1
|
Wu J, Zhou X, Sun H, Yu D. Optimization of Extraction Conditions for Water-Soluble Polysaccharides from the Roots of Adenophora tetraphylla (Thunb.) Fisch. and Its Effects on Glucose Consumption on HepG2 Cells. Molecules 2024; 29:3049. [PMID: 38999001 PMCID: PMC11243351 DOI: 10.3390/molecules29133049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The root of Adenophora tetraphylla (Thunb.) Fisch. is a common Chinese materia medica and the polysaccharides which have been isolated from the plant are important active components for medicinal purposes. The objective of the current study was to optimize the extraction parameters and evaluate the glucose consumption activity for Adenophorae root polysaccharides (ARPs). The optimization of ARP extraction was evaluated with preliminary experiments and using response surface methodology (RSM). The conditions investigated were 35-45 °C extraction temperature, 20-30 (v/w) water-to-solid ratio, and 3-5 h extraction time. The antidiabetic effects of ARPs for the glucose consumption activity were evaluated in HepG2 cells. The statistical analyses of the experiments indicated that temperature, water-to-solid ratio, and extraction time significantly affected ARP yield (p < 0.01). The correlation analysis revealed that the experimental data were well-aligned with a quadratic polynomial model, as evidenced by the mathematical regression model's fit. The optimal conditions for maximum ARP yield were 45 °C extraction temperature and 28.47:1 (mL/g) water-to-solid ratio with a 4.60 h extraction time. Extracts from these conditions showed significant activity of promoting cell proliferation from 11.26% (p < 0.001) to 32.47% (p < 0.001) at a dose of 50 μg/mL to 800 μg/mL and increasing glucose consumption to 75.86% (p < 0.001) at 250 μg/mL on HepG2 cells. This study provides a sustainable alternative for the industry since it allowed simplified handling and a specific quantity of ARPs. Furthermore, ARPs might directly stimulate the glucose consumption in the liver and showed no cytotoxicity; therefore, ARPs probably could be taken as a potential natural source of antidiabetic materials.
Collapse
Affiliation(s)
- Junkai Wu
- School of Pharmacy, Quanzhou Medical College, Quanzhou 362011, China
| | - Xiaohang Zhou
- Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Huifeng Sun
- Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dan Yu
- Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
2
|
Chen D, Kang Z, Chen H, Fu P. Molecular mechanisms of macrophage immunomodulation mediated by Areca inflorescence polysaccharides based on RNA-seq analysis. Int J Biol Macromol 2024; 263:130076. [PMID: 38354932 DOI: 10.1016/j.ijbiomac.2024.130076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The elucidation of the immunomodulatory molecular mechanisms of polysaccharides has contributed to their further development and application. In this study, the effect of Areca inflorescence polysaccharide (AFP2a) on macrophage activation was confirmed and the detailed mechanisms were investigated based on a comprehensive transcriptional study and specific inhibitors. The results showed that AFP2a induced macrophage activation (M1 polarization), promoting macrophage proliferation, reactive oxygen species production, nitric oxide and cytokine release, and costimulatory molecule expression. RNA-seq analysis identified 5919 differentially expressed genes (DEGs). For DEGs, GO, KEGG, and Reactome enrichment analyses and PPI networks were conducted, elucidating that AFP2a activated macrophages mainly by triggering the Toll-like receptor cascade and corresponding adapter proteins (TIRAP and TRIF), thereby resulting in downstream NF-κB, TNF, and JAK-STAT signaling pathway expression. The inhibition assay revealed that TLR4 and TLR2 were essential for the recognition of AFP2a. This work provides an in-depth understanding of the immunoregulatory mechanism of AFP2a while offering a molecular basis for AFP2a to serve as a potential natural immunomodulator.
Collapse
Affiliation(s)
- Di Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zonghua Kang
- Hunan Kouweiwang Group Co., Ltd, Hunan 413499, China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China; Huachuang Institute of Areca Research-Hainan, Hainan 570228, China.
| | - Pengcheng Fu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Liu YJ, Gao KX, Peng X, Wang Y, Wang JY, Hu MB. The great potential of polysaccharides from natural resources in the treatment of asthma: A review. Int J Biol Macromol 2024; 260:129431. [PMID: 38237839 DOI: 10.1016/j.ijbiomac.2024.129431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Despite significant progress in diagnosis and treatment, asthma remains a serious public health challenge. The conventional therapeutic drugs for asthma often have side effects and unsatisfactory clinical efficacy. Therefore, it is very urgent to develop new drugs to overcome the shortcomings of conventional drugs. Natural polysaccharides provide enormous resources for the development of drugs or health products, and they are receiving a lot of attention from scientists around the world due to their safety, effective anti-inflammatory and immune regulatory properties. Increasing evidence shows that polysaccharides have favorable biological activities in the respiratory disease, including asthma. This review provides an overview of primary literature on the recent advances of polysaccharides from natural resources in the treatment of asthma. The mechanisms and practicability of polysaccharides, including polysaccharides from plants, fungus, bacteria, alga, animals and others are reviewed. Finally, the further research of polysaccharides in the treatment of asthma are discussed. This review can provide a basis for further study of polysaccharides in the treatment of asthma and provides guidance for the development and clinical application of novel asthma treatment drugs.
Collapse
Affiliation(s)
- Yu-Jie Liu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Kui-Xu Gao
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Xi Peng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yao Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Jing-Ya Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Mei-Bian Hu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China.
| |
Collapse
|
4
|
Gao S, Yan S, Zhou Y, Feng Y, Xie X, Guo W, Shen Q, Chen C. Optimisation of enzyme-assisted extraction of Erythronium sibiricum bulb polysaccharide and its effects on immunomodulation. Glycoconj J 2022; 39:357-368. [PMID: 35138526 DOI: 10.1007/s10719-021-10038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/01/2022]
Abstract
In this study, polysaccharides of Erythronium sibiricum bulb were extracted using enzyme-assisted extraction technology and then optimised by response surface methodology. The characteristics and immunomodulatory activities of the polysaccharide (E1P) were investigated. Setting the yield of polysaccharides as the index, the effects of amylase content, zymolytic time, extraction pH and zymolytic temperature were investigated. The optimal extraction conditions for polysaccharides were as follows: amylase content, 1% weight of pre-treated powder; zymolytic time, 2 h; extraction pH, 7.5; and zymolytic temperature, 55 °C. The yield was predicted to be 61.10%, which agreed with the value obtained in confirmatory experiments (59.71% ± 2.72%). Further research indicated that the primary component of E1P is glucose; however, it also contains a small quantity of galactose and arabinose. In vitro assays showed that E1P and ESBP (another kind of E. sibiricum bulb polysaccharide extracted by water decoction in our previous study) could significantly promote the cellular viability and phagocytosis of RAW264.7 cells without cytotoxicity. Moreover, they could enhance the ability to secrete nitric oxide and cytokines such as TNF-α and IL-1β. However, the immunomodulatory activities of E1P were better than those of ESBP. According to the results of this study, enzyme-assisted extraction represents a new strategy for extracting E. sibiricum bulb polysaccharides with higher yield and better immune activity.
Collapse
Affiliation(s)
- Shanshan Gao
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Shujing Yan
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yue Zhou
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yue Feng
- Urumqi Customs District P.R. China, Urumqi, 830011, Xinjiang, China
| | - Xiangyun Xie
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Wei Guo
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Qi Shen
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Chunli Chen
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
5
|
Zhou Y, Yan S, Gao S, Guo W, Xie X, Kawul G, Wang M, Feng Y, Chen C. Optimization of the composite enzyme extraction of polysaccharide from Erythronium sibiricum bulb and its immunoregulatory activities. Prep Biochem Biotechnol 2021; 52:681-690. [PMID: 34657564 DOI: 10.1080/10826068.2021.1986720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An efficient compound enzyme extraction process was developed and optimized to extract the polysaccharide from Erythronium sibiricum bulb via response surface methodology. The polysaccharide E2P was obtained. Then, the preliminary characteristics of E2P were determined via colorimetry and chromatography. Additionally, the immunoregulatory activities of E2P and another polysaccharide (ESBP, extracted using the hot water method) were compared. The optimized extraction results were as follows: temperature (54.56 °C), time (2.52 h), pH (6.53), and enzyme concentration ratio (0.5% cellulase:1.5% amylase). The yield (64.18% ± 2.91%) obtained under the aforementioned conditions was considerably higher than the yield of ESBP (37.25% ± 0.17%). The total sugar, uronic acid, starch, and protein contents of E2P were 81.77% ± 2.84%, 3.31% ± 0.45%, 3.29% ± 0.01%, and 0.24% ± 0.02%, respectively. The HPLC result suggested that the predominant monosaccharides of E2P included glucose, galactose, and arabinose, with a molar ratio of 543.2:1:1.8. The in vitro tests in RAW264.7 cells indicated that ESBP exhibited better immunomodulatory activities than E2P. In particular, ESBP can promote the proliferation, phagocytosis, and cytokine secretion abilities of cytokines, such as nitric oxide, tumor necrosis factor-α, and interleukin (IL)-1β of RAW264.6 cells. By contrast, E2P can only promote phagocytosis ability and the secretion of IL-1β.
Collapse
Affiliation(s)
- Yue Zhou
- Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shujing Yan
- Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shanshan Gao
- Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Guo
- Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiangyun Xie
- Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Gulibahar Kawul
- Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mei Wang
- Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yue Feng
- Urumqi Customs District P. R.China, Urumqi, Xinjiang, China
| | - Chunli Chen
- Pharmacy College, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Yang W, Yang Z, Zou Y, Sun X, Huang G. Extraction and deproteinization process of polysaccharide from purple sweet potato. Chem Biol Drug Des 2021; 99:111-117. [PMID: 34407290 DOI: 10.1111/cbdd.13935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Extraction and deproteinization process of polysaccharide from purple sweet potato (PPSP) were optimized via the response surface methodology (RSM). The results indicated that the optimal conditions of extraction in hot water of PPSP were as follows: The extraction temperature was 120℃, the extraction time was 2.5 hr, and the solid-liquid ratio was 1∶10 (g/ml). The optimal conditions of Sevage deproteinization were as under the oscillation time was 20 min, the deproteinization times was twice, and polysaccharide solution-Sevage reagent ratio was 1:1 (ml/ml). The extraction yield of PPSP was 3.32%, and the protein removal rate was 93.14% in such a condition.
Collapse
Affiliation(s)
- Wenjian Yang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Zixuan Yang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Yi Zou
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Xinke Sun
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| |
Collapse
|
7
|
Chen C, Xie X, Li X. Immunomodulatory effects of four polysaccharides purified from Erythronium sibiricum bulb on macrophages. Glycoconj J 2021; 38:517-525. [PMID: 34117963 DOI: 10.1007/s10719-021-10005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023]
Abstract
Four neutral polysaccharides (ESBP1-1, ESBP1-2, ESBP2-1 and ESBP3-1) were successfully purified from the water extracted crude polysaccharides of Erythronium sibiricum bulbs through the combination of DEAE Sepharose CL-6B and Sephadex G-100 chromatography; their average molecular weights were 1.3 × 104, 1.7 × 104, 9.4 × 105 and 4.1 × 105 Da, respectively. Monosaccharide component analysis indicated that ESBP1-1 and ESBP1-2 were mainly composed of glucose (Glc). ESBP2-1 was composed of Glc, galactose (Gal) and arabinose, with a molar ratio of 24.3:1.1:1, whereas ESBP3-1 comprised Glc and Gal at a molar ratio of 14.8:1. In-vitro study showed that all of the four polysaccharides were able to considerably promote the proliferation and neutral red phagocytosis of RAW 264.7 macrophage cell. They could also stimulate the production of the cell lines' secretory molecules [nitric oxide, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)] in a dose-dependent manner. However, ESBP1-2 was not included in IL-1β. Overall, these results suggested that polysaccharides from E. sibiricum bulbs can be developed as immunomodulatory ingredients for complementary medicines or functional foods. However, further animal or clinical studies are required.
Collapse
Affiliation(s)
- Chunli Chen
- Pharmacy College, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China.
| | - Xiangyun Xie
- Pharmacy College, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Xue Li
- Supervision and Testing Center for Quality and Safety of Agri-products of Xinjiang Uygur Autonomous Region, 157 Shengli Road, Urumqi, 830049, China
| |
Collapse
|
8
|
Medlej MK, Batoul C, Olleik H, Li S, Hijazi A, Nasser G, Maresca M, Pochat-Bohatier C. Antioxidant Activity and Biocompatibility of Fructo-Polysaccharides Extracted from a Wild Species of Ornithogalum from Lebanon. Antioxidants (Basel) 2021; 10:antiox10010068. [PMID: 33430440 PMCID: PMC7827233 DOI: 10.3390/antiox10010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
The present study aims to investigate the properties of biopolymers extracted from a Lebanese onion non edible plant. The extraction was performed under mild conditions by varying the percentage of ultra-sound (US) treatment duration to a total extraction time of 30 min (0, 50, 100% US). The extracts were characterized using FTIR, SEC, GC-MS, TGA, and DSC analyses. The composition of the extracts was determined from the total carbohydrate content and protein content measurements. The thermal analyses indicate that all samples have high thermal stability. The antioxidant activities of the extracts were investigated, using β-carotene bleaching, scavenging activity of ABTS, metal chelating ability, and total antioxidant activity tests. The results indicate that the 50% US treatment leads to the best antioxidant activity. Biocompatibility of the extracts was evaluated using hemolysis and cytotoxicity assays. The results showed that 0 and 50% US samples are not toxic to human cells, in contrary to 100% US.
Collapse
Affiliation(s)
- Mohammad Kazem Medlej
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (M.K.M.); (C.B.); (S.L.)
- Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut, Lebanon; (A.H.); (G.N.)
| | - Cherri Batoul
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (M.K.M.); (C.B.); (S.L.)
- Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut, Lebanon; (A.H.); (G.N.)
| | - Hamza Olleik
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France; (H.O.); (M.M.)
| | - Suming Li
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (M.K.M.); (C.B.); (S.L.)
| | - Akram Hijazi
- Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut, Lebanon; (A.H.); (G.N.)
| | - Ghassan Nasser
- Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut, Lebanon; (A.H.); (G.N.)
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France; (H.O.); (M.M.)
| | - Céline Pochat-Bohatier
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (M.K.M.); (C.B.); (S.L.)
- Correspondence: ; Tel.: +33-467-143-327
| |
Collapse
|
9
|
Tang W, Liu D, Yin JY, Nie SP. Consecutive and progressive purification of food-derived natural polysaccharide: Based on material, extraction process and crude polysaccharide. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Li Q, Chen Z, Xu Z, Han S, Hao H, Wu J, Sun F, Fu X, Li R, Zheng B, Guo X, Zhang T, Chen Y. Binding of the polysaccharide from Acanthopanax giraldii Harms to toll-like receptor 4 activates macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:112011. [PMID: 31173876 DOI: 10.1016/j.jep.2019.112011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/22/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine, Acanthopanax giraldii Harms, is commonly used to treat arthralgia due to wind, cold and dampness, as well as weakness in the feet and knees. Its other reported effects include eliminating flatulence, strengthening muscles and bones, and delaying aging. The polysaccharides in A. giraldii Harms are the major bioactive substances that confer the herb's antioxidant properties as well as anticancer and antiviral effects. AIMS OF THE STUDY To elucidate the underlying mechanism and signaling cascade involved in the homogeneous A. giraldii Harms polysaccharide II (AHP-II)-mediated immunomodulation of mice macrophages. MATERIALS AND METHODS The phagocytosis of neutral red and the production of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), were measured to determine AHP-II-induced macrophage activation. Confocal microscopy and flow cytometry were used to confirm the binding of AHP-II to macrophages. The involvement of Toll-like receptor (TLR) 4 in AHP-II-induced macrophage activation was demonstrated using antibody blocking and macrophages from C3H/HeJ TLR4-mutant mice. Western blotting was used to map AHP-II-induced downstream signaling pathways. RESULTS AHP-II increased the phagocytosis of macrophages and the release of nitric oxide, IL-6 and TNF-α cytokines. Direct, saturable and reversible binding of AHP-II to macrophages was observed, while it can be inhibited by the anti-TLR4 antibody. In addition, the presence of the anti-TLR4 antibody inhibited AHP-II-induced macrophage IL-6 and TNF-α production in the peritoneal macrophages of C3H/HeJ mice. Moreover, AHP-II-TLR4-stimulated macrophages activate the downstream intracellular ERK and JNK/nuclear factor (NF)-κB signaling pathways. In addition, the AHP-II-mediated regulation of IL-6 and TNF-α production from macrophages was greatly affected by specific ERK, JNK and NF-κB inhibitors. CONCLUSION Our study elucidated the immunomodulatory mechanism of AHP-II in macrophage activation and identified TLR4 as the main receptor coordinating AHP-II binding. Our findings suggest AHP-II may be used as a novel immunopotentiator for medical purposes.
Collapse
Affiliation(s)
- Qingqing Li
- School of Clinical Medicine, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Zhiting Chen
- School of Bioscience and Technology, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Zhilu Xu
- School of Pharmacy, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Shaoyun Han
- School of Bioscience and Technology, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Huihui Hao
- Affiliated Hospital of Weifang Medical University, No. 2428 Yuhe Rd, Weifang City, 261042, China.
| | - Jiang Wu
- School of Clinical Medicine, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Fengxiang Sun
- School of Clinical Medicine, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Xiaoyan Fu
- School of Clinical Medicine, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Ruyue Li
- School of Bioscience and Technology, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Birong Zheng
- School of Bioscience and Technology, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Xiaoxiao Guo
- School of Bioscience and Technology, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Tongtong Zhang
- School of Bioscience and Technology, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| | - Yong Chen
- School of Clinical Medicine, Weifang Medical University, No.7166 W. Baotong Rd, Weifang City, 261042, China.
| |
Collapse
|
11
|
Wang H, Li Y, Ren Z, Cong Z, Chen M, Shi L, Han X, Pei J. Optimization of the microwave-assisted enzymatic extraction of Rosa roxburghii Tratt. polysaccharides using response surface methodology and its antioxidant and α-d-glucosidase inhibitory activity. Int J Biol Macromol 2018; 112:473-482. [DOI: 10.1016/j.ijbiomac.2018.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 01/11/2023]
|
12
|
Kasimu R, Chen C, Xie X, Li X. Water-soluble polysaccharide from Erythronium sibiricum bulb: Structural characterisation and immunomodulating activity. Int J Biol Macromol 2017; 105:452-462. [DOI: 10.1016/j.ijbiomac.2017.07.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/03/2017] [Accepted: 07/10/2017] [Indexed: 12/09/2022]
|
13
|
Hou L, Meng M, Chen Y, Wang C. A water-soluble polysaccharide from Grifola frondosa induced macrophages activation via TLR4-MyD88-IKKβ-NF-κB p65 pathways. Oncotarget 2017; 8:86604-86614. [PMID: 29156820 PMCID: PMC5689710 DOI: 10.18632/oncotarget.21252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/06/2017] [Indexed: 12/02/2022] Open
Abstract
Here, the immunomodulatory effects of water-soluble polysaccharide from Grifola frondosa on RAW264.7 macrophages and its molecular mechanisms were investigated. G. frondosa polysaccharide could obviously enhance immunostimulatory activity such as the release of nitric oxide and cytokine production. Western blotting results showed that G. frondosa polysaccharide elevated the TLR4, which might act as an upstream regulator of MyD88 induced G. frondosa polysaccharide. MyD88 promoted IKKβ in endochylema and translocate NF-κB p65 subunit into the nucleus which increased the NO production and cytokine/chemokines level. The results suggested that G. frondosa polysaccharide activated macrophages through TLR4-MyD88-IKKβ-NF-κBp65 signaling pathways.
Collapse
Affiliation(s)
- Lihua Hou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Meng Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yuanyuan Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Chunling Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
14
|
Raza A, Li F, Xu X, Tang J. Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. Int J Biol Macromol 2017; 94:335-344. [DOI: 10.1016/j.ijbiomac.2016.10.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
|
15
|
Extraction of Opuntia dillenii Haw. Polysaccharides and Their Antioxidant Activities. Molecules 2016; 21:molecules21121612. [PMID: 27886148 PMCID: PMC6273547 DOI: 10.3390/molecules21121612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 12/03/2022] Open
Abstract
Use of natural polysaccharides in medicine and food has wide interest in research. In this study, we extracted and purified some polysaccharides from cactus Opuntia dillenii Haw. (ODP). Some preliminary functions of these products were characterized. Under the optimal purification conditions, the yield of ODP extracted from the 2–4 month-old Opuntia dillenii Haw. (T-ODP) was 30.60% ± 0.40%, higher than that of ODP from the 5–10 month-old materials (O-ODP) (18.97% ± 0.58%). The extracted ODP was purified by DEAE sepharose fast flow anion exchange and Sephacryl S-400 chromatography with four fractions obtained (ODP-Ia, ODP-Ib, ODP-IIa and ODP-IIb). Analysis with UV-vis chromatography indicated that ODP-Ia and ODP-IIa were relatively homogeneous molecules with a molecular weight of 339 kD and 943 kD, respectively. Results of infrared spectroscopy indicated that ODP, ODP-Ia, and ODP-IIa were acidic polysaccharides. Further, the antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radical, hydroxyl radicals, and superoxide radical in vitro demonstrated that the T-ODP exhibited higher antioxidant activity than the O-ODP, and the purified fraction (ODP-Ia) was superior to the ODP. These results will offer a theoretical basis for further research on the structure-function relationship of ODP and the rational utilization of Opuntia dillenii Haw.
Collapse
|
16
|
Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies. J Fluoresc 2016; 26:2023-2031. [PMID: 27481501 DOI: 10.1007/s10895-016-1896-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.
Collapse
|