1
|
Upadhyay T, Karekar VV, Potteth US, Saraogi I. Investigating the functional role of a buried interchain aromatic cluster in Escherichia coli GrpE dimer. Proteins 2023; 91:108-120. [PMID: 35988048 DOI: 10.1002/prot.26414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Aromatic clusters in the core of proteins are often involved in imparting structural stability to proteins. However, their functional importance is not always clear. In this study, we investigate the thermosensing role of a phenylalanine cluster present in the GrpE homodimer. GrpE, which acts as a nucleotide exchange factor for the molecular chaperone DnaK, is well known for its thermosensing activity resulting from temperature-dependent structural changes that allow control of chaperone function. Using mutational analysis, we show that an interchain phenylalanine cluster in a four-helix bundle of the GrpE homodimer assists in the thermosensing ability of the co-chaperone. Substitution of aromatic residues with hydrophobic ones in the core of the four-helix bundle reduces the thermal stability of the bundle and that of a connected coiled-coil domain, which impacts thermosensing. Cell growth assays and SEM images of the mutants show filamentous growth of Escherichia coli cells at 42°C, which corroborates with the defect in thermosensing. Our work suggests that the interchain edge-to-face aromatic cluster is important for the propagation of the structural signal from the coiled-coil domain to the four-helical bundle of GrpE, thus facilitating GrpE-mediated thermosensing in bacteria.
Collapse
Affiliation(s)
- Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Vaibhav V Karekar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| |
Collapse
|
2
|
Li J, Lu Z, Mao T, Li M, Wang H, Qu J, Chen J, Fang Y, Li F, Li B. Identification of the nucleotide exchange factor BmGrpE and its role under high-temperature stress in silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21664. [PMID: 32091635 DOI: 10.1002/arch.21664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The high-temperature stress gene GrpE plays an important role in coping with high-temperature stress. The mutation of key sites of this gene can improve the high-temperature resistance of organisms. In the present study, using complementary DNAs from the silkworm fat body as the template, the open reading frame sequence of the GrpE gene (BmGrpE) was amplified and was found to be 644 bp in length and encode a protein with a predicted molecular weight of 24.1 kDa. The presence of a binding site for the heat shock transcription factor (Hsf1) at -1440 bp upstream of its coding region indicates that BmGrpE may respond to high-temperature stress. BmGrpE was constitutively expressed throughout developmental stages, with the highest level observed in the 5th instar larvae stage. Moreover, in 5th instar larvae (the 3th day), BmGrpE was expressed in all tissues examined, with the highest levels in the fat body, silk gland, and midgut. Interestingly, under high-temperature stress, TiO2 nanoparticle treatment increased the messenger RNA levels of BmGrpE in the fat body and silk gland. After treatment with dsRNA of BmGrpE, the cell viability of BmN cells was significantly decreased under 34°C and H2 O2 stress (p < .05). Mutation of BmGrpE (H163L) enhanced the resistance of BmN cells under high-temperature stress. These results provide new clues for the study of molecular mechanisms of insect resistance to high temperatures.
Collapse
Affiliation(s)
- Jinxin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhengting Lu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|