1
|
Shahraki O, Mohammadi L. Investigation of adsorption/desorption properties of vancomycin on ionic liquid modified magnetic activated carbon in aqueous solutions and cytotoxicity evaluation of synthesized nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:925-935. [PMID: 39709325 DOI: 10.1007/s11356-024-35628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
Effluents containing antibiotics raise concerns due to their potential to promote or sustain bacterial resistance and disrupt essential cycles and processes critical to aquatic ecology, agriculture, and animal farming. Vancomycin is a glycopeptide antibiotic, recognized as the treatment for cases in which other antibiotics are unsuccessful. The efficient elimination of antibiotics plays a crucial role in managing antibiotic pollution. In this work, an ionic liquid-based magnetic activated carbon (IL@mAC) adsorbent was synthesized and utilized for removal of vancomycin in an aqueous solution. Parameters such as pH, dosage of adsorbent, contact time and antibiotic concentration were investigated. The data showed the efficient elimination of vancomycin in the solution. The maximum removal of vancomycin was obtained at pH 6. The optimum contact time and vancomycin concentration were found to be 30 min and 40 mg.L-1, respectively for 0.6 g of IL@mAC in 50 mL sample solutions. Towards the removal of vancomycin, an adsorption efficiency of 83.4% was achieved for five subsequent cycles of vancomycin adsorption-desorption. The adsorption data for vancomycin fitted well with the Langmuir isotherm, and the maximum sorption capacity of IL@mAC was 132 mg.g-1. Additionally, cytotoxicity studies indicated that the synthesized IL@mAC was non-toxic to normal Human umbilical vein endothelial (HUVEC) cells at concentrations ≤ 800 mg.L-1. The use of this system facilitates the rapid and effective removal of vancomycin from wastewater through the application of an external magnetic field.
Collapse
Affiliation(s)
- Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leili Mohammadi
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 98167-43463, Iran.
| |
Collapse
|
2
|
Dang LTC, Phan HVT, Dao MT, Dang TT, Suvokhiaw S, Do NT, Nguyen TAM, Nguyen VK, Hoang LTTT. Facile synthesis of a 3D magnetic graphene oxide/Fe 3O 4/banana peel-derived cellulose composite aerogel for the efficient removal of tetracycline. RSC Adv 2024; 14:34457-34470. [PMID: 39469025 PMCID: PMC11515848 DOI: 10.1039/d4ra04942j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
Many initiatives have incorporated graphene oxide (GO) and biomass into aerogels for wastewater treatment. We report on the facile fabrication of a magnetic GO/Fe3O4/banana peel-derived cellulose (bio-cellulose) aerogel using an ultrasound-assisted mechanical mixing method and freeze-drying technique for the removal of tetracycline (TC). The component materials and composite aerogel were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), nitrogen adsorption-desorption analysis, and vibrating sample magnetometry (VSM). The effects of solution pH and adsorbent dose on the adsorption performance of the synthesized adsorbents were investigated. The adsorption behavior at the equilibrium of the GO/Fe3O4/bio-cellulose aerogel was studied and analyzed using four well-known non-linear models: Langmuir, Freundlich, Sips, and Temkin. The results showed that the experimental data fitted well with the Freundlich and Sips isotherm models. The maximum adsorption capacity achieved from the Sips model was 238.7 mg g-1. The adsorption kinetics were studied and proved to follow the Elovich kinetic model with an initial rate of 0.89 g g-1 min-1. These results confirm the favorable adsorption of TC on the heterogeneous surface that exhibits a wide range distribution of adsorption energies of the desired GO/Fe3O4/bio-cellulose aerogel. The experimental findings demonstrate that the aerogel possesses the notable features of environmental friendliness, cost-effectiveness, and comparatively high TC adsorption capacity. Therefore, utilizing biomass to develop the structure of the magnetic GO-based composite aerogel is significantly promising for antibiotic-containing wastewater treatments.
Collapse
Affiliation(s)
- Lam-Tuan-Cuong Dang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh 700000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Minh-Trung Dao
- Department of Environmental Engineering, Thu Dau Mot University Thu Dau Mot City Binh Duong 820000 Vietnam
| | - Thanh-Truc Dang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Ha Noi Vietnam
| | - Soontorn Suvokhiaw
- Department of Chemistry, Faculty of Science, Silpakorn University Nakhon Pathom 73000 Thailand
| | - Nhan-Tam Do
- Faculty of Natural Science Education, Dong Nai University Dong Nai Vietnam
| | - Thi-Anh-Minh Nguyen
- Institute of Research and Development, Duy Tan University Da Nang Vietnam
- School of Engineering & Technology, Duy Tan University Da Nang Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh 700000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Le-Thuy-Thuy-Trang Hoang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Hafeez S, Ishaq A, Intisar A, Mahmood T, Din MI, Ahmed E, Tariq MR, Abid MA. Predictive modeling for the adsorptive and photocatalytic removal of phenolic contaminants from water using artificial neural networks. Heliyon 2024; 10:e37951. [PMID: 39386831 PMCID: PMC11462199 DOI: 10.1016/j.heliyon.2024.e37951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Numerous harmful phenolic contaminants are discharged into water that pose a serious threat to environment where two of the most important purification methodologies for the mitigation of phenolic contaminants are adsorption and photocatalysis. Besides cost, each process has drawbacks in terms of productivity, environmental impact, sludge creation, and the development of harmful by-products. To overcome these limitations, the modeling and optimization of water treatment methods is required. Artificial Intelligence (AI) is employed for the interpretation of treatment-based processes due to powerful learning, simplicity, high estimation accuracy, effectiveness, and improvement of process efficiency where artificial neural networks (ANNs) are most frequently employed for predicting and analyzing the efficiency of processes applied for the mitigation of these phenolic contaminants from water. ANNs are superior to conventional linear regression models because the latter are incapable of dealing with non-linear systems. ANNs can also reduce the operational cost of treating phenol-contaminated water. A correlation coefficient of >0.99 can be achieved using ANN with enhanced phenol mitigation percentage accuracy generally ranging from 80 % to 99.99 %. Using ANN optimization, the maximum phenol mitigation efficiencies achieved were 99.99 % for phenol, 99.93 % for bisphenol A, 99.6 % for nonylphenol, 97.1 % for 2-nitrophenol, 96.6 % for 4-chlorophenol and 90 % for 2,6-dichlorophenol. In numerous ANN models, Levenberg-Marquardt backpropagation algorithm for training was employed using MATLAB software. This study overviews their employment and application for optimization and modeling of removal processes and explicitly discusses the important input and output parameters necessary for better performance of the system. The comparison of ANNs with other AI techniques revealed that ANNs have better predictability for mitigation of most of the phenolic contaminants. Furthermore, several challenges and future prospects have also been discussed.
Collapse
Affiliation(s)
- Shahzar Hafeez
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Ayesha Ishaq
- Centre for Physical Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Azeem Intisar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Tariq Mahmood
- Centre for High Energy Physics, University of the Punjab, 54590, Pakistan
| | - Muhammad Imran Din
- Centre for Physical Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Ejaz Ahmed
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | | | | |
Collapse
|
4
|
Hassan EA, Tony M, Awad MM. Exploring the reclamation pathway science of Beachwood powder for pharmaceutical acetaminophen drug effluent management. PLoS One 2024; 19:e0309552. [PMID: 39392806 PMCID: PMC11469541 DOI: 10.1371/journal.pone.0309552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/27/2024] [Indexed: 10/13/2024] Open
Abstract
High effective low-cost substance derived from agriculture-based waste towards a circular economy concept showed a significant green approach for pharmaceuticals uptake in aqueous solution. Beachwood sawdust was used as the source of cellulose based adsorbents. Cellulose is isolated from the waste and in parallel magnetite nanoparticles are prepared by the simple co-precipitation technique and the two substances are mixed in various proportions to be acetaminophen adsorbent. Characteristics of the prepared magnetite (M)/sawdust (SD) composite in various proportions (M:SD (1:1), M:SD (1:2), M:SD (1:3), M:SD (1:5) and M:SD (2:1) were assessed using scanning electron microscope (SEM) transmission electron microscope (TEM) and X-ray diffractometer (XRD) which revealed the presence magnetite and cellulose. Also, for the object of recoverable adsorbent, vibrating sample magnetometer (VSM) of the adsorbent is investigated to evaluate its sustainability. The highest removal rate was associated with M:SD (1:2) compared to the other composites and the pristine magnetite or sawdust materials within 2 hours of isotherm time. The adsorption parameters are optimized and the maximal yield is attained at pH (7.0), adsorbent dose of 2.0 g/L at room temperature. The adsorption matrix is following Langmuir model and fitted to the second-order kinetic model. The process is exothermic in nature and highlighted physisorption tendency. The highest monolayer adsorption uptake was investigated at 7.0 mg/g which corresponds to the M:SD (1:2) adsorbent.
Collapse
Affiliation(s)
- Ehssan Ahmed Hassan
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Maha Tony
- Basic Engineering Science Department, Faculty of Engineering, Menoufia University, Shebin El-Kom, Egypt
- Advanced Materials/Solar Energy and Environmental Sustainability (AMSEES) Laboratory, Faculty of Engineering, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamed M. Awad
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Mathematics, Faculty of Science, Suez Canal University, El-Sheik Zayed, Ismailia, Egypt
| |
Collapse
|
5
|
Mendoza-Gomora GJ, Gutierrez-Segura E, Solache-Rios M, López-Téllez G, Garcia-Fabila MM. Removal of tetracycline by natural and iron-modified orange peel from aqueous solutions: processes in batch, column, and mechanism. ENVIRONMENTAL TECHNOLOGY 2024; 45:4979-4992. [PMID: 37970827 DOI: 10.1080/09593330.2023.2283785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/08/2023] [Indexed: 11/19/2023]
Abstract
Natural (OP) and iron modified orange peel (Fe-OP) were used for the removal of tetracycline from aqueous solutions in batch and fixed bed column systems. The adsorbents were characterized by infrared spectroscopy (IR) and the morphologies of the surfaces before and after tetracycline removal were determined by scanning electron microscope and the elemental analysis was performed by X-ray dispersive spectroscopy (EDS). The kinetic behaviour showed that the equilibrium was reached in 24 and 10 h for OP and Fe-OP respectively, the data were adjusted to both the pseudo second order and intraparticle diffusion models which indicate a chemisorption mechanism and the adsorption process is controlled by the intraparticle diffusion process. The isotherms showed that the adsorption capacity was eight times higher for Fe-OP than OP and the data were best fitted to the Freundlich model indicating that the materials are heterogeneous. The effect of flow rate, influent concentration and adsorbent mass were determined in the column system. The data were adjusted to the Thomas, Adams-Bohart and Yoon-Nelson models, and the best adjustment of data was with the first one. The adsorption capacities in the column system were about half of those obtained in the batch system. These adsorbents show good properties for the removal of tetracycline from water.
Collapse
Affiliation(s)
- G J Mendoza-Gomora
- Facultad de Química, Universidad Autónoma del Estado de México,Toluca Estado de México, México
| | - E Gutierrez-Segura
- Facultad de Química, Universidad Autónoma del Estado de México,Toluca Estado de México, México
| | - M Solache-Rios
- Departamento de Química, Instituto Nacional de Investigaciones Nucleares, Estado de México México
| | - G López-Téllez
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM (CCIQS), Toluca Estado de México, México
| | - M M Garcia-Fabila
- Facultad de Química, Universidad Autónoma del Estado de México,Toluca Estado de México, México
| |
Collapse
|
6
|
Madikizela LM, Pakade VE. Trends in removal of pharmaceuticals in contaminated water using waste coffee and tea-based materials with their derivatives. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10857. [PMID: 36973862 DOI: 10.1002/wer.10857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
The introduction of large amounts of pharmaceuticals into the environmental waters is well-documented in literature with their occurrence reported in all different water matrices accessible to humans and animals. At the same time, the increasing consumption of coffee and tea-based beverages results in the generation of solid waste, which is mostly disposed-off in the environment. To minimize environmental pollution, coffee and tea-based materials have been proposed as suitable options to remove pharmaceuticals in environmental waters. Therefore, this article provides a critical review on the preparation and applications of coffee and tea-based materials in removing pharmaceuticals from contaminated water. In this context, most studies in literature focused on the applications of these materials as adsorbents, while only limited work on their role in degradation of pharmaceuticals is discussed. The successful application in adsorption studies is attributed to high surface areas of adsorbents and the ability to easily modify the adsorbent surfaces by incorporating functional groups that provide additional oxygen atoms, which promote easy interactions with pharmaceuticals. Hence, the adsorption mechanisms are mostly described by hydrogen bonding, electrostatic and π-π interactions with sample pH playing a dominant role in the adsorption process. Overall, the present article focused on the developments, trends and future research direction on the preparations and applications of coffee and tea-based materials for efficient removal of pharmaceuticals in water. PRACTITIONER POINTS: Review of tea and coffee wastes application for removal of pharmaceuticals in water Key applications in adsorption and degradation of pharmaceuticals in water Removal mostly explained by hydrogen bonding, electrostatic, and π-π interactions Trends, gaps, and future research to be explored are reviewed and highlighted.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, South Africa
| | - Vusumzi Emmanuel Pakade
- Department of Biotechnology and Chemistry, Private Bag X 021, Vaal University of Technology, Vanderbijlpark, South Africa
| |
Collapse
|
7
|
Liu B, Zhang L, Yao Q, Chen Q, Zhao X. Magnetic porous carbons derived from metal-organic frameworks for effective adsorption of tetracycline. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Deep reinforcement learning for automated search of model parameters: photo-fenton wastewater disinfection case study. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07803-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractNumerical optimization solves problems that are analytically intractable at the cost of arriving at a sufficiently good but rarely optimal solution. To maximize the result, optimization algorithms are run with the guidance and supervision of a human, usually an expert in the problem. Recent advances in deep reinforcement learning motivate interest in an artificial agent capable of learning to do the expert’s task. Specifically, we present a proximal policy optimization agent that learns to optimize in a real case study such as the modeling of the photo-fenton disinfection process, which involves a number of parameters that have to be adjusted to minimize the error of the model with respect to the experimental data collected in several trials. The expert spends an average of 4 h to find a suitable set of parameters. On the other hand, the agent we present does not require a human expert to guide or validate the optimization procedure and achieves similar results in $$2.5\times$$
2.5
×
less time.
Collapse
|
9
|
Efficient tetracycline removal from aqueous solutions using ionic liquid modified magnetic activated carbon (IL@mAC). JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.jece.2021.106570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Li Y, Lin X, Zhang C, Zhuang Q, Dong W. Polydopamine magnetic microspheres grafted with sulfonic acid groups for efficient adsorption of tetracycline. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Kılıç D, Sevim M, Eroğlu Z, Metin Ö, Karaca S. Strontium oxide modified mesoporous graphitic carbon nitride/titanium dioxide nanocomposites (SrO-mpg-CN/TiO2) as efficient heterojunction photocatalysts for the degradation of tetracycline in water. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
|
13
|
Han TU, Kim J, Kim K. Use of spent coffee ground as a reducing agent for enhanced reduction of chromate by freezing process. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Yao L, Zhang L, Long B, Dai Y, Ding Y. N-heterocyclic hyper-cross-linked polymers for rapid and efficient adsorption of organic pollutants from aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Tony MA. Low-cost adsorbents for environmental pollution control: a concise systematic review from the prospective of principles, mechanism and their applications. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1878037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Maha A. Tony
- Advanced Materials/Solar Energy and Environmental Sustainability (AMSEES) Laboratory, Basic Engineering Science Department, Faculty of Engineering, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
16
|
Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141975. [PMID: 33207448 DOI: 10.1016/j.scitotenv.2020.141975] [Citation(s) in RCA: 330] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 05/03/2023]
Abstract
Tetracyclines (TCs), used as human and veterinary medicines, are the most widely used antibiotics. More than 75% of TCs are excreted in an active form and released into the environment through human and animal urine and feces, causing adverse effects on the ecological system and human health. Few articles review the environmental occurrence and behaviors of TCs, as well as their risks and toxicities. Here, we comprehensively summarized the recent advances on the following important issues: (1) Environmental occurrence of TCs. TCs are used globally and their occurrence in the aquatic environment has been documented, including surface water, groundwater, drinking water, wastewater, sediment, and sludge. (2) Environmental behaviors of TCs, particularly the fate of TCs in wastewater treatment plants (WWTPs). Most WWTPs cannot effectively remove TCs from wastewater, so alternative methods for efficient removal of TCs need to be developed. The latest degradation methods of TCs are summarized, including adsorption, photocatalytic, photochemical and electrochemical, and biological degradations. (3) Toxicities and possible risks of TCs. The toxicological data of TCs indicate that several TCs are more toxic to algae than fish and daphnia. Risk assessments based on individual compound exposure indicate that the risks arising from the current concentrations of TCs in the aquatic environment cannot be ignored.
Collapse
Affiliation(s)
- Longyao Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
17
|
Li J, Guo K, Cao Y, Wang S, Song Y, Zhang H. Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116151. [PMID: 33280909 DOI: 10.1016/j.envpol.2020.116151] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Microplastics are emerging contaminants and widely distributed in the environment. They are considered as a vector of numerous organic pollutants including antibiotics in aquatic environments and thereby influence their distribution and transport behaviors. However, the effects of microplastics on the environmental behavior of antibiotics in soils remain largely unclear. In this paper, the influence of polyamide (PA) microplastics on sorption and transport of the selected antibiotic [oxytetracycline (OTC)] in a sandy loamy soil was studied by performing batch and column experiments. Results show that PA microplastics increase the pH of reaction systems, which contributes to OTC sorption onto the tested soils. However, altering pH is not the key influencing mechanism because the overall sorption capacity decreases slightly after adding PA microplastics, which can be attributed to the dilution effect. Reduction of OTC sorption by adding microplastics promotes the migration of OTC in the tested soil, which could be demonstrated by the results of column experiments that the breakthrough of OTC occurs earlier with an increasing content of PA microplastics. According to the fitting parameters of HYDRUS-1D model, PA microplastics can affect the transport of OTC by altering the soil pore structure and dispersion coefficient. These results provide new insight into the interaction between microplastics and organic pollutants in soil environments.
Collapse
Affiliation(s)
- Jia Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Kai Guo
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yingsong Cao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Shengsen Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haibo Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| |
Collapse
|
18
|
Ranjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpää M. Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: Mechanism, kinetic, isotherms and thermodynamic study. Int J Biol Macromol 2020; 155:421-429. [DOI: 10.1016/j.ijbiomac.2020.03.188] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/11/2023]
|
19
|
Fagbayigbo BO, Opeolu BO, Fatoki OS. Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water using leaf biomass ( Vitis vinifera) in a fixed-bed column study. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:221-233. [PMID: 32399234 PMCID: PMC7203292 DOI: 10.1007/s40201-020-00456-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) onto modified activated carbons (AC-H3PO4) produced from leaf biomass of Vitis vinifera leaf litter in a fixed bed column experiment was investigated in this study. METHODS The column bed was packed with the produced activated carbons in a uniform particle size of ˃ 64 μm. Experimental parameters including the initial concentration of the solution, column bed height, the mass of adsorbent and flow rate were optimized to establish the best adsorption efficiency parameters for the system. Breakthrough and saturated time were estimated from the column fixed bed experimental data and analysed using the Adam-Bohart, Thomas model, and Yoon-Nelson models. RESULTS Maximum sorption capacities of produced activated carbon ACH3PO4 based on Thomas model were 159.61 and 208.64 mg/g for PFOA and PFOS, respectively. The results indicated the breakthrough and saturated time of the system increased concurrently with the increase in bed height and initial concentrations, while an increase in flow rate enhanced fractional bed utilization (FBU) efficiency of the column. Thomas and Yoon-Nelson model best describe the prediction of breakthrough data and sorption behaviour of PFOA and PFOS indicating suitability of AC-H3PO4 column design. CONCLUSION Findings suggest that agro based adsorbent is a good alternative to non-ago based adsorbent. The surface characteristics of the phosphoric acid modified activated carbons AC-H3PO4 affirmed the removal of PFOA and PFOS from the contaminated water.
Collapse
Affiliation(s)
- B. O. Fagbayigbo
- Department of Environmental Health and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 8000 South Africa
| | - B. O. Opeolu
- Department of Environmental Health and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 8000 South Africa
| | - O. S. Fatoki
- Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 8000 South Africa
| |
Collapse
|
20
|
Ahmad K, Hui YZ, Bairq ZAS. Comparison of the performance of a hydrogel and hybrid graphene oxide with hydrogel to remove iron (III) and phenol from wastewater. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04110-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Sun Y, Feng X, Fu S. Application of response surface methodology for optimization of oxytetracycline hydrochloride degradation using hydrogen peroxide/polystyrene-supported iron phthalocyanine oxidation process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1308-1318. [PMID: 32597416 DOI: 10.2166/wst.2020.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by metalloporphyrin-based enzymes, a biomimetic catalyst, R-N-Fe, was prepared by grafting iron phthalocyanine (FePc) covalently onto a macroporous chloromethylated polystyrene-divinylbenzene resin (R), which was pre-functionalized using 4-aminopyridine (4-ampy) as an axial ligand. The novel catalyst was used for the degradation of oxytetracycline hydrochloride (OTCH). The response surface methodology was employed to optimize the independent operating parameters, including temperature, catalyst amount, H2O2 dosage, and initial pH value. The results displayed that the initial pH and temperature had the most significant effect on the removal efficiency. Under optimum conditions, the OTCH removal efficiency was 93.98%. Additionally, the classical quenching experiment and electron paramagnetic resonance (EPR) test indicated that R-N-Fe could generate hydroxyl radicals by decomposing H2O2, which was the main active species for eliminating OTCH. Furthermore, R-N-Fe can be easily recycled and can maintain high stability in the reusability test, rendering it a good potential for practical application.
Collapse
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China E-mail:
| | - Xinlei Feng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China E-mail:
| | - Shun Fu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China E-mail:
| |
Collapse
|
22
|
Oladipo AA, Ahaka EO, Gazi M. Pyrochar/AgBr-derived from discarded chewing gum for decontamination of trichlorophenol via fixed-bed adsorption system. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2019.1705792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Turkey
| | - Edith Odinaka Ahaka
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Turkey
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Turkey
| |
Collapse
|
23
|
Ahamad T, Naushad M, Al-Shahrani T, Al-Hokbany N, Alshehri SM. Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. Int J Biol Macromol 2020; 147:258-267. [PMID: 31917217 DOI: 10.1016/j.ijbiomac.2020.01.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/27/2022]
Abstract
In the present study, the magnetic nanocomposite is fabricated using chitosan, thiobarbituric acid, malondialdehyde and Fe3O4 nanoparticles (CTM@Fe3O4). The fabricated nanocomposite (CTM@Fe3O4) is characterized using FTIR, TGA, BET, XRD, Raman, XPS, FESEM, and HRTEM techniques. The results of BET analysis confirmed that the nanocomposite has a mesoporous structure with high surface area of 376 m2 g-1 and high pore volume 0.3828 cm3 g-1. The adsorption of tetracycline (TC) onto CTM@Fe3O4 adsorbent is carried out using batch technique by changing several factors such as pH, concentration, contact time, and temperature. Langmuir and pseudo-second-order nonlinear models were found to be the best-fit models to predict isotherms and kinetics of adsorption, respectively. The highest adsorption capacity of 215.31mg/g was achieved at the optimum conditions of 0.05g adsorbent dosage, 60mg/L TC concentration. Overall, results demonstrated that CTM@Fe3O4 nanocomposite was an excellent adsorbent material with superparamagnetic properties, which allowed the separation as well as recovery of the adsorbent from aqueous solution using external magnet for effective industrial applications.
Collapse
Affiliation(s)
- Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Thamraa Al-Shahrani
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Noorah Al-Hokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Deniz F, Tezel Ersanli E. A low-cost and eco-friendly biosorbent material for effective synthetic dye removal from aquatic environment: characterization, optimization, kinetic, isotherm and thermodynamic studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:353-362. [PMID: 31512499 DOI: 10.1080/15226514.2019.1663485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel biosorbent was prepared by the surface modification of Zostera marina L. bioresidues and used for the removal of model synthetic dye, methylene blue from aqueous medium in this study. Taguchi design of experiment (DoE) methodology was employed to investigate the influence of significant operational parameters (reaction time, pH of medium and dye concentration) on the biosorption process and to develop a mathematical model for the estimation of biosorption potential of biosorbent. The percentage contribution of each of these process variables on the dye biosorption was found to be 9.03%, 1.95% and 88.84%, respectively. The dye biosorption capacity under the obtained optimum environmental conditions (reaction time of 120 min, pH of 8 and dye concentration of 15 mg L-1) was estimated to be 140.154 mg g-1 (R2: 99.83). This value was very close to the experimentally obtained dye removal performance value (140.299 mg g-1). These findings indicated the high ability of Taguchi DoE technique in the optimization and simulation of dye biosorption system. The kinetic and equilibrium modeling studies showed that the pseudo-second-order and Langmuir models were the best models for the elucidation of dye removal behavior of biosorbent. Besides, the performance of dye decontamination system was evaluated using the pseudo-second-order kinetic parameters. The thermodynamic analyses displayed that the dye biosorption was a feasible, spontaneous and exothermic process. For large scale dye purification applications, a single-stage batch biosorption system was also designed using the mathematical modeling data. All these results revealed that Z. marina L. bioresidues could be used as a promising alternative biosorbent material for the effective and eco-friendly dye biosorption systems.
Collapse
Affiliation(s)
- Fatih Deniz
- Department of Environmental Protection Technologies, Bozova Vocational School, Harran University, Sanlıurfa, Turkey
| | - Elif Tezel Ersanli
- Department of Biology, Faculty of Arts and Science, Sinop University, Sinop, Turkey
| |
Collapse
|
25
|
Deniz F, Yildiz H. Taguchi DoE methodology for modeling of synthetic dye biosorption from aqueous effluents: parametric and phenomenological studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1065-1071. [PMID: 31025570 DOI: 10.1080/15226514.2019.1594687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biosorption technology has been acknowledged as one of the most successful treatment approaches for colored industrial effluents. The problems such as its high manufacturing cost and poor regeneration capability in the use of activated carbon as a biosorbent have prompted the environmental scientists to develop alternative biosorbent materials. In this context, as a sustainable green generation alternative biosorbent source, the discarded seed biomass from pepper (Capsicum annuum L.) processing industry was explored for the biotreatment of colored aqueous effluents in this study. To test the wastewater cleaning ability of biosorbent, Basic red 46 was selected as a typical model synthetic dye. Taguchi DoE methodology was employed to study the effect of important operational parameters, contact time, pH and synthetic dye concentration, on the biosorption process and to develop a mathematical model for the estimation of biosorption potential of biosorbent. The percentage contribution of each of these process variables on the dye biosorption was found to be 19.31%, 41.39%, and 38.74%, respectively. The biosorption capacity under the optimum environmental conditions, contact time of 360 min, pH of 8 and dye concentration of 30 mg L-1, was estimated to be 92.878 mg g-1 (R2: 99.45). This value was very close to the experimentally obtained dye removal performance value (92.095 mg g-1). These findings indicated the high ability of Taguchi DoE technique in the optimization and simulation of dye biosorption system. The kinetic and equilibrium modeling studies showed that the pseudo-second-order and Langmuir models were the best models for the elucidation of dye removal behavior of biosorbent. The thermodynamic studies displayed that the dye biosorption was a feasible, spontaneous and exothermic process. This parametric and phenomenological survey revealed that the discarded pepper seed biomass can be introduced as a potential and efficient biosorbent for the bioremediation of colored industrial effluents.
Collapse
Affiliation(s)
- Fatih Deniz
- Department of Environmental Protection Technologies, Bozova Vocational School, Harran University , Bozova , Sanlıurfa , Turkey
| | - Hakan Yildiz
- Department of Environmental Protection Technologies, Bozova Vocational School, Harran University , Bozova , Sanlıurfa , Turkey
| |
Collapse
|
26
|
|
27
|
Heydaripour J, Gazi M, Oladipo AA, Gulcan HO. Porous magnetic resin-g-chitosan beads for adsorptive removal of phenolic compounds. Int J Biol Macromol 2019; 123:1125-1131. [DOI: 10.1016/j.ijbiomac.2018.11.168] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/03/2018] [Accepted: 11/17/2018] [Indexed: 11/30/2022]
|
28
|
Efficient Heterogeneous Activation of Persulfate by Iron-Modified Biochar for Removal of Antibiotic from Aqueous Solution: A Case Study of Tetracycline Removal. Catalysts 2019. [DOI: 10.3390/catal9010049] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Waste reutilization is always highly desired in the environmental engineering and science community. In this study, Fe-SCG biochar was functionalized by modifying spent coffee grounds (SCG) with magnetite (Fe3+) at 700 °C and applied for the oxidative removal of tetracycline (TC) with the presence of persulfate (PS). The effects of pH, dosage of biochar and sodium persulfate and initial TC concentration on TC degradation were investigated in a batch system. Our results show that higher TC degradation efficiency was obtained at low pH, low initial TC concentration, and at high dosages of PS and biochar. The highest removal efficiency (96%) was achieved by Fe-SCG/PS under the conditions of pH = 2.0, [Fe-SCG] = 2.5 g/L, [PS] = 60 mM and [TC] = 1 mM. The proposed Fe-SCG catalyst could be a promising effective biochar for the remediation of other emerging organic contaminants.
Collapse
|
29
|
Safarik I, Baldikova E, Prochazkova J, Safarikova M, Pospiskova K. Magnetically Modified Agricultural and Food Waste: Preparation and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2538-2552. [PMID: 29470915 DOI: 10.1021/acs.jafc.7b06105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The annual food and agricultural waste production reaches enormous numbers. Therefore, an increasing need to valorize produced wastes arises. Waste materials originating from the food and agricultural industry can be considered as functional materials with interesting properties and broad application potential. Moreover, using an appropriate magnetic modification, smart materials exhibiting a rapid response to an external magnetic field can be obtained. Such materials can be easily and selectively separated from desired environments. Magnetically responsive waste derivatives of biological origins have already been prepared and used as efficient biosorbents for the isolation and removal of both biologically active compounds and organic and inorganic pollutants and radionuclides, as biocompatible carriers for the immobilization of diverse types of (bio)molecules, cells, nano- and microparticles, or (bio)catalysts. Potential bactericidal, algicidal, or anti-biofilm properties of magnetic waste composites have also been tested. Furthermore, low cost and availability of waste biomaterials in larger amounts predetermine their utilization in large-scale processes.
Collapse
Affiliation(s)
- Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, Institute of Soil Biology (ISB) , Czech Academy of Sciences (CAS) , Na Sadkach 7 , 370 05 Ceske Budejovice , Czech Republic
- Regional Centre of Advanced Technologies and Materials , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Eva Baldikova
- Department of Nanobiotechnology, Biology Centre, Institute of Soil Biology (ISB) , Czech Academy of Sciences (CAS) , Na Sadkach 7 , 370 05 Ceske Budejovice , Czech Republic
| | - Jitka Prochazkova
- Department of Nanobiotechnology, Biology Centre, Institute of Soil Biology (ISB) , Czech Academy of Sciences (CAS) , Na Sadkach 7 , 370 05 Ceske Budejovice , Czech Republic
| | - Mirka Safarikova
- Department of Nanobiotechnology, Biology Centre, Institute of Soil Biology (ISB) , Czech Academy of Sciences (CAS) , Na Sadkach 7 , 370 05 Ceske Budejovice , Czech Republic
| | - Kristyna Pospiskova
- Regional Centre of Advanced Technologies and Materials , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| |
Collapse
|
30
|
Oladipo AA, Ifebajo AO. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorber analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 209:9-16. [PMID: 29274516 DOI: 10.1016/j.jenvman.2017.12.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 05/04/2023]
Abstract
Magnetic chicken bone biochar (MCB) was fabricated and characterised. The specific surface area, magnetisation value and pHpzc of the MCB were found to be 328 m2 g-1, 64.7 emu/g and 8.3 respectively. The adsorptive performance of MCB for rhodamine B dye (RB) and tetracycline (TC) removal in a single and two-stage stirred adsorber (TSA) was evaluated. The TSA reduced the pressure drops, mass transfer resistances, and fouling of the adsorbent. 63.0 g MCB is required to remove 75% of RB and TC in a single-stage system within 12 h. However, the optimised TSA confirmed that 33.2 g of MCB is needed to achieve 96% removal of TC and 22.2 g for RB within 180 min of 100 mgL-1 effluent solutions. The sorption was suitably described by the Freundlich mechanism. Based on the comparative performance, the MCB is considered a viable efficient and magnetically separable alternative adsorbent.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Cyprus Science University, Faculty of Engineering, Kyrenia, TRNC via Mersin 10, Turkey.
| | - Ayodeji Olugbenga Ifebajo
- Polymeric Materials Research Laboratory, Chemistry Department, Eastern Mediterranean University, Gazimagusa, TRNC via Mersin 10, Turkey
| |
Collapse
|
31
|
Ahmed MJ, Hameed BH. Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:257-266. [PMID: 29248838 DOI: 10.1016/j.ecoenv.2017.12.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 05/22/2023]
Abstract
Pharmaceutical pollutants substantially affect the environment; thus, their treatments have been the focus of many studies. In this article, the fixed-bed adsorption of pharmaceuticals on various adsorbents was reviewed. The experimental breakthrough curves of these pollutants under various flow rates, inlet concentrations, and bed heights were examined. Fixed-bed data in terms of saturation uptakes, breakthrough time, and the length of the mass transfer zone were included. The three most popular breakthrough models, namely, Adams-Bohart, Thomas, and Yoon-Nelson, were also reviewed for the correlation of breakthrough curve data along with the evaluation of model parameters. Compared with the Adams-Bohart model, the Thomas and Yoon-Nelson more effectively predicted the breakthrough data for the studied pollutants.
Collapse
Affiliation(s)
- M J Ahmed
- Department of Chemical Engineering, Engineering College, University of Baghdad, P.O. Box 47024, Aljadria, Baghdad, Iraq.
| | - B H Hameed
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
32
|
de Andrade JR, Oliveira MF, da Silva MGC, Vieira MGA. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b05137] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Júlia R. de Andrade
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| | - Maria F. Oliveira
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| | - Meuris G. C. da Silva
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| | - Melissa G. A. Vieira
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| |
Collapse
|
33
|
Highly selective adsorption of hydroquinone by hydroxyethyl cellulose functionalized with magnetic/ionic liquid. Int J Biol Macromol 2017; 107:957-964. [PMID: 28939516 DOI: 10.1016/j.ijbiomac.2017.09.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023]
Abstract
Magnetic hydroxyethyl cellulose/ionic liquid (MHEC/IL) materials were fabricated through a facile and fast process and their application as excellent adsorbents for hydroquinone was also demonstrated. The thermal stability, chemical structure and magnetic property of the MHEC/IL were characterized by the Scanning electron microscope (SEM), Transmission Electron Microscope (TEM), Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD), respectively. The adsorbents were used for the removal of hydroquinone from simulated wastewater with a fast solid-liquid separation in the presence of external magnetic field. The influence of various analytical parameters on the adsorption of hydroquinone such as pH, contact time and initial ion concentration were studied in detail. The results showed that the maximum adsorption capacity was 335.68mgg-1, observed at pH 5 and temperature 30°C. Equilibrium adsorption was achieved within 30min. The kinetic data, obtained at the optimum pH 5, could be fitted with a pseudo-second order equation. Adsorption process could be well described by Freundlich adsorption isotherms. The obtained results indicated that the impregnation of the room temperature IL significantly enhances the removal efficiency of hydroquinone. The MHEC/IL may be suitable materials in phenols pollution cleanup if they are synthesized in largescale and at low price in near future.
Collapse
|
34
|
Loffredo E, Taskin E. Adsorptive removal of ascertained and suspected endocrine disruptors from aqueous solution using plant-derived materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19159-19166. [PMID: 28664489 DOI: 10.1007/s11356-017-9595-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The present study deals with the use of low-cost plant-derived materials, namely a biochar, spent coffee grounds, spent tea leaves, and a compost humic acid, for the adsorptive removal from water of two estrogens, 4-tert-octylphenol (OP) and 17-β-estradiol (E2), and two pesticides, carbaryl and fenuron, each spiked at a concentration of 1 mg L-1. Kinetics and adsorption isotherms have been performed using a batch equilibrium method to measure the sorption capacities of the adsorbents towards the four molecules. Adsorption constants were calculated using the linear, Freundlich, and Langmuir models. Kinetics data obtained evidenced a rapid adsorption of each compound onto both biochar and coffee grounds with the attainment of a steady-state equilibrium in less than 4 h. Significant differences among the adsorbents and the compounds were found regarding the model and the extent of adsorption. In general, the estrogens were adsorbed more quickly and in greater amounts than the less hydrophobic pesticides, following the order: OP > E2 > carbaryl > fenuron. The ranges of Freundlich constants obtained for OP, E2, carbaryl, and fenuron onto the sorbents were 5049-2253, 3385-206, 2491-79, and 822-24 L kg-1, respectively. The maximum values of constants were obtained for biochar, except for OP that was more adsorbed by spent coffee grounds. Adsorption kinetic data followed a pseudo-second-order model, thus indicating the occurrence of chemical interactions between the compounds and the substrates. The remarkable sorption capacities of all adsorbents towards the four molecules suggest the valuable exploitation of these materials for decontamination purposes, such as the treatment of wastewater before a feasible recycle in soil.
Collapse
Affiliation(s)
- Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy.
| | - Eren Taskin
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
35
|
Oladipo AA, Ifebajo AO, Nisar N, Ajayi OA. High-performance magnetic chicken bone-based biochar for efficient removal of rhodamine-B dye and tetracycline: competitive sorption analysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:373-385. [PMID: 28726703 DOI: 10.2166/wst.2017.209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Magnetic chicken bone-based biochar (MCBB) was successfully prepared and efficiently adsorbed rhodamine-B (RB) dye and tetracycline (TC) in multi-component systems. The magnetisation value, surface area, and pHpzc of the MCBB were found to be 66.5 emu/g, 328 m2/g, and 8.3, respectively. RB has higher saturation capacity (96.5 mg/g) and occupies more active sites on MCBB, thus limiting the sorption of TC with lower saturation capacity (63.3 mg/g). Langmuir isotherm suitably describes the sorption process in a single-component system; however, the multi-component system was well fitted to the Sheindorf-Rebhun-Sheintuch model. The selectivity factor values confirmed that MCBB had higher adsorption affinity toward RB than TC. The intraparticle diffusion model played a significant role in the sorption process. The MCBB can be easily desorbed with base-spiked H2O and reused without loss in stability or structural integrity.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Faculty of Engineering, Cyprus Science University, TRNC via Mersin 10, Kyrenia, Turkey E-mail: ;
| | - Ayodeji Olugbenga Ifebajo
- Polymeric Materials Research Laboratory, Chemistry Department, Eastern Mediterranean University, TRNC via Mersin 10, Gazimagusa, Turkey
| | - Numrah Nisar
- Department of Environmental Sciences, Lahore College for Women University Lahore, Lahore, Pakistan
| | - Olusegun Ayoola Ajayi
- Department of Chemical Engineering, Faculty of Engineering, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
36
|
Gazi M, Oladipo AA, Ojoro ZE, Gulcan HO. High-Performance Nanocatalyst for Adsorptive and Photo-Assisted Fenton-Like Degradation of Phenol: Modeling Using Artificial Neural Networks. CHEM ENG COMMUN 2017. [DOI: 10.1080/00986445.2017.1311253] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Eastern Mediterranean University, Famagusta, TRNC via Mersin 10, Turkey
| | - Akeem Adeyemi Oladipo
- Faculty of Engineering, Cyprus Science University, Ozankoy, Girne, TRNC via Mersin 10, Turkey
| | - Zainab Eniola Ojoro
- Polymeric Materials Research Laboratory, Chemistry Department, Eastern Mediterranean University, Famagusta, TRNC via Mersin 10, Turkey
| | - Hayrettin Ozan Gulcan
- Department of Pharmaceutical Chemistry, Eastern Mediterranean University, Famagusta, TRNC via Mersin 10, Turkey
| |
Collapse
|