1
|
Ruwoldt J, Chinga-Carrasco G, Tanase-Opedal M. Sustainable Materials from Organosolv Fibers and Lignin, Kraft Fibers, and Their Blends. Polymers (Basel) 2024; 16:377. [PMID: 38337266 DOI: 10.3390/polym16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of this study was to investigate new materials from organosolv fibers, organosolv lignin, kraft fibers, and their blends. The organosolv fibers showed reprecipitated lignin on the surface, a comparably low fiber length of 0.565 mm on average, and a high fines content of 82.3%. Handsheets were formed and thermopressed at 175 °C and 50 MPa, yielding dense materials (1050-1100 kg/m3) with properties different to that of regular paper products. The thermopressing of organosolv fibers alone produced materials with similar or better tensile strength (σb = 18.6 MPa) and stiffness (E* = 2.8 GPa) to the softwood Kraft reference pulp (σb = 14.8 MPa, E* = 1.8 GPa). The surface morphology was also smoother with fewer cavities. As a result, the thermopressed organosolv fibers exhibited higher hydrophobicity (contact angle > 95°) and had the lowest overall water uptake. Combinations of Kraft fibers with organosolv fibers or organosolv lignin showed reduced wetting and a higher density than the Kraft fibers alone. Furthermore, the addition of organosolv lignin to Kraft fibers greatly improved tensile stiffness and strength (σb = 23.8 MPa, E* = 10.5 GPa), likely due to the lignin acting as a binder to the fiber network. In conclusion, new thermopressed materials were developed and tested, which show promising potential for sustainable fiber materials with improved water resistance.
Collapse
Affiliation(s)
- Jost Ruwoldt
- RISE PFI AS, Høgskoleringen 6B, 7491 Trondheim, Norway
| | | | | |
Collapse
|
2
|
Tanase-Opedal M, Ruwoldt J. Organosolv Lignin as a Green Sizing Agent for Thermoformed Pulp Products. ACS OMEGA 2022; 7:46583-46593. [PMID: 36570307 PMCID: PMC9773809 DOI: 10.1021/acsomega.2c05416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/04/2022] [Indexed: 05/12/2023]
Abstract
The purpose of this study was to investigate the use of organosolv lignin as a sizing agent for thermoformed pulp products as a sustainable material with improved water resistance. For this purpose, an in-house-produced organosolv lignin from softwood (Norway Spruce) was mixed with bleached and unbleached chemi-thermomechanical pulp fibers. In addition, the isolated organosolv lignin was characterized by ATR-FTIR spectroscopy, size-exclusion chromatography, and thermogravimetric analysis. The analysis showed that organosolv lignin was of a high purity and practically ash-free, exhibiting low molecular weight, a glass transition temperature below the thermoforming temperature, and a high content of phenolic OH groups. The mechanical properties and water resistance of the organosolv lignin-sized thermoformed pulp materials were measured. A small decrease in strength and an increase in stiffness and density were observed for the lignin-sized thermoformed materials compared to the reference, that is, unsized materials. The addition of organosolv lignin decreased the wettability and swelling of the thermoformed product. These results are due to the distribution of organosolv lignin on the surface, filling in the pores and cavities, and providing a tighter fit within the thermoformed materials. In conclusion, the results from our study encourage the use of organosolv lignin as a sizing additive to thermoformed products, which can improve the water resistance to use it in sustainable packaging applications.
Collapse
|
3
|
Xu F, Ma Z, Wang X, Wang Q, Han Y, Li Y, Sun G. From liquid hot water pretreatment solution to lignin-based hydrophobic deep eutectic solvent for highly efficient extraction of Cr (VI). Int J Biol Macromol 2022; 208:883-889. [PMID: 35367274 DOI: 10.1016/j.ijbiomac.2022.03.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/05/2022]
Abstract
Liquid hot water (LHW) pretreatment has been widely investigated attributed to its advantages, such as environmental friendliness, the potential application of dissolved hemicellulose, and no chemical addition. Expanding the portfolio of products that can be made from LHW pretreatment solutions will be critical to enabling a viable LHW-based economy. We provide a one-step method to separate and functionalize lignin from the LHW pretreatment solution. A hydrophobic deep eutectic solvent (hDES) was prepared by using methyltrioctylammonium chloride (MTAC) and the LHW pretreatment solution and directly applied to the extraction of Cr (VI) in an aqueous solution. In the process of forming hDES, the removal rate of liquid hot water lignin (LHWL) was reached 99%. The new LHW-hDES exhibited excellent extraction performance for Cr (VI), the extraction capacity was as high as 198.402 mg g-1, optimum extraction conditions at the mass of hDES 0.10 g, vortex time 90 s, room temperature, and natural pH. Notably, we have shown that the method of combining the separation and functionalization of lignin in the LHW pretreatment solution, which can provide a way of thinking for the application of the LHW pretreatment solution.
Collapse
Affiliation(s)
- Fuqiong Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Laboratory of Pulp and Papermaking Engineering, Yueyang Forest & Paper Co., Ltd., Hunan 414002, China.
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-Ku, Sapporo 001-0021, Japan
| | - Ying Han
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yao Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guangwei Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Yu Q, Baroutian S, Xie J. Hydrothermal co-hydrolysis of corncob/sugarcane bagasse/Broussonetia papyrifera blends: Kinetics, thermodynamics and fermentation. BIORESOURCE TECHNOLOGY 2021; 342:125923. [PMID: 34555749 DOI: 10.1016/j.biortech.2021.125923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Biorefinery of biomass blends can achieve sustainable development of biofuel production. Herein, three lignocellulosic wastes with significant differences in chemical composition-namely corncob (CC), sugarcane bagasse (SB), and Broussonetia papyrifera (BP)-were selected to investigate their hydrothermal co-hydrolysis kinetics and thermodynamics of different biomass blends. Activation energies of hemicellulose decomposition (Ea1, 90.59 kJ/mol) for CC/SB were lower than those for CC (126.12 kJ/mol) and CC/SB/BP (153.62 kJ/mol). BP (having a high content of nitrogen sources) loading weakened the acidic autohydrolysis of CC/SB hemicellulose, but yielded stable products as indicated by the negative entropy value for CC/SB/BP hydrolysis. Cumulative feedback inhibition occurred among different biomass, and it could be minimized by controlling the blending ratio. The highest total xylose yield was 83.64% for CC/SB with a mass ratio of 2:1. Moreover, biomass blend of CC/SB/BP enabled complete utilization of hexose, pentose and amino acids by co-production of ethanol and microalga biomass.
Collapse
Affiliation(s)
- Qiang Yu
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, PR China.
| | - Saeid Baroutian
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Jun Xie
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
5
|
Li X, Lu X, Liang M, Xu R, Yu Z, Duan B, Lu L, Si C. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 108:119-126. [PMID: 32353776 DOI: 10.1016/j.wasman.2020.04.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Catalytic conversion of xylose and the hemicellulose fraction of waste biomass to furfural is important for the valorization of waste lignocellulose. Here, a clean and efficient catalytic system consisting of sulfonated carbon microspheres catalysts and γ-valerolactone was developed for the upgrading of xylose and waste lignocellulose to the furfural in one-pot. Sulfonated carbon microspheres (CCoS) with Brønsted and Lewis acid sites were prepared to yield furfural. The mesoporous structures were facilitated by introduction of Co element in xylose hydrothermal process, and the density of Brønsted acid sites were improved by the sulfonation. The furfural yield from xylose reached 75.12% using CCoS as catalyst at 170 °C for 30 min in a γ-valerolactone/water (17/3 v/v) solvent. As typical Brønsted acid, the SO3H groups on the surface of CCoS catalyst is essential for catalytic dehydration xylose to furfural. Additionally, the mesoporous structures of CCoS improved the mass transfer in the furfural production process. The catalytic system was applied in the conversion of real biomass (including corncob, corn straw and Eucalyptus sawdust) to evaluate the possibility of application. These three biomass species all reached excellent furfural yields, which were more than 70%. This work provided a catalytic strategy for effective conversion of xylose and biomass to furfural.
Collapse
Affiliation(s)
- Xiaoyun Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xuebin Lu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Min Liang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rui Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhihao Yu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bingyu Duan
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lefu Lu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Vodo S, Taarji N, Bouhoute M, Felipe LDO, Neves MA, Kobayashi I, Uemura K, Nakajima M. Potential of bagasse obtained using hydrothermal liquefaction pre‐treatment as a natural emulsifier. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sekove Vodo
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| | - Noamane Taarji
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| | - Meryem Bouhoute
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| | - Lorena de Oliveira Felipe
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| | - Marcos A. Neves
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Graduate School of Life and Environmental Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Isao Kobayashi
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Kunihiko Uemura
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Mitsutoshi Nakajima
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Graduate School of Life and Environmental Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| |
Collapse
|
7
|
Yu Q, Qin L, Liu Y, Sun Y, Xu H, Wang Z, Yuan Z. In situ deep eutectic solvent pretreatment to improve lignin removal from garden wastes and enhance production of bio-methane and microbial lipids. BIORESOURCE TECHNOLOGY 2019; 271:210-217. [PMID: 30268813 DOI: 10.1016/j.biortech.2018.09.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Biomass pretreatment can improve the conversion efficiency of bioenergy production. Liquid hot water (LHW) pretreatment is a truly green pretreatment due to its zero chemical use, but has the disadvantages of low lignin removal and pseudo-lignin formation. A modified liquid hot water (MLHW) process based on in situ synthesis of deep eutectic solvent (DES) could efficiently improve delignification of Roystonea regia leaves (LR) and leaf sheaths (LSR). LSR was less recalcitrant than LR, and its characteristics of higher porosity (34.8%) and thinner cell walls (5.2 μm) for LSR contributed it higher lignin removal (53.6%) and lower choline chloride (ChCl) consumption (H2O-ChCl mass ratio of 2:1) than those (44.6% and 1:2) from LR. Moreover, a great improvement of 309.0% in bio-methane yield was achieved for the MLHW-treated LSR. In addition, in situ DES in MLHW had good biocompatibility with cellulase, microalgae, and yeast.
Collapse
Affiliation(s)
- Qiang Yu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yunyun Liu
- College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021 China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Huijuan Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
8
|
Yu Q, Zhang A, Wang W, Chen L, Bai R, Zhuang X, Wang Q, Wang Z, Yuan Z. Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia' herbal residues. BIORESOURCE TECHNOLOGY 2018; 247:705-710. [PMID: 30060403 DOI: 10.1016/j.biortech.2017.09.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 05/15/2023]
Abstract
Here, the potential use of herbal residues of Akebia as feedstock for ethanol production is evaluated. Additionally, five deep eutectic solvents from hemicellulose-derived acids were prepared to overcome biomass recalcitrance. Reaction temperatures had more significant influences on solid loss and chemical composition than the molar ratios of choline chloride (ChCl) to derived acids. Glycolic acid resulted in the maximum levels of lignin, xylan and glucan removal, which were 60.0%, 100% and 71.5%, respectively, at 120°C with a 1:6M ratio of ChCl-glycolic acid. In contrast, ChCl-formic acid resulted in the greatest level of glucan retention, at 97.8%, with a lignin removal rate of 40.7% under the same pretreatment conditions. Moreover, ChCl loading could significantly enhance the selectivity of carboxylic acid for lignin dissolution. A 98.0% level of subsequent enzymatic saccharification and a 100% ethanol yield were achieved after ChCl-formic acid pretreatments of Akebia' herbal residues.
Collapse
Affiliation(s)
- Qiang Yu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Aiping Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Long Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academic of Sciences, Beijing 100039, China
| | - Ruxue Bai
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academic of Sciences, Beijing 100039, China
| | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Qiong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
9
|
Jang SK, Jeong H, Kim HY, Choi JH, Kim JH, Koo BW, Choi IG. Evaluation of correlation between glucan conversion and degree of delignification depending on pretreatment strategies using Jabon Merah. BIORESOURCE TECHNOLOGY 2017; 236:111-118. [PMID: 28391105 DOI: 10.1016/j.biortech.2017.03.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
The main purpose of this study was to investigate the glucan conversion rate after enzymatic hydrolysis depending on the treatment methods and conditions with changes in the chemical composition of treated solid fraction of Jabon Merah. The glucan conversion rate (17.4%) was not significantly improved after liquid hot water treatment (1st step) even though most of the hemicellulose was dissolved into liquid hydrolysate. Subsequently, dilute acid, organosolv, and peracetic acid treatment (2nd step) was conducted under various conditions to enhance glucan conversion. Among the 2nd step treatment, the glucan conversion rate of organosolv (max. 46.0%) and peracetic acid treatment (max. 65.9%) was increased remarkably through decomposition of acid-insoluble lignin (AIL). Finally, the glucan conversion rate and AIL content were highly correlated, which was revealed by the R-squared value (0.84), but inhibitory factors including cellulose crystallinity must be considered for advanced glucan conversion from highly recalcitrant biomasses, such as Jabon Merah.
Collapse
Affiliation(s)
- Soo-Kyeong Jang
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanseob Jeong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Ho-Yong Kim
- Center for Bio-based Chemistry, Convergent Chemistry Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - June-Ho Choi
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Hwa Kim
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bon-Wook Koo
- Intelligent & Sustainable Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - In-Gyu Choi
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Yu Q, Tan X, Zhuang X, Wang Q, Wang W, Qi W, Zhou G, Luo Y, Yuan Z. Co-extraction of soluble and insoluble sugars from energy sorghum based on a hydrothermal hydrolysis process. BIORESOURCE TECHNOLOGY 2016; 221:111-120. [PMID: 27639230 DOI: 10.1016/j.biortech.2016.08.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 05/14/2023]
Abstract
A process for co-extraction of soluble and insoluble sugars from energy sorghum (ES) was developed based on hydrothermal hydrolysis (HH). Two series of ES were investigated: one (N) with a high biomass yield displayed a higher recalcitrance to sugar release, whereas the second (T) series was characterized by high sugar extraction. The highest total xylose recoveries of 87.2% and 98.7% were obtained for N-11 and T-106 under hydrolysis conditions of 180°C for 50min and 180°C for 30min, respectively. Moreover, the T series displayed higher enzymatic digestibility (ED) than the N series. The high degree of branching (arabinose/xylose ratio) and acetyl groups in the hemicellulose chains of T-106 would be expected to accelerate sugar release during the HH process. In addition, negative correlations between ED and the lignin content, crystallinity index (CrI) and syringyl/guaiacyl (S/G) lignin ratio were observed. Furthermore, finding ways to overcome the thickness of the cell wall and heterogeneity of its chemical composition distribution would make cellulose more accessible to the enzyme.
Collapse
Affiliation(s)
- Qiang Yu
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xuesong Tan
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinshu Zhuang
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiong Wang
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academic of Sciences, Beijing 100039, China
| | - Wen Wang
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wei Qi
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Guixiong Zhou
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yu Luo
- Bureau of Environmental Protection of Shuangtaizi District, Panjin 124000, China
| | - Zhenhong Yuan
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Collaborative Innovation Centre of Biomass Energy, Henan Province, Zhengzhou 450002, China
| |
Collapse
|
11
|
Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K, Peng Y, Zhou Y, Zhu Z. Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. PLANT PHYSIOLOGY 2012; 159:1440-1452. [PMID: 22665444 DOI: 10.1016/j.biombioe.2016.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant chitinases, a class of glycosyl hydrolases, participate in various aspects of normal plant growth and development, including cell wall metabolism and disease resistance. The rice (Oryza sativa) genome encodes 37 putative chitinases and chitinase-like proteins. However, none of them has been characterized at the genetic level. In this study, we report the isolation of a brittle culm mutant, bc15, and the map-based cloning of the BC15/OsCTL1 (for chitinase-like1) gene affected in the mutant. The gene encodes the rice chitinase-like protein BC15/OsCTL1. Mutation of BC15/OsCTL1 causes reduced cellulose content and mechanical strength without obvious alterations in plant growth. Bioinformatic analyses indicated that BC15/OsCTL1 is a class II chitinase-like protein that is devoid of both an amino-terminal cysteine-rich domain and the chitinase activity motif H-E-T-T but possesses an amino-terminal transmembrane domain. Biochemical assays demonstrated that BC15/OsCTL1 is a Golgi-localized type II membrane protein that lacks classical chitinase activity. Quantitative real-time polymerase chain reaction and β-glucuronidase activity analyses indicated that BC15/OsCTL1 is ubiquitously expressed. Investigation of the global expression profile of wild-type and bc15 plants, using Illumina RNA sequencing, further suggested a possible mechanism by which BC15/OsCTL1 mediates cellulose biosynthesis and cell wall remodeling. Our findings provide genetic evidence of a role for plant chitinases in cellulose biosynthesis in rice, which appears to differ from their roles as revealed by analysis of Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Bin Wu
- Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|