1
|
Bu Y, Liu Y, Zhu L, Gan X, Jiang S, Zhang X, Dilixiati M, Bai M, Zeng J, Shi S, Li T, Li B, Wang S, Wang H. Recent Advances in Polysaccharides Derived from the Genus Panax: Preparation Strategies, Structural Profiles, Functional Properties and Structure-Activity Relationships. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26074-26097. [PMID: 39546627 DOI: 10.1021/acs.jafc.4c07918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Plants from the Panax genus have significant medicinal and nutritional benefits. Many Panax species are traditionally used in Chinese medicine and have gained popularity as food and health products because of their tonic effects and high safety. Their key bioactive components include polysaccharides, which are hydrophilic biomolecules that have demonstrated significant potential in the food and pharmaceutical industries because of their multiple health-promoting qualities, such as immunomodulatory, antitumor, antiaging, blood glucose and blood lipid regulation, antiviral, hepatoprotective, and gastrointestinal protective properties. Additionally, polysaccharides are abundant in health products made from the genus Panax, such as energy drinks and herbal teas. However, compared with more extensively studied components, such as ginsenosides and saponins, polysaccharides from the genus Panax (GPPs) have been the subject of relatively limited research. This review provides a comprehensive overview of the extraction and purification technology, structural characteristics, biological activities, applications, and structure-activity relationships of GPPs. Ultimately, this information establishes a theoretical foundation for the further development and application of GPPs in nutrition and medicine.
Collapse
Affiliation(s)
- Yingxuan Bu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yupeng Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Lingyan Zhu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xiaona Gan
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Shenggui Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Xiaoyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Munisa Dilixiati
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P. R. China
| | - Muwei Bai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Jiani Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
2
|
Tian H, Wang W, Liu W, Lv Z, Wang L. Exopolysaccharide from Leuconostoc mesenteroides XR1: Yield optimization, partial characterization and properties. Int J Biol Macromol 2024; 279:135225. [PMID: 39218184 DOI: 10.1016/j.ijbiomac.2024.135225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The production conditions of exopolysaccharide (EPS) from Leuconostoc mesenteroides XR1 were optimized by response surface methodology (RSM). Maximum EPS yield was 56.59 ± 0.51 g/L under fermentation conditions with 2.6 g/L ammonium citrate, initial pH 6.5 and temperature 23 °C, which was 6.21-fold greater than the EPS yield before optimization. Characterization of the chain conformation using Congo red test and circular dichroism (CD) showed that EPS exhibited a random coil structure in aqueous solution. The CD results revealed that the EPS concentration altered its hydrogen-bond interactions and chirality, but did not change its chain conformation. The average polydispersity index (PDI) of the EPS solution was only 27.16 %, indicating that it was uniformly distributed in the aqueous solution with high stability. The degradation temperature of EPS was 253.11 °C, indicating high thermal stability. EPS possessed the ability to scavenge activities of free radicals and was protective against oxidative stress-induced plasmid DNA damage. In addition, stable hydrogels could be formed at EPS concentrations above 5 % (w/v). These results collectively showed that EPS can be used commercially as an antioxidant and drug delivery carrier.
Collapse
Affiliation(s)
- Huimin Tian
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Wenhao Wang
- School of Materials Science and Engineering, Dalian Jiaotong University, Huanghe Road 794, Dalian 116028, Liaoning, PR China
| | - Wei Liu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Zili Lv
- School of Medical and Life Sciences, Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 610041, PR China
| | - Liang Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
3
|
Xie Y, Wang Z, Wu Q, Er-Bu A, Liang X, He C, Yin L, Xu F, Sang G, Car R. Response surface methodology for optimization of the extraction of polysaccharide from the roots of onosma hookeri clarke. var. longiforum duthie and its antioxidant capacity and immune activity. Prep Biochem Biotechnol 2022; 53:923-930. [PMID: 36576214 DOI: 10.1080/10826068.2022.2158474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Onosma hookeri Clarke. var. longiforum Duthie (OHC-LD), one of the traditional Tibetan medicine, has been found many functions, including removing heat to cool blood, nourishing lung and inhibiting bacteria. In order to study the polysaccharides in OHC-LD water extract, the optimal extraction progress of polysaccharides of the roots of OHC-LD by response surface method designed with three-factor three-level Box-Behnken method and the antioxidant capacity and immune activity of the crude polysaccharide were studied in this investigation. Under the best conditions, the extraction yield of polysaccharide was 3.19±0.09% (n = 3). After purification, the crude polysaccharide was obtained with polysaccharide contents of 42.57%, which demonstrated stronger DPPH scavenging activity than BHT at low concentrations (<625 µg/mL), and comparable ABTS radical scavenging activity as BHT at high concentrations (≥1250 µg/mL). Additionally, it also exhibited a certain cell proliferation activity and an enhancement of the phagocytic ability of RAW264.7 cells. This study revealed that the crude polysaccharide from the roots of OHC-LD might be exploited as a natural antioxidant and immune enhance agent in the future in both medical and food industry.
Collapse
Affiliation(s)
- Yunyu Xie
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhenyu Wang
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiang Wu
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Aga Er-Bu
- Medical college, Tibet University, Lasa, Tibet, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Changliang He
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lizi Yin
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Funeng Xu
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Geng Sang
- Tibet Medical University, Lasa, Tibet, China
| | | |
Collapse
|
4
|
Yuan S, Dong PY, Ma HH, Liang SL, Li L, Zhang XF. Antioxidant and Biological Activities of the Lotus Root Polysaccharide-Iron (III) Complex. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207106. [PMID: 36296700 PMCID: PMC9611182 DOI: 10.3390/molecules27207106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
In this study, the synthesis parameters of the lotus root polysaccharide iron complex (LRPF) were determined and optimized by response surface methodology. Under the optimum preparation conditions, the pH of the solution was 9, the ratio of M (trisodium citrate): m (lotus root polysaccharide) was 0.45, the reaction time was 3 h. UV spectroscopy, thermogravimetry, FT-IR spectroscopy, X-ray diffraction, CD, and NMR were used for the characterization of the LRPF. LRPF has good stability and easily releases iron ions under artificial gastrointestinal conditions. LRPF exhibited antioxidant activity in vitro and can significantly improve the antioxidant activity in vivo. In addition, LRPF has a good effect in the treatment of iron deficiency anemia in model mice, impacts the gut microbiome, and reduces the iron deficiency-induced perniciousness by regulating steroid hormone biosynthesis. Therefore, LRPF can be used as a nutritional supplement to treat and prevent iron-deficiency anemia and improve human immunity.
Collapse
|
5
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
6
|
YU QY, YUAN S, YAN YY, ZHANG XF. Extraction, preparation and an assessment of the activity of carboxymethyl polysaccharide from Panax japonicus. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.82221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qi-Yang YU
- Qingdao Agricultural University, People’s Republic of China; Wuhan Polytechnic University, People’s Republic of China
| | - Shuai YUAN
- Qingdao Agricultural University, People’s Republic of China; Wuhan Polytechnic University, People’s Republic of China
| | - You-Yu YAN
- Wuhan Polytechnic University, People’s Republic of China
| | - Xi-Feng ZHANG
- Qingdao Agricultural University, People’s Republic of China
| |
Collapse
|
7
|
Li Q, Yang F, Hou R, Huang T, Hao Z. Post-screening characterization of an acidic polysaccharide from Echinacea purpurea with potent anti-inflammatory properties in vivo. Food Funct 2021; 11:7576-7583. [PMID: 32821898 DOI: 10.1039/d0fo01367f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We extracted and purified three polysaccharides from Echinacea purpurea using pectinase-assisted extraction to obtain crude preparations and optimized the method using an orthogonal analysis. We obtained three polysaccharide fractions (EPPS-1, -2 and -3) using DEAE ion exchange and gel filtration chromatography. The homogeneity of the fractions was confirmed using high performance gel permeation chromatography. EPPS-3 administered to mice in a LPS-induced septicemia model effectively counteracted the effects of LPS resulting in significantly less lung damage. This trend was also seen in the serum and lung cytokine levels where EPPS-3 significantly decreased the levels of TNF-α and IL-6 and increased IL-10. Particularly, we fully characterized the structure of the EPPS-3 polysaccharide using a series of technologies. This polysaccharide structure was mainly composed of →4)-α-Glcp-(1→, →4)-α-Galp-(1→, T-α-Araf-(1→, →3,4)-β-GalpA-(1→ glycosidic linkages at a certain proportion. In sum, EPPS-3, with a clear structure, has potent anti-inflammatory activities and is a candidate for further development as an anti-inflammatory agent for clinical development.
Collapse
Affiliation(s)
- Qiu Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fenfang Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ranran Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tingting Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Optimization of preparation process and antioxidant activity of the chelate of a Hericium erinaceus polysaccharide with zinc. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00795-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Production of Pyracantha Polysaccharide-Iron(III) Complex and Its Biologic Activity. Molecules 2021; 26:molecules26071949. [PMID: 33808420 PMCID: PMC8036721 DOI: 10.3390/molecules26071949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, the optimum synthetic process of the Pyracantha polysaccharide-iron (PPI) complex was studied via response surface methodology (RSM). Its antioxidant and anti-cancer activities were also investigated. It was demonstrated that the optimal conditions for the synthetic process of the complex were as follows: a pH of 8.9, a reaction temperature of 70 °C and a trisodium citrate:polysaccharide ratio of 1:2. PPI were analysis by UV, FTIR, SEM, CD, XRD, TGA and NMR. PPI was able to scavenge the metal ion, ABTS and free radicals of the superoxide anion, demonstrating its potential antioxidant activity. PPI was found to display cytotoxicity to Skov3 cells, as shown by its ability to induce apoptosis and alter gene expression in Skov3 cells. These findings show than PPI may represent a novel antioxidant and chemotherapeutic drug.
Collapse
|
10
|
Xiao D, Xinyi W, Ze Z, Jinglong H, Weizhi Z, Jiehan Z, Yiyong C. Characterization, optimization of preparation process of an Inonotus obliquus polysaccharide-Zinc (II) complex and its antioxidant activities. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1969276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ding Xiao
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Wu Xinyi
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Zhang Ze
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - He Jinglong
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Zhang Weizhi
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Zhang Jiehan
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Chen Yiyong
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| |
Collapse
|
11
|
Feng G, Zhang XF. Production of a codonopsis polysaccharide iron complex and evaluation of its properties. Int J Biol Macromol 2020; 162:1227-1240. [PMID: 32615228 DOI: 10.1016/j.ijbiomac.2020.06.210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022]
Abstract
A water extraction and alcohol precipitation method was applied to extract polysaccharides from Codonopsis pilosula (CPP), response surface methodology was used to optimize the extraction conditions and synthesis of C. pilosula polysaccharide iron (CPPI), and the properties of CPPI were evaluated. The optimum extraction conditions for CPP were as follows: liquid-solid ratio of 29.39 mL/g, time of 1.25 h and temperature of 62.84 °C. The optimum synthesis conditions for CPPI were pH 8.9, temperature 70.30 °C and the ratio of citric acid to CPP1 of 2.95. An HPSEC-MALLS-RID system, UV spectroscopy, FT-IR spectroscopy and NMR were used for characterization of the polysaccharide. CPPI exhibited antioxidant activity in vitro and a relatively strong inhibitory effect on A2780 cells growth. After CPPI treatment, the reactive oxygen species increased, the mitochondrial membrane potential decreased, and DNA damage was observed in A2780 cells. Therefore, CPPI should be explored as a potential antioxidant and an antitumor drug in a clinical setting.
Collapse
Affiliation(s)
- Ge Feng
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, People's Republic of China; College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China.
| |
Collapse
|
12
|
Xu R, Zhang J, You J, Gao L, Li Y, Zhang S, Zhu W, Shu S, Xiong C, Xiong H, Chen P, Guo J, Liu Z. Full-length transcriptome sequencing and modular organization analysis of oleanolic acid- and dammarane-type saponins related gene expression patterns in Panax japonicus. Genomics 2020; 112:4137-4147. [PMID: 32653517 DOI: 10.1016/j.ygeno.2020.06.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
The saponins found in Panax japonicus, a traditional medicinal herb in Asia, exhibit high degrees of structural and functional similarity. In this study, metabolite analysis revealed that oleanolic acid-type and dammarane-type saponins were distributed unevenly in three tissues (rhizome_Y, rhizome_O, and secRoot) of P. japonicus. Single-molecule real-time (SMRT) sequencing and next generation sequencing (NGS) data revealed distinct and tissue-specific transcriptomic patterns relating to the production of these two types of saponins. In the co-expression network and hierarchical clustering analyses, one 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and two 1-deoxy-D-xylulose-5-phosphate synthase (DXS) etc. transcripts were found to be key genes associated with the biosynthesis of oleanolic acid and dammarane-type saponins in P. japonicus, respectively. In addition, cytochrome p450 (CYP) and UDP-glucuronosyltransferase (UGT) family proteins that serve as regulators of saponin biosynthesis-related genes were also found to exhibit tissue-specific expression patterns. Together these results offer a comprehensive metabolomic and transcriptomic overview of P. japonicus.
Collapse
Affiliation(s)
- Ran Xu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiao Zhang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingmao You
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Limei Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yongchang Li
- Kansas City University of Medicine and Biosciences, Joplin 64804, USA
| | - Shaopeng Zhang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenjun Zhu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaohua Shu
- School of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Xiong
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Guo
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China.
| | - Zhiguo Liu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
13
|
XIA YG, ZHU RJ, SHEN Y, LIANG J, KUANG HX. A high methyl ester pectin polysaccharide from the root bark of Aralia elata: Structural identification and biological activity. Int J Biol Macromol 2020; 159:1206-1217. [DOI: 10.1016/j.ijbiomac.2020.05.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
|
14
|
Li M, Li X, Zhou L, Jin Y. Effects of total saponins from Panacis majoris Rhizoma and its degradation products on myocardial ischemia-reperfusion injury in rats. Biomed Pharmacother 2020; 130:110538. [PMID: 32731133 DOI: 10.1016/j.biopha.2020.110538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 02/02/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panacis majoris Rhizoma, which is a member of herbal medicine, is known for many years to remove blood stasis, promote blood circulation, and enrich the blood. The active ingredients of this plant are mainly attributed to saponins. AIM OF THE STUDY The total saponins from Panacis majoris Rhizoma (TSPJ), and the degradation products of TSPJ (DTSPJ), were designed in this study to compare the protective effects on myocardial ischemia-reperfusion injury, and the aim of this approach is to discover more effective agents for the treatment of ischemic heart diseases. We analyzed the main constituents of TSPJ and DTSPJ, aiming to make clear which saponins played important roles in this protective effect, and also investigated the possible mechanisms. MATERIALS AND METHODS DTSPJ was prepared by the method of alkaline hydrolysis. High performance liquid chromatography (HPLC) were used to analyze the main chemical constituents of TSPJ and DTSPJ, which were isolated by chromatographic techniques and identified by comparison with the Nuclear Magnetic Resonance (NMR) data in reported literature. Male Wistar rats were randomized to sham-operated group, ischemia-reperfusion group, three TSPJ (50, 100 and 200 mg/kg) groups, three DTSPJ (50, 100 and 200 mg/kg) groups, and isosorbide dinitrate tablet (5.0 mg/kg) group. The rats in all groups were intragastrically administrated once per day for three successive days. The establishment of the model of myocardial ischemia-reperfusion injury was used the following method: firstly, the left coronary artery of experimental rat was ligated for 30 min and then reperfused for 120 min. Then the myocardial infarct size, hemorheological and biochemical parameters, whole blood viscosity, plasma viscosity, platelet adhesion rate, platelet aggregation and histopathology changes were assessed. RESULTS Five C3,C28-bidesmosidic oleanane-type saponins and ginsenoside Rd were the main constituents of TSPJ, and their total content in TSPJ was 79.2 %. The main constituents of DTSPJ were five C3-monodesmosidic oleanane-type saponins and ginsenoside Rd, and their total content in DTSPJ was 72.6 %. The HPLC analysis revealed that the five C3,C28-bidesmosidic oleanane-type saponins in TSPJ were completely turned into five C3-monodesmosidic oleanane-type saponins in DTSPJ through the method of alkaline hydrolysis, but ginsenoside Rd remained unchanged. Both TSPJ and DTSPJ could significantly reduced myocardial infarct size, and improved heart function, and lowered the activities of aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatine kinase isoenzymes (CK-MB), and malonyldialdehyde (MDA) content, as well as the levels of whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation; on the contrary, both the level of glutathione peroxidase (GSH-Px) and the activity of superoxide dismutase (SOD) were notablely increased. The results of histopathological examination further supported the cardioprotective effects of TSPJ and DTSPJ. CONCLUSION Both TSPJ and DTSPJ can guard cardiomyocytes against myocardial ischemia-reperfusion injury. The underlying mechanisms may be closely related to its enhancing anti-oxidative properties, modifying blood viscosity, and inhibiting platelet aggregation and platelet adhesion. As a whole, the protection of DTSPJ against myocardial ischemia-reperfusion injury was a little stronger than those of TSPJ. The results display the prospect of DTSPJ as a drug candidate for treating ischemic heart disease.
Collapse
Affiliation(s)
- Min Li
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, Henan, PR China
| | - Xuwen Li
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, PR China
| | - Limei Zhou
- Jilin Modern Chinese Medicine Engineering and Research Center Co., Ltd, Changchun, 130012, Jilin, PR China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, PR China.
| |
Collapse
|
15
|
Kan L, Chai Y, Li X, Zhao M. Structural analysis and potential anti-tumor activity of Sporisorium reilianum (Fries) polysaccharide. Int J Biol Macromol 2020; 153:986-994. [PMID: 31756475 DOI: 10.1016/j.ijbiomac.2019.10.228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022]
Abstract
A neutral polysaccharide WM-NP-60 was successfully isolated and purified from a phytopathogenic fungus Sporisorium reilianum (Fries). The characteristics and potential antitumor activities of WM-NP-60 were studied. WM-NP-60 was a water-soluble polysaccharide. The molecular weight of WM-NP-60 was 15.6 kDa. The main chain of WM-NP-60 was composed of β-1,6-D-Glcp and its side chains were β-1,3-D-Glcp. The side chains bound to the main chain with glycosyl groups at the C-3 positions. Gal might be attached to the backbone as a side chain or bound to the linear β-1,3-D-Glcp side chain. WM-NP-60 could inhibit the proliferation of HepG2 and SGC7901 cells in a dose-dependently manner. In addition, it was found that WM-NP-60 triggered the HepG2 and SGC7901 cell cycle arrest at the G1 phase and induced apoptosis of HepG2 and SGC7901 cells. Taken together, these results suggested that WM-NP-60 possessed a tumor-suppressive activity and might be regarded as a potential natural anti-tumor drug.
Collapse
Affiliation(s)
- Lianbao Kan
- School of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Northeast Petroleum University, Daqing 163318, PR China
| | - Yangyang Chai
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xiaoyan Li
- School of Life Sciences, Northeast Forestry University, Harbin 150040, PR China.
| | - Min Zhao
- School of Life Sciences, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
16
|
Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Yao YL, Shu C, Feng G, Wang Q, Yan YY, Yi Y, Wang HX, Zhang XF, Wang LM. Polysaccharides from Pyracantha fortuneana and its biological activity. Int J Biol Macromol 2019; 150:1162-1174. [PMID: 31794823 DOI: 10.1016/j.ijbiomac.2019.10.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/09/2019] [Accepted: 10/13/2019] [Indexed: 01/27/2023]
Abstract
This study used response surface methodology to determine the optimal conditions for extraction of polysaccharides from Pyracantha. fortuneana (PSPF), and studied the mechanism of PSPF-inducing apoptosis in human ovarian carcinoma Skov3 cells. Response surface methodology (RSM) were adopted to extract PSPF. The maximum value of polysaccharide yield was obtained under these optimal conditions. PSPF had good potential as an antioxidant. Exposure of cells to PSPF resulted in cytotoxicity through the induction of apoptosis, and the reactive oxygen species were increased, mitochondrial membrane potential decreased, DNA damage (detected as γ- H2AX and RAD51 foci) was observed in Skov3 cells. In addition, PSPF could induce apoptosis of cancer cells. Therefore, PSPF should be explored as novel potential antioxidants and an anti-tumor drug in a clinical setting.
Collapse
Affiliation(s)
- Yi-Lan Yao
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chang Shu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ge Feng
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qing Wang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - You-Yu Yan
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hong-Xun Wang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Li-Mei Wang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
18
|
Chen X, Fang D, Zhao R, Gao J, Kimatu BM, Hu Q, Chen G, Zhao L. Effects of ultrasound-assisted extraction on antioxidant activity and bidirectional immunomodulatory activity of Flammulina velutipes polysaccharide. Int J Biol Macromol 2019; 140:505-514. [DOI: 10.1016/j.ijbiomac.2019.08.163] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/11/2019] [Accepted: 08/18/2019] [Indexed: 01/07/2023]
|
19
|
Li J, Bai DP, Zhang XF. SNP discovery and functional annotation in the Panax japonicus var. major transcriptome. RSC Adv 2019; 9:21513-21517. [PMID: 35521338 PMCID: PMC9066167 DOI: 10.1039/c8ra09495k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/23/2019] [Indexed: 11/21/2022] Open
Abstract
Due to the lack of a Panax japonicus var. major reference genome, we assembled a reference transcriptome from P. japonicus C. A. Mey transcriptome sequencing data, and 203 283 unigenes were obtained. In this study, with the assistance from the Trinity, Bowtie2 and SAMtools softwares, 218 465 single nucleotide polymorphisms (SNPs) were identified by mapping the Illumina sequences to the reference transcriptome. The SNP forms included 126 262 transformations and 92 203 transversions. A large number of SNP loci were associated with triterpenoid saponin synthesis: 54 SNPs were associated with cytochrome P450, one with glycosyl transferase and 94 with the biosynthesis of the triterpenoid saponin backbone.
Collapse
Affiliation(s)
- Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Ding-Ping Bai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan 430023 China
| |
Collapse
|
20
|
Polysaccharide from Scutellaria baicalensis Georgi ameliorates colitis via suppressing NF-κB signaling and NLRP3 inflammasome activation. Int J Biol Macromol 2019; 132:393-405. [DOI: 10.1016/j.ijbiomac.2019.03.230] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/14/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023]
|
21
|
Liu T, Liu T, Liu H, Fan H, Chen B, Wang D, Zhang Y, Sun F. Preparation and Characterization of a Novel Polysaccharide-Iron(III) Complex in Auricularia auricula Potentially Used as an Iron Supplement. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6416941. [PMID: 31309110 PMCID: PMC6594347 DOI: 10.1155/2019/6416941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Iron deficiency anemia has been a widespread disease. As an effective and stable iron supplement, the physiochemical properties of the polysaccharide iron complex have been widely studied. In this study, we characterized a novel polysaccharide-iron(III) complex extracted in an edible fungal species Auricularia auricular (AAPS-iron(III)). The highest iron content (28.40%) in the AAPS-iron(III) complex was obtained under the optimized preparation conditions including an AAPS to FeCl3∙ 6H2O ratio of 2:3 (w/w), a pH value of 8.0 in solution, a reaction temperature of 50°C, and a reaction time of 3 h. The physical and chemical properties of the AAPS-iron(III) complex were characterized by qualitative and quantitative analyses using scanning electron microscope, particle size distribution, thermogravimetric analyzer, Fourier transform infrared spectroscopy, circular dichroism, and 1H nuclear magnetic resonance. Result showed that, although the iron was bound to the polysaccharide, it was released under artificial gastrointestinal conditions. The AAPS-iron(III) complex exhibited high stability (under 50-256°C) and water solubility. The AAPS-iron(III) complex also showed high antioxidant activity in vitro, demonstrating an additional health benefit over other typical nonantioxidant iron nutritional supplements. Furthermore, the AAPS-iron(III) complex showed high efficiency on the treatment of the iron deficiency anemia in the model rats. Therefore, the AAPS-iron(III) complex can be used as a nutritional fortifier to supply iron in industrial processing and to assist the treatment of iron deficiency anemia.
Collapse
Affiliation(s)
- Tong Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Bingyu Chen
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| |
Collapse
|
22
|
Wu F, Jia X, Yin L, Cheng Y, Miao Y, Zhang X. The Effect of Hemicellulose and Lignin on Properties of Polysaccharides in Lentinus edodes and Their Antioxidant Evaluation. Molecules 2019; 24:E1834. [PMID: 31086063 PMCID: PMC6539561 DOI: 10.3390/molecules24091834] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022] Open
Abstract
Lentinus edodes, whose polysaccharides possess diverse bioactivities, commonly grows on hardwood sawdust composed of hemicellulose, lignin and cellulose. In this study the effect of hemicellulose and lignin on the growth of mycelia, as well as the physicochemical properties of polysaccharides from L. edodes mycelia (LEPs) were investigated. The antioxidant properties of LEPs were evaluated through radical scavenging assays in vitro and through the Caenorhabditis elegans model in vivo. The results showed that hemicellulose at a concentration of 4% increased the yield of the mycelia biomass to twice that of the control group. Meanwhile, when cultured with 4.0% hemicellulose, the polysaccharide content of the mycelia was raised by 112.2%. In addition, the appropriate concentration of lignin could stimulate mycelia growth and polysaccharide biosynthesis in L. edodes. Monosaccharide composition analysis showed that a higher content of xylose was found when mycelia were cultured with higher concentrations of hemicellulose. The molecular structure, including the molecular weight distribution and configuration type, was affected by hemicellulose and lignin. Antioxidant assays indicated that LEPs supplemented with hemicellulose and/or lignin possessed higher radical scavenging abilities in vitro and exhibited a thermal resistance effect on C. elegans, implying that the antioxidant effect is potent in vivo. In summary, the addition of hemicellulose and lignin improved the biosynthesis and bioactivity of LEPs.
Collapse
Affiliation(s)
- Feifei Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| | - Yongqiang Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| | - Yuxin Miao
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| | - Xiuqing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| |
Collapse
|
23
|
Jiang Y, Bai X, Lang S, Zhao Y, Liu C, Yu L. Optimization of ultrasonic-microwave assisted alkali extraction of arabinoxylan from the corn bran using response surface methodology. Int J Biol Macromol 2019; 128:452-458. [DOI: 10.1016/j.ijbiomac.2019.01.138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
|
24
|
Characterization of polysaccharide from Helicteres angustifolia L. and its immunomodulatory activities on macrophages RAW264.7. Biomed Pharmacother 2019; 109:262-270. [DOI: 10.1016/j.biopha.2018.10.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
|
25
|
Hou G, Surhio MM, Ye H, Gao X, Ye Z, Li J, Ye M. Protective effects of a Lachnum polysaccharide against liver and kidney injury induced by lead exposure in mice. Int J Biol Macromol 2018; 124:716-723. [PMID: 30448488 DOI: 10.1016/j.ijbiomac.2018.11.133] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
This study was designed to investigate the liver and kidney protective efficacy of a Lachnum polysaccharide (LEP) against Pb-induced toxicity in mice. The results showed that LEP decreased the Pb-induced bodyweight loss and organ index. Moreover, biochemical analysis showed that treatment of LEP could improve antioxidant status (CAT, GSH-Px and MDA) and the injury of tissues (liver and kidney). In addition, the histopathological observations indicated that LEP could attenuate liver and kidney cell injury induced by Pb. For further studies, key proteins involved in hepatic and kidney apoptosis, including cleaved caspase-3, Bax, Bcl-2, TGF-β1 and α-SMA, were quantified. The present findings demonstrated that LEP is strongly effective in protecting against the liver and kidney injury induced by Pb. We hope this research can offer a theoretical base for development of polysaccharide based on nutraceutical food in future.
Collapse
Affiliation(s)
- Guohua Hou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Maheen Mahwish Surhio
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hongling Ye
- Department of Horticulture and Landscape, Anqing Vocational and Technical College, Anqing 246003, China
| | - Xiaoming Gao
- Hefei Preschool Education College, Hefei 230013, China
| | - Ziyang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ming Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
26
|
Quality Evaluation of the Traditional Medicine Majun Mupakhi ELA via Chromatographic Fingerprinting Coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS and the Antioxidant Activity In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1035809. [PMID: 29692853 PMCID: PMC5859799 DOI: 10.1155/2018/1035809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/29/2018] [Indexed: 01/07/2023]
Abstract
By merging a high-performance liquid chromatography diode array detector (HPLC-DAD) method with high-performance thin-layer chromatography (HPTLC), an assay was developed for chemical fingerprinting and quantitative analysis of traditional medicine Majun Mupakhi ELA (MME), and constituent compounds were identified using HPLC coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS method. In addition, the antioxidant capacity of MME was assessed based on the ability of components to scavenge radicals using in vitro method. Using a HPLC-DAD method with HPTLC easily validated the chemical fingerprinting results and quantified three characteristic components, namely, gallic acid (1), daidzein (2), and icariin (3), in commercial MMEs. The three compounds presented excellent regression values (R2 = 0.9999) in the ranges of the test and the method recovery was in the range from 100.49% to 100.68%. The fingerprints had 27 common characteristic peaks, of which 13 were verified by rapid UHPLC-DAD-Q-Orbitrap-MS analysis. In vitro antioxidant assays rapidly assessed and contrasted antioxidant activity or the free radical scavenging activity of the main polyphenolic classes in MMEs, and the antioxidant capacity was mostly affected by the presence of gallic acid. Thus, this study establishes a powerful and meaningful approach for MME quality control and for assessing in vitro antioxidant activity.
Collapse
|
27
|
Xing Y, Chen C, Sun W, Zhang B, Sang Y, Xiu Z, Dong Y. An environment-friendly approach to isolate and purify glucan from spent cells of recombinant Pichia pastoris and the bioactivity characterization of the purified glucan. Eng Life Sci 2018; 18:227-235. [PMID: 32624901 DOI: 10.1002/elsc.201700125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/11/2017] [Accepted: 12/27/2017] [Indexed: 11/09/2022] Open
Abstract
While the methylotrophic yeast Pichia pastoris enables the industrial-scale biosynthesis of many recombinant products, large amount of nutrient-rich biomass emerged along this process. Polysaccharides, especially glucans that are abundant in the cell wall of P. pastoris, are yet to be better utilized owing to their various biological activities. However, the isolation and purification of cell wall glucan from P. pastoris has not been reported. In this study, we established an environment-friendly approach, including induced autolysis, hot-water treatment, ultrasonication, isopropanol extraction, and protease treatment, to isolate and purify glucan from the cell wall of P. pastoris. We achieved a purity of 85.3% and a yield of 11.7% for the purified glucan. Proteins, nucleic acids, lipids, and ash were efficiently removed during the purification. The activities of the purified glucan were investigated in mice fed with a high-fat diet. The purified glucan decreased the level of total cholesterol and triglycerides by 30.3 and 29.7%, respectively. This result suggested that the cell wall glucan of P. pastoris could be developed to a therapeutic agent for dyslipidemia. Our study proposed an environment-friendly and effective method to isolate and purify the glucan from P. pastoris, providing solid foundation for the high-value utilization of this yeast.
Collapse
Affiliation(s)
- Yan Xing
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Chaonan Chen
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Wenlong Sun
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Bowei Zhang
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Yuanbin Sang
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Zhilong Xiu
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| | - Yuesheng Dong
- School of Life Science and Biotechnology Dalian University of Technology Dalian Liaoning P. R. China
| |
Collapse
|
28
|
Li S, Liu S, Pi Z, Song F, Jin Y, Liu Z. Chemical profiling of Fufang-Xialian-Capsule by UHPLC-Q-TOF-MS and its antioxidant activity evaluated by in vitro method. J Pharm Biomed Anal 2017; 138:289-301. [DOI: 10.1016/j.jpba.2017.01.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/26/2022]
|
29
|
Hu Y, Zhang J, Zou L, Fu C, Li P, Zhao G. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. Int J Biol Macromol 2017; 99:622-629. [PMID: 28274868 DOI: 10.1016/j.ijbiomac.2017.03.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/02/2017] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
Abstract
Chenopodium quinoa, a promising nutraceutical cereal, has attracted increasing research interest, yet its polysaccharides remains to get few systematic studies. In this study, we employed orthogonal experimental design to optimize the ultrasound-assisted extraction process for highest yield of C. quinoa polysaccharides. A novel C. quinoa polysaccharide (CQP) fraction with high content and low molecular weight (8852Da) was subsequently purified by column chromatography, constituted by galacturonic acid and glucose monosaccharides. The purified CQP exhibited significantly antioxidant effect against DPPH+ and ABTS+, with even higher efficiency than some other reported polysaccharides. Moreover, CQP could promote the RAW264.7 macrophage proliferation, while suppress the nitri oxide production on inflammatory RAW264.7 macrophage in a dose- and time-dependent manner. In view of the pathological correlation of free radical, inflammation and carcinogenesis, the anticancer effect of CQP was further investigated on human liver cancer SMMC 7721 and breast cancer MCF-7 cells. Interestingly, CQP displayed cytotoxicity against cancer cells, while none proliferation inhibition on normal cells. These results suggest that the bioactive polysaccharide from C. quinoa provided the promising potential as a natural antioxidant, immune-regulating and anticancer candidate for food and even drug application.
Collapse
Affiliation(s)
- Yichen Hu
- School of pharmacy and bioengineering, Chengdu University, Chengdu 610106, China
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- School of pharmacy and bioengineering, Chengdu University, Chengdu 610106, China
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Gang Zhao
- School of pharmacy and bioengineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
30
|
Mazarei F, Jooyandeh H, Noshad M, Hojjati M. Polysaccharide of caper (Capparis spinosa L.) Leaf: Extraction optimization, antioxidant potential and antimicrobial activity. Int J Biol Macromol 2017; 95:224-231. [DOI: 10.1016/j.ijbiomac.2016.11.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/02/2016] [Accepted: 11/13/2016] [Indexed: 01/11/2023]
|
31
|
Yuan B, Yang XQ, Kou M, Lu CY, Wang YY, Peng J, Chen P, Jiang JH. Selenylation of Polysaccharide from the Sweet Potato and Evaluation of Antioxidant, Antitumor, and Antidiabetic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:605-617. [PMID: 28052202 DOI: 10.1021/acs.jafc.6b04788] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interest in sweet potato as a functional food is growing. A polysaccharide (SWP) was isolated from the sweet potato tuber and elucidation of its structure as composed of rhamnose, glucose, and galactose undertaken. To improve its activity, selenylation of this novel polysaccharide (Se-SWP) was undertaken by using microwave synthesis. In vitro evaluation showed that the Se-SWP has excellent antioxidant activity on scavenging free radicals and reducing capacity. In vivo antitumor evaluation showed selenylation polysaccharide could effectively inhibit tumor growth (>50%) and adjust immune factor levels in the mice (IL-2, TNF-α, and VEGF). The antidiabetic potential of Se-SWP was tested in STZ-induced diabetic rats. The results indicated that the Se-SWP treatment significantly reduced the levels of malondialdehyde and other disadvantageous factors that were increased by the STZ treatment. Meanwhile, the Se-SWP treatment caused a significant increase in the activities of enzymatic antioxidants and the levels of nonenzymatic antioxidants in the organs of diabetic rats. All of the activity evaluations indicated that the selenylation method could improve the activity of sweet potato polysaccharide and its efficacy as a potential therapeutic, which will be the focus of further study.
Collapse
Affiliation(s)
- Bo Yuan
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province & School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
| | - Xu-Qin Yang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province & School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
| | - Meng Kou
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province & School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
- Jiangsu Xuzhou Sweetpotato Research Center , Xuzhou, Jiangsu 221131, People's Republic of China
| | - Chang-Yan Lu
- He Fei First People Hospital , He fei, An-Hui 230000, People's Republic of China
| | - Yuan-Yuan Wang
- College of Biomedical Sciences, Xuzhou Medical University , Xuzhou, Jiangsu 221004, People's Republic of China
| | - Jun Peng
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province & School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
| | - Ping Chen
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province & School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
- Jiangsu Xuzhou Sweetpotato Research Center , Xuzhou, Jiangsu 221131, People's Republic of China
| | - Ji-Hong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province & School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|
32
|
Chai Y, Zhao M. Purification, characterization and anti-proliferation activities of polysaccharides extracted from Viscum coloratum (Kom.) Nakai. Carbohydr Polym 2016; 149:121-30. [DOI: 10.1016/j.carbpol.2016.04.090] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 01/17/2023]
|