1
|
Nascimento ED, Abrantes-Coutinho VE, Oliveira TMBF, Santiago PS, Carvalho FAO. Biorecognition of hydrogen peroxide using a novel electrochemical platform designed with Glossoscolex paulistus giant hemoglobin. Anal Bioanal Chem 2022; 414:3729-3739. [PMID: 35338376 DOI: 10.1007/s00216-022-04020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
The giant extracellular hemoglobin of the annelid Glossoscolex paulistus (HbGp; 3.6 MDa) is a valuable and underexplored supramolecular hemoprotein system for the biorecognition of reactive oxygen species. In this work, an efficient and simple electrochemical platform was designed for analyzing H2O2, using HbGp covalently immobilized on Nafion®-modified glassy carbon electrode, named as HbGp/Nafion/GCE. Voltammetric and spectroscopic studies revealed the importance of prior modification of the electrodic support with the conducting polymer to obtain satisfactory hemoglobin electroactivity, as well as a biocompatible microenvironment for its immobilization. In terms of biological activity, it was observed a greater reactivity of the biomolecule in acidic medium, enabling the detection of the analyte by a quasi-reversible mechanism, whose kinetics was limited by analyte diffusion. In the presence of H2O2, the native structure of hemoglobin (oxy-HbGp (Fe2+)) oxidizes to ferryl-HbGp (Fe4+) and this redox reaction can be monitored on HbGp/Nafion/GCE with a detection limit of 8.5 × 10‒7 mol L-1. In addition to high sensitivity, the electrochemical biosensor also provided reproducible, consistent, and accurate measurements. The electroanalytical method showed an appropriate performance to quantify different levels of H2O2 in milk samples, proving the potential of HbGp/Nafion/GCE for this purpose.
Collapse
Affiliation(s)
- Evair D Nascimento
- Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil.,Universidade Federal Do Sul E Sudeste Do Pará, Folha 17, Quadra 04, Lote Especial, Marabá, PA, 68505-080, Brazil
| | - Vanessa E Abrantes-Coutinho
- Centro de Ciência E Tecnologia, Universidade Federal Do Cariri, Avenida Tenente Raimundo Rocha, 1639, Cidade Universitária, Juazeiro Do Norte, CE, 63048-080, Brazil
| | - Thiago M B F Oliveira
- Centro de Ciência E Tecnologia, Universidade Federal Do Cariri, Avenida Tenente Raimundo Rocha, 1639, Cidade Universitária, Juazeiro Do Norte, CE, 63048-080, Brazil
| | - Patrícia S Santiago
- Universidade Estadual Paulista, Instituto Avançado de Estudos Do Mar, Campus de Registro, Av. Nelson Brihi Badur, 430 - Vila Tupy, Registro, SP, 11900-000, Brazil
| | - Francisco A O Carvalho
- Universidade Federal Do Sul E Sudeste Do Pará, Folha 17, Quadra 04, Lote Especial, Marabá, PA, 68505-080, Brazil.
| |
Collapse
|
2
|
Savla C, Munoz C, Hickey R, Belicak M, Gilbert C, Cabrales P, Palmer AF. Purification of Lumbricus terrestris Mega-Hemoglobin for Diverse Oxygen Therapeutic Applications. ACS Biomater Sci Eng 2020; 6:4957-4968. [PMID: 33313397 DOI: 10.1021/acsbiomaterials.0c01146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxygen therapeutics are being developed for a variety of applications in transfusion medicine. In order to reduce the side-effects (vasoconstriction, systemic hypertension, and oxidative tissue injury) associated with previous generations of oxygen therapeutics, new strategies are focused on increasing the molecular diameter of hemoglobin obtained from mammalian sources via polymerization and encapsulation. Another approach towards oxygen therapeutic design has centered on using naturally occurring large molecular diameter hemoglobins (i.e. erythrocruorins) derived from annelid sources. Therefore, the goal of this study was to purify erythrocruorin from the terrestrial worm Lumbricus terrestris for diverse oxygen therapeutic applications. Tangential flow filtration (TFF) was used as a scalable protein purification platform to obtain a >99% pure LtEc product, which was confirmed by size exclusion high performance liquid chromatography and SDS-PAGE analysis. In vitro characterization concluded that the ultra-pure LtEc product had oxygen equilibrium properties similar to human red blood cells, and a lower rate of auto-oxidation compared to human hemoglobin, both of which should enable efficient oxygen transport under physiological conditions. In vivo evaluation concluded that the ultra-pure product had positive effects on the microcirculation sustaining functional capillary density compared to a less pure product (~86% purity). In summary, we purified an LtEc product with favorable biophysical properties that performed well in an animal model using a reliable and scalable purification platform to eliminate undesirable proteins.
Collapse
Affiliation(s)
- Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Carlos Munoz
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Maria Belicak
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Christopher Gilbert
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Characterization of the apo-form of extracellular hemoglobin of Glossoscolex paulistus (HbGp) and its stability in the presence of urea. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:449-462. [PMID: 32681183 DOI: 10.1007/s00249-020-01449-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/16/2020] [Accepted: 07/08/2020] [Indexed: 01/04/2023]
Abstract
The structural study of small heme-containing proteins, such as myoglobin, in the apo-form lacking heme has been extensively described, but the characterization and stability of the giant Glossoscolex paulistus hemoglobin (HbGp), in the absence of heme groups, has not been studied. Spectroscopic data show efficient extraction of the heme groups from the hemoglobin, with relatively small secondary and tertiary structural changes in apo-HbGp noticed compared to oxy-HbGp. Electrophoresis shows a partial precipitation of the trimer abc (significantly lower intensity of the corresponding band in the gel), due to extraction of heme groups, and the predominance of the intense monomeric d band, as well as of two linker bands. AUC and DLS data agree with SDS-PAGE in showing that the apo-HbGp undergoes dissociation into the d and abc subunits. Subunits d and abc are characterized by sedimentation coefficients and percentage contributions of 2.0 and 3.0 S and 76 and 24%, respectively. DLS data suggest that the apo-HbGp is unstable, and two populations are present in solution: one with a diameter around 6.0 nm, identified with the dissociated species, and a second one with diameter 100-180 nm, due to aggregated protein. Finally, the presence of urea promotes the exposure of the fluorescent probes, extrinsic ANS and intrinsic protein tryptophans to the aqueous solvent due to the unfolding process. An understanding of the effect of heme extraction on the stability of hemoproteins is important for biotechnological approaches such as the introduction of non-native prosthetic groups and development of artificial enzymes with designed properties.
Collapse
|
4
|
Carvalho FAO, Caruso CS, Nascimento ED, Oliveira TMBF, Bachega JFR, Tabak M. Oligomeric stability of Glossoscolex paulistus hemoglobin as a function of the storage time. Int J Biol Macromol 2019; 133:30-36. [PMID: 30986471 DOI: 10.1016/j.ijbiomac.2019.04.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
Glossoscolex paulistus hemoglobin structure is composed of 144 globin chains and 36 polypeptide chains lacking the heme group, with a total molecular mass of 3600 kDa. The current study focuses on the oxy-HbGp oligomeric stability, as a function of the storage time, at pH 7.0, using dynamic light scattering, analytical ultracentrifugation (AUC), optical absorption and size exclusion chromatography (SEC). HbGp stored in Tris-HCl buffer, pH 7.0, at 4 °C, for two years remains in the native form, while 4-6 years HbGp stocks present typical hemichrome species absorption spectra. AUC and SEC analyses show that the contribution of HbGp-subunits, such as, dodecamer (abcd)3, tetramer abcd, trimer abc and monomer d, increases with the protein aging due to the lower stability of the HbGp with the time. The dissociation and the oxidation of the iron noted for the older protein solutions indicate that HbGp storage for periods of time longer than two years changes its ability to carry oxygen. Despite the reduction of HbGp stability and oxygen carrying capacity with aging, the protein stability is still larger as compared to mammalian hemoglobins. Thus, the extracellular hemoglobins are quite stable and resistant to the auto-oxidation process, making them of interest for biotechnological applications.
Collapse
Affiliation(s)
| | - Celia S Caruso
- Instituto de Química de São Carlos - Universidade de São Paulo, Brazil
| | - Evair D Nascimento
- Instituto de Ciências Exatas - Universidade Federal do Sul e Sudeste do Pará, Brazil
| | - Thiago Mielle B F Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, Cidade Universitária, 63048-080 Juazeiro do Norte, CE, Brazil
| | - José F R Bachega
- Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Brazil
| | - Marcel Tabak
- Instituto de Química de São Carlos - Universidade de São Paulo, Brazil
| |
Collapse
|
5
|
Abstract
Denaturants such as the guanidinium cation unfold proteins at molar concentrations, which interferes with ultraviolet- and infrared-based spectroscopy measurements. Dodine denatures some proteins cooperatively at a thousand-fold lower concentration, allowing for spectroscopy measurements. Nonetheless, dodine's microscopic mechanism of interaction with proteins is not understood. We probe the effect of dodine on α-helices and tertiary structure by investigating the stability of the small helical protein B. Experiments show that dodine promotes formation of helical structure (a kosmotropic effect), while inducing the loss of tertiary structure (a chaotropic effect). Although dodine destabilizes native protein structure, it does not lower the thermal denaturation midpoint temperature of protein B. All-atom simulations reveal the cause for both observations: The denaturant action of dodine's guanidyl headgroup is counteracted by its aliphatic tail, which stabilizes amphipathic helices and associates with an expanded protein core. The Janus-like behavior of headgroup and tail make dodine a simultaneous stabilizer-destabilizer or "kosmo-chaotrope".
Collapse
Affiliation(s)
- Drishti Guin
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Shriyaa Mittal
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL 61801
| | - Brian Bozymski
- Department of Physics, University of Illinois, Urbana, Illinois 61801
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana, IL 61801
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL 61801
- Department of Physics, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
6
|
Caruso CS, Biazin E, Carvalho FA, Tabak M, Bachega JF. Metals content of Glossoscolex paulistus extracellular hemoglobin: Its peroxidase activity and the importance of these ions in the protein stability. J Inorg Biochem 2016; 161:63-72. [DOI: 10.1016/j.jinorgbio.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/08/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
|
7
|
Wang Y, Zhang H, Kang Y, Fei Z, Cao J. The interaction of perfluorooctane sulfonate with hemoglobin: Influence on protein stability. Chem Biol Interact 2016; 254:1-10. [DOI: 10.1016/j.cbi.2016.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/13/2016] [Accepted: 05/15/2016] [Indexed: 11/30/2022]
|
8
|
Minton AP. Recent applications of light scattering measurement in the biological and biopharmaceutical sciences. Anal Biochem 2016; 501:4-22. [PMID: 26896682 PMCID: PMC5804501 DOI: 10.1016/j.ab.2016.02.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Carvalho JWP, Carvalho FAO, Santiago PS, Tabak M. Thermal stability of extracellular hemoglobin of Rhinodrilus alatus (HbRa): DLS and SAXS studies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:549-63. [DOI: 10.1007/s00249-016-1121-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
|
10
|
Alves FR, Carvalho FAO, Carvalho JWP, Tabak M. Interaction of cationic dodecyl-trimethyl-ammonium bromide with oxy-HbGp by isothermal titration and differential scanning calorimetric studies: Effect of proximity of isoelectric point. Biopolymers 2015; 105:199-211. [PMID: 26574155 DOI: 10.1002/bip.22777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 11/10/2022]
Abstract
In this work, isothermal titration and differential scanning calorimetric methods, in combination with pyrene fluorescence emission and dynamic light scattering have been used to investigate the interaction of dodecyltrimethylammonium bromide (DTAB) with the giant extracellular Glossoscolex paulistus hemoglobin (HbGp) in the oxy-form, at pH values around the isoelectric point (pI ≈ 5.5). Our ITC results have shown that the interaction of DTAB with the hemoglobin is more intense at pH 7.0, with a smaller cac (critical aggregation concentration) value. The increase of protein concentration does not influence the cac value of the interaction, at both pH values. Therefore, the beginning of the DTAB-oxy-HbGp premicellar aggregates formation, in the cac region, is not affected by the increase of protein concentration. HSDSC studies show higher Tm values at pH 5.0, in the absence and presence of DTAB, when compared with pH 7.0. Furthermore, at pH 7.0, an aggregation process is observed with DTAB in the range from 0.75 to 1.5 mmol/L, noticed by the exothermic peak, and similar to that observed for pure oxy-HbGp, at pH 5.0, and in the presence of DTAB. DLS melting curves show a decrease on the hemoglobin thermal stability for the oxy-HbGp-DTAB mixtures and formation of larger aggregates, at pH 7.0. Our present data, together with previous results, support the observation that the protein structural changes, at pH 7.0, occur at smaller DTAB concentrations, as compared with pH 5.0, due to the acidic pI of protein that favors the oxy-HbGp-cationic surfactant interaction at neutral pH.
Collapse
Affiliation(s)
- Fernanda Rosa Alves
- Instituto De Química De São Carlos, Universidade De São Paulo, São Carlos, SP, Brazil
| | | | | | - Marcel Tabak
- Instituto De Química De São Carlos, Universidade De São Paulo, São Carlos, SP, Brazil
| |
Collapse
|