shunli Wang
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaofan Duan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiao Xu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Gao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiuli Zhou
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolin Xu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jin Li,
| |
Collapse
|
4
|
Pavitra E, Dariya B, Srivani G, Kang SM, Alam A, Sudhir PR, Kamal MA, Raju GSR, Han YK, Lakkakula BVKS, Nagaraju GP, Huh YS. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin Cancer Biol 2021; 69:293-306. [PMID: 31260733 DOI: 10.1016/j.semcancer.2019.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the deadliest diseases worldwide due to a lack of early detection methods and appropriate drug delivery strategies. Conventional imaging techniques cannot accurately distinguish benign from malignant tissue, leading to frequent misdiagnosis or diagnosis at late stages of the disease. Novel screening tools with improved accuracy and diagnostic precision are thus required to reduce the mortality burden of this malignancy. Additionally, current therapeutic strategies, including radio- and chemotherapies carry adverse side effects and are limited by the development of drug resistance. Recent advances in nanotechnology have rendered it an attractive approach for designing novel clinical solutions for CRC. Nanoparticle-based formulations could assist early tumor detection and help to overcome the limitations of conventional therapies including poor aqueous solubility, nonspecific biodistribution and limited bioavailability. In this review, we shed light on various types of nanoparticles used for diagnosis and drug delivery in CRC. In addition, we will explore how these nanoparticles can improve diagnostic accuracy and promote selective drug targeting to tumor sites with increased efficiency and reduced cytotoxicity against healthy colon tissue.
Collapse
Affiliation(s)
- Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea.
| | - Begum Dariya
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Gowru Srivani
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Putty-Reddy Sudhir
- The Center for Translational Biomedical Research, UNCG, Kannapolis, NC-28081, USA
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
5
|
Roy P, Mignet N, Pocard M, Boudy V. Drug delivery systems to prevent peritoneal metastasis after surgery of digestives or ovarian carcinoma: A review. Int J Pharm 2021; 592:120041. [DOI: 10.1016/j.ijpharm.2020.120041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
|
6
|
Tiwari A, Saraf S, Jain A, Panda PK, Verma A, Jain SK. Basics to advances in nanotherapy of colorectal cancer. Drug Deliv Transl Res 2020; 10:319-338. [PMID: 31701486 DOI: 10.1007/s13346-019-00680-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer existing across the globe. It begins with the formation of polyps leading to the development of metastasis, especially in advanced stage patients, who necessitate intensive chemotherapy that usually results in a poor response and high morbidity owing to multidrug resistance and severe untoward effects to the non-cancerous cells. Advancements in the targeted drug delivery permit the targeting of tumor cells without affecting the non-tumor cells. Various nanocarriers such as liposomes, polymeric nanoparticles, carbon nanotubes, micelles, and nanogels, etc. are being developed and explored for effective delivery of cytotoxic drugs to the target site thereby enhancing the drug distribution and bioavailability, simultaneously subduing the side effects. Moreover, immunotherapy for CRC is being explored for last few decades. Few clinical trials have even potentially benefited patients suffering from CRC, still immunotherapy persists merely an experimental alternative. Assessment of the ongoing and completed trials is to be warranted for effective treatment of CRC. Scientists are paying efforts to develop novel carrier systems that may enhance the targeting potential of low therapeutic index chemo- and immune-therapeutics. Several preclinical studies have revealed the superior efficacy of nanotherapy in CRC as compared to conventional approaches. Clinical trials are being recruited to ascertain the safety and efficacy of CRC therapies. The present review discourses in a nutshell the molecular interventions including the genetics, signaling pathways involved in CRC, and advances in various strategies explored for the treatment of CRC with a special emphasis on nanocarriers based drug targeting.
Collapse
Affiliation(s)
- Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Ankit Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
- Institute of Pharmaceutical Research, GLA University, NH-2, Mathura-Delhi Road, Mathura, 281 406 (U.P.), India
| | - Pritish K Panda
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India.
| |
Collapse
|
7
|
Li X, Gong S, Yang L, Zhang F, Xie L, Luo Z, Xia X, Wang J. Study on the degradation behavior and mechanism of Poly(lactic acid) modification by ferric chloride. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.121991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Xu Y, Fang T, Yang Y, Sun L, Shen Q. Preparation of Deoxycholate-Modified Docetaxel-Cimetidine Complex Chitosan Nanoparticles to Improve Oral Bioavailability. AAPS PharmSciTech 2019; 20:302. [PMID: 31489504 DOI: 10.1208/s12249-019-1520-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022] Open
Abstract
Docetaxel (DTX) was effective in the treatment of neoplasm but could only be administered intravenously with the poor oral bioavailability owing to its undesirable solubility, remarkably metabolic conversion, and other factors. Cimetidine (CMD), a classic CYP3A4 isozyme inhibitor, had exhibited a wide range of inhibition on the metabolism of many drugs. The aim of this study was to construct the novel docetaxel-cimetidine (DTX-CMD) complex and the chitosan-deoxycholate nanoparticles based on it to confirm whether this formulation could show advantages in terms of solubility, dissolution rate, small intestinal absorption, and oral bioavailability in comparison with the pure drug. The solid-state characterization was carried out by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), and simultaneous DSC-TGA (SDT). Dissolution rate and kinetic solubility study were determined by evaluating the amount of DTX in distilled water and phosphate buffer solution (pH = 7.4), respectively. And small intestinal absorption and pharmacokinetics study were conducted in rats. The results of this study demonstrated that we successfully constructed DTX-CMD complex and its chitosan-deoxycholate nanoparticles. Furthermore, the DTX-CMD complex increased the solubility of DTX by 2.3-fold and 2.1-fold in distilled water and phosphate buffer solution, respectively. The ultimate accumulative amount of DTX-CMD complex nanoparticles through rat small intestinal in 2 h was approximately 4.9-fold and the oral bioavailability of the novel nanoparticles was enhanced 2.8-fold, compared with the pure DTX. The superior properties of the complex nanoparticles could both improve oral bioavailability and provide much more feasibility for other formulations of DTX.
Collapse
|
9
|
Colorectal Peritoneal Metastases: A Systematic Review of Current and Emerging Trends in Clinical and Translational Research. Gastroenterol Res Pract 2019; 2019:5180895. [PMID: 31065262 PMCID: PMC6466888 DOI: 10.1155/2019/5180895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal peritoneal metastases (CPM) are associated with abbreviated survival and significantly impaired quality of life. In patients with CPM, radical multimodality treatment consisting of cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) has demonstrated oncological superiority over systemic chemotherapy alone. In highly selected patients undergoing CRS + HIPEC, overall survival of over 60% has been reported in some series. These are patients in whom the disease burden is limited and where the diagnosis is made at an early stage in the disease course. Early diagnosis and a deeper understanding of the biological mechanisms that regulate CPM are critical to refining patient selection for radical treatment, personalising therapeutic approaches, enhancing prognostication, and ultimately improving long-term survivorship. In the present study, we outline three broad themes which represent critical future research targets in CPM: (1) enhanced radiological strategies for early detection and staging; (2) identification and validation of translational biomarkers for diagnostic, prognostic, and therapeutic deployment; and (3) development of optimized approaches for surgical cytoreduction as well as more precise strategies for intraperitoneal drug selection and delivery. Herein, we provide a contemporary narrative review of the state of the art in these three areas. A systematic review in accordance with PRISMA guidelines was undertaken on all English language studies published between 2007 and 2017. In vitro and animal model studies were deemed eligible for inclusion in the sections pertaining to biomarkers and therapeutic optimisation, as these areas of research currently remain in the early stages of development. Acquired data were then divided into hierarchical thematic categories (imaging modalities, translational biomarkers (diagnostic/prognostic/therapeutic), and delivery techniques) and subcategories. An interactive sunburst figure is provided for intuitive interrogation of the CPM research landscape.
Collapse
|
10
|
Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed Pharmacother 2018; 106:1461-1468. [PMID: 30119220 DOI: 10.1016/j.biopha.2018.07.102] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022] Open
Abstract
In the present study, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanoparticles were successfully prepared and coated with chitosan (CS). The prepared nanoparticles (NPs) were evaluated for their particle size, zeta potential, particle morphology, drug entrapment efficiency (EE%), and in vitro drug release profile. The anticancer activity of DTX-loaded NPs was assessed in human HT29 colon cancer cell line utilizing MTT assay. The pharmacokinetics of DTX-loaded NPs was monitored in Wistar rats in comparison to DTX solution. The prepared NPs exhibited particle sizes in the range 177.1 ± 8.2-287.6 ± 14.3 nm. CS decorated NPs exhibited a significant increase in particle size and a switch of zeta potential from negative to positive. In addition, high EE% values were obtained for CS coated PCL NPs and PLGA NPs as 67.1 and 76.2%, respectively. Moreover, lowering the rate of DTX in vitro release was achieved within 48 h by using CS coated NPs. Furthermore, a tremendous increase in DTX cytotoxicity was observed by CS-decorated PLGA NPs compared to all other NPs including DTX-free-NPs and pure DTX. The in vivo study revealed significant enhancement in DTX bioavailability from CS-decorated PLGA NPs with more than 4-fold increase in AUC compared to DTX solution. In conclusion, CS-decorated PLGA NPs are a considerable DTX-delivery carrier with magnificent antitumor efficacy.
Collapse
|
11
|
Yun Q, Wang SS, Xu S, Yang JP, Fan J, Yang LL, Chen Y, Fu SZ, Wu JB. Use of 5-Fluorouracil Loaded Micelles and Cisplatin in Thermosensitive Chitosan Hydrogel as an Efficient Therapy against Colorectal Peritoneal Carcinomatosis. Macromol Biosci 2016; 17. [PMID: 27762505 DOI: 10.1002/mabi.201600262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Indexed: 11/07/2022]
Abstract
Colorectal peritoneal carcinomatosis (CRPC) is a common systemic metastasis of intra-abdominal cancers. Intraperitoneal chemotherapy against CRPC is at present the preferred treatment. The aim of this study is to develop a novel hydrogel drug delivery system through the combination of 5-fluorouracil (5-FU) loaded polymeric micelles and cisplatin (DDP) in biodegradable thermosensitive chitosan (CS) hydrogel. The prepared CS hydrogel drug is a free-flowing solution at room temperature and forms a stationary gel at body temperature. Therefore, a CRPC mouse model is established to investigate the antitumor activity of CS hydrogel drug system. The results suggest that intraperitoneal administration of CS hydrogel drug can inhibit tumor growth and metastasis, and prolong survival time compared with other groups, thus improving the chemotherapeutic effect. Ki-67 immunohistochemical analysis reveals that tumors in the CS hydrogel drug group has lower cell proliferation in contrast to other groups (P < 0.001). Furthermore, hematoxylin-eosin staining of liver and lung tissue indicates that the CS hydrogel drug has also a certain inhibitory effect on colorectal cancer metastasis to the liver and lung. Hence, the work highlights the potential clinical applications of the CS hydrogel drug.
Collapse
Affiliation(s)
- Qin Yun
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Si Song Wang
- Department of Neurosurgery, the Affiliated 363 Hospital of Southwest Medical University, Chengdu, 610041, China
| | - Shan Xu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jin Ping Yang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Juan Fan
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ling Lin Yang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yue Chen
- Department of Nuclear Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Shao Zhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jing Bo Wu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
12
|
Al-Jamal KT, Bai J, Wang JTW, Protti A, Southern P, Bogart L, Heidari H, Li X, Cakebread A, Asker D, Al-Jamal WT, Shah A, Bals S, Sosabowski J, Pankhurst QA. Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans. NANO LETTERS 2016; 16:5652-60. [PMID: 27541372 DOI: 10.1021/acs.nanolett.6b02261] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A sound theoretical rationale for the design of a magnetic nanocarrier capable of magnetic capture in vivo after intravenous administration could help elucidate the parameters necessary for in vivo magnetic tumor targeting. In this work, we utilized our long-circulating polymeric magnetic nanocarriers, encapsulating increasing amounts of superparamagnetic iron oxide nanoparticles (SPIONs) in a biocompatible oil carrier, to study the effects of SPION loading and of applied magnetic field strength on magnetic tumor targeting in CT26 tumor-bearing mice. Under controlled conditions, the in vivo magnetic targeting was quantified and found to be directly proportional to SPION loading and magnetic field strength. Highest SPION loading, however, resulted in a reduced blood circulation time and a plateauing of the magnetic targeting. Mathematical modeling was undertaken to compute the in vivo magnetic, viscoelastic, convective, and diffusive forces acting on the nanocapsules (NCs) in accordance with the Nacev-Shapiro construct, and this was then used to extrapolate to the expected behavior in humans. The model predicted that in the latter case, the NCs and magnetic forces applied here would have been sufficient to achieve successful targeting in humans. Lastly, an in vivo murine tumor growth delay study was performed using docetaxel (DTX)-encapsulated NCs. Magnetic targeting was found to offer enhanced therapeutic efficacy and improve mice survival compared to passive targeting at drug doses of ca. 5-8 mg of DTX/kg. This is, to our knowledge, the first study that truly bridges the gap between preclinical experiments and clinical translation in the field of magnetic drug targeting.
Collapse
Affiliation(s)
| | | | | | - Andrea Protti
- Cardiovascular Division, James Black Centre, King's College London British Heart Foundation Centre of Excellence , London, SE5 9NU, U.K
| | - Paul Southern
- Healthcare Biomagnetics Laboratory, University College London , 21 Albemarle Street, London W1S 4BS, U.K
| | - Lara Bogart
- Healthcare Biomagnetics Laboratory, University College London , 21 Albemarle Street, London W1S 4BS, U.K
| | - Hamed Heidari
- Electron Microscopy for Materials Research (EMAT), University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | | | | - Wafa T Al-Jamal
- Dr. W.T. Al-Jamal, School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Ajay Shah
- Cardiovascular Division, James Black Centre, King's College London British Heart Foundation Centre of Excellence , London, SE5 9NU, U.K
| | - Sara Bals
- Electron Microscopy for Materials Research (EMAT), University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | - Quentin A Pankhurst
- Healthcare Biomagnetics Laboratory, University College London , 21 Albemarle Street, London W1S 4BS, U.K
| |
Collapse
|
13
|
Gremonprez F, Willaert W, Ceelen W. Animal models of colorectal peritoneal metastasis. Pleura Peritoneum 2016; 1:23-43. [PMID: 30911606 DOI: 10.1515/pp-2016-0006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer remains an important cause of mortality worldwide. The presence of peritoneal carcinomatosis (PC) causes significant symptoms and is notoriously difficult to treat. Therefore, informative preclinical research into the mechanisms and possible novel treatment options of colorectal PC is essential in order to improve the prognostic outlook in these patients. Several syngeneic and xenograft animal models of colorectal PC were established, studying a wide range of experimental procedures and substances. Regrettably, more sophisticated models such as those giving rise to spontaneous PC or involving genetically engineered mice are lacking. Here, we provide an overview of all reported colorectal PC animal models and briefly discuss their use, strengths, and limitations.
Collapse
Affiliation(s)
- Félix Gremonprez
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Wouter Willaert
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Wim Ceelen
- Department of Gastrointestinal Surgery, Ghent University Hospital, 2K12 IC UZ Gent De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
14
|
In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int J Pharm 2015; 495:560-571. [PMID: 26363112 DOI: 10.1016/j.ijpharm.2015.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/07/2015] [Accepted: 09/07/2015] [Indexed: 02/05/2023]
Abstract
In situ gel-forming system as local drug delivery system in dermal traumas has generated a great interest. Accumulating evidence shows that antimicrobial peptides play pivotal roles in the process of wound healing. Here in this study, to explore the potential application of antimicrobial peptide in wound healing, biodegradable poly(L-lactic acid)-Pluronic L35-poly(L-lactic acid) (PLLA-L35-PLLA) was developed at first. Then based on this polymer, an injectable in situ gel-forming system composed of human antimicrobial peptides 57 (AP-57) loaded nanoparticles and thermosensitive hydrogel was prepared and applied for cutaneous wound healing. AP-57 peptides were enclosed with biocompatible nanoparticles (AP-57-NPs) with high drug loading and encapsulation efficiency. AP-57-NPs were further encapsulated in a thermosensitive hydrogel (AP-57-NPs-H) to facilitate its application in cutaneous wound repair. As a result, AP-57-NPs-H released AP-57 in an extended period and exhibited quite low cytotoxicity and high anti-oxidant activity in vitro. Moreover, AP-57-NPs-H was free-flowing liquid at room temperature, and can form non-flowing gel without any crosslink agent upon applied on the wounds. In vivo wound healing assay using full-thickness dermal defect model of SD rats indicated that AP-57-NPs-H could significantly promote wound healing. At day 14 after operation, AP-57-NPs-H treated group showed nearly complete wound closure of 96.78 ± 3.12%, whereas NS, NPs-H and AP-57-NPs group recovered by about 68.78 ± 4.93%, 81.96 ± 3.26% and 87.80 ± 4.62%, respectively. Histopathological examination suggested that AP-57-NPs-H could promote cutaneous wound healing through enhancing granulation tissue formation, increasing collagen deposition and promoting angiogenesis in the wound tissue. Therefore, AP-57-NPs-H might have potential application in wound healing.
Collapse
|
15
|
Li X, Fan R, Wang Y, Wu M, Tong A, Shi J, Xiang M, Zhou L, Guo G. In situ gel-forming dual drug delivery system for synergistic combination therapy of colorectal peritoneal carcinomatosis. RSC Adv 2015. [DOI: 10.1039/c5ra21067d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel local drug delivery system composed of docetaxel loaded micelles and an oxaliplatin loaded hydrogel was fabricated and proved to be potentially useful in the treatment of colorectal peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Yuelong Wang
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Min Wu
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Juan Shi
- National Laboratory of Medical Molecular Biology
- Institute of Basic Medical, Sciences
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100005
- PR China
| | - Mingli Xiang
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| |
Collapse
|
16
|
Tian P, Peng C, Zhang L. Biodegradable polymeric gene delivering nanoscale hybrid micelles enhance the suppression effect of LRIG1 in breast cancer. RSC Adv 2015. [DOI: 10.1039/c5ra03740a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biodegradable polymeric gene delivering nanoscale hybrid micelles enhance the suppression effect of LRIG1 in breast cancer.
Collapse
Affiliation(s)
- Peng Tian
- Chengdu Medical College – The First Affiliated Hospital of Chengdu Medical College
- Chengdu
- China
| | - ChaoMing Peng
- Chengdu Medical College – The First Affiliated Hospital of Chengdu Medical College
- Chengdu
- China
| | - Lei Zhang
- Chengdu Medical College – The First Affiliated Hospital of Chengdu Medical College
- Chengdu
- China
| |
Collapse
|