1
|
Masjedi M, Montahaei T, Sharafi Z, Jalali A. Pulmonary vaccine delivery: An emerging strategy for vaccination and immunotherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Cai SS, Li T, Akinade T, Zhu Y, Leong KW. Drug delivery carriers with therapeutic functions. Adv Drug Deliv Rev 2021; 176:113884. [PMID: 34302897 PMCID: PMC8440421 DOI: 10.1016/j.addr.2021.113884] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Design of micro- or nanocarriers for drug delivery has primarily been focused on properties such as hydrophobicity, biodegradability, size, shape, surface charge, and toxicity, so that they can achieve optimal delivery with respect to drug loading, release kinetics, biodistribution, cellular uptake, and biocompatibility. Incorporation of stimulus-sensitive moieties into the carriers would lead to "smart" delivery systems. A further evolution would be to endow the carrier with a therapeutic function such that it no longer serves as a mere passive entity to release the drug at the target tissue but can be viewed as a therapeutic agent in itself. In this review, we will discuss recent and ongoing efforts over the past decade to design therapeutic drug carriers that confer a biological benefit, including ROS scavenging or generating, pro- or anti-inflammatory, and immuno-evasive properties, to enhance the overall therapeutic efficacy of the delivery systems.
Collapse
Affiliation(s)
- Shuting S. Cai
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tolulope Akinade
- Graduate Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York 10027, New York, United States
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States,Department of Systems Biology, Columbia University, New York 10027, New York, United States,Corresponding author , Mailing address: 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027
| |
Collapse
|
3
|
Multilayer fibroin/chitosan oligosaccharide lactate and pullulan immunomodulatory patch for treatment of hernia and prevention of intraperitoneal adhesion. Carbohydr Polym 2021; 265:118066. [PMID: 33966830 DOI: 10.1016/j.carbpol.2021.118066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022]
Abstract
This study aims to develop a novel intraperitoneal two- or three-layered patch with immunomodulatory property for treatment of hernia, regeneration of abdominal wall and prevention of intraperitoneal adhesions. Polypropylene (PP) mesh, middle layer, was intended to provide mechanical support whereas pullulan (PUL) hydrogel coating layer was designed to prevent intraperitoneal adhesions. Fibroin/chitosan oligosaccharide lactate (F/COS) layer electrospun on one side of pullulan was chosen for immunomodulation and abdominal wall regeneration. Physical and mechanical properties and regenerative capacity of intraperitoneal patches were determined. Immunomodulatory property of electrospun layer and whole patch was studied by determining nitric oxide amount produced by RAW 264.7 macrophages. 25 % (w/v) PUL hydrogel and F/COS with 90:10 (w/w) ratio yielded optimal results. Here, we report that fabricated intraperitoneal patches successfully prevented cell adhesion on one side and increased cell viability and proliferation on other side, along with immunomodulation, in vitro.
Collapse
|
4
|
Ludwig L, Tsukui T, Kageyama M, Farias M. Evaluation of sensitization to the crude extract of Dermatophagoides farinae and its derived allergens, Der f 2 and Zen 1, in dogs with atopic dermatitis in Southern Brazil. Vet Immunol Immunopathol 2021; 234:110199. [PMID: 33662650 DOI: 10.1016/j.vetimm.2021.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Atopic dermatitis is associated with the production of IgE antibodies against environmental allergens and allergens of the house dust miteDermatophagoides farinae are frequently implicated in the disease. OBJECTIVES We aimed to observe the allergen-specific IgE against crudeD. farinae, Der f 2 and Zen 1 in dogs with atopic dermatitis and report if these dogs are in contact with material that could shelter mite allergens. METHODS 100 dogs with clinical diagnosis of atopic dermatitis were included after exclusion of other forms of pruritic skin disease and dogs that already received specific or non-specific immunotherapy. These dogs were of different breeds and ages and they were presented at a veterinary teaching hospital and a private service of veterinary dermatology, both located in Curitiba, Southern Brazil. At the time of anamnesis, some questions were applied to know the possibility of these dogs having had contact with furniture and textile material which could shelter house dust mites. Sera samples were obtained and further analyzed by ELISA assay to measure serum IgE levels against these allergens with an established cut-off of 0.200 IgE optical density. RESULTS The allergen-specific IgE positivity against crudeD. farinae (92 %) and Zen 1 (77 %) was higher than Der f 2 (56 %). There was a correlation in sensitization to crude D. farinae and Zen 1 that was not observed between crude D. farinae and Der f 2 and Der f 2 and Zen 1. The sensitization to D. farinae and its allergens was associated with an unrestricted exposition to furniture and textile material. CONCLUSION & CLINICAL RELEVANCE: dogs with atopic dermatitis are frequently sensitized to D. farinae and its allergens, Der f 2 and Zen 1, may be considered major allergens in these dogs. Zen 1 may be the main allergen responsible for the sensitization to crude D. farinae.
Collapse
Affiliation(s)
- L Ludwig
- Department of Veterinary Medicine, School of Life and Sciences, Pontifical Catholic University of Paraná, 1155 Imaculada Conceição Street, 80215901, Curitiba, PR, Brazil.
| | - T Tsukui
- Central Research Laboratory, ZENOAQ, 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - M Kageyama
- Central Research Laboratory, ZENOAQ, 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - M Farias
- Department of Veterinary Medicine, School of Life and Sciences, Pontifical Catholic University of Paraná, 1155 Imaculada Conceição Street, 80215901, Curitiba, PR, Brazil; Dermatovet Veterinary Clinic, 85 Carmelo Rangel Street, 80440050, Curitiba, PR, Brazil
| |
Collapse
|
5
|
Cheng Y, Chen Q, Guo Z, Li M, Yang X, Wan G, Chen H, Zhang Q, Wang Y. An Intelligent Biomimetic Nanoplatform for Holistic Treatment of Metastatic Triple-Negative Breast Cancer via Photothermal Ablation and Immune Remodeling. ACS NANO 2020; 14:15161-15181. [PMID: 33143424 DOI: 10.1021/acsnano.0c05392] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metastasis is one of the main causes of failure in the treatment of triple-negative breast cancer (TNBC). Immunotherapy brings hope and opportunity to solve this challenge, while its clinical applications are greatly inhibited by the tumor immunosuppressive environment. Here, an intelligent biomimetic nanoplatform was designed based on dendritic large-pore mesoporous silica nanoparticles (DLMSNs) for suppressing metastatic TNBC by combining photothermal ablation and immune remodeling. Taking advantage of the ordered large-pore structure and easily chemically modified property of DLMSNs, the copper sulfide (CuS) nanoparticles with high photothermal conversion efficiency were in situ deposited inside the large pores of DLMSNs, and the immune adjuvant resiquimod (R848) was loaded controllably. A homogenous cancer cell membrane was coated on the surfaces of these DLMSNs, followed by conjugation with the anti-PD-1 peptide AUNP-12 through a polyethylene glycol linker with an acid-labile benzoic-imine bond. The thus-obtained AM@DLMSN@CuS/R848 was applied to holistically treat metastatic TNBC in vitro and in vivo. The data showed that AM@DLMSN@CuS/R848 had a high TNBC-targeting ability and induced efficient photothermal ablation on primary TNBC tumors under 980 nm laser irradiation. Tumor antigens thus generated and increasingly released R848 by response to the photothermal effect, combined with AUNP-12 detached from AM@DLMSN@CuS/R848 in the weakly acidic tumor microenvironment, synergistically exerted tumor vaccination, and T lymphocyte activation functions on immune remodeling to prevent TNBC recurrence and metastasis. Taken together, this study provides an intelligent biomimetic nanoplatform to enhance therapeutic outcomes in metastatic TNBC.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qian Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhaoyang Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Mengwen Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiaoying Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Yinsong Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
6
|
Pullulan-Coated Iron Oxide Nanoparticles for Blood-Stage Malaria Vaccine Delivery. Vaccines (Basel) 2020; 8:vaccines8040651. [PMID: 33153189 PMCID: PMC7711541 DOI: 10.3390/vaccines8040651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Vaccines against blood-stage malaria often aim to induce antibodies to neutralize parasite entry into red blood cells, interferon gamma (IFNγ) produced by T helper 1 (Th1) CD4+ T cells or interleukin 4 (IL-4) produced by T helper 2 (Th2) cells to provide B cell help. One vaccine delivery method for suitable putative malaria protein antigens is the use of nanoparticles as vaccine carriers. It has been previously shown that antigen conjugated to inorganic nanoparticles in the viral-particle size range (~40–60 nm) can induce protective antibodies and T cells against malaria antigens in a rodent malaria challenge model. Herein, it is shown that biodegradable pullulan-coated iron oxide nanoparticles (pIONPs) can be synthesized in this same size range. The pIONPs are non-toxic and do not induce conventional pro-inflammatory cytokines in vitro and in vivo. We show that murine blood-stage antigen MSP4/5 from Plasmodium yoelii could be chemically conjugated to pIONPs and the use of these conjugates as immunogens led to the induction of both specific antibodies and IFNγ CD4+ T cells reactive to MSP4/5 in mice, comparable to responses to MSP4/5 mixed with classical adjuvants (e.g., CpG or Alum) that preferentially induce Th1 or Th2 cells individually. These results suggest that biodegradable pIONPs warrant further exploration as carriers for developing blood-stage malaria vaccines.
Collapse
|
7
|
Yang X, Zhao H, Wang Y, Liu J, Guo M, Fei D, Mu M, Xing M. The Activation of Heat-Shock Protein After Copper(II) and/or Arsenic(III)-Induced Imbalance of Homeostasis, Inflammatory Response in Chicken Rectum. Biol Trace Elem Res 2020; 195:613-623. [PMID: 31473897 DOI: 10.1007/s12011-019-01871-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/18/2019] [Indexed: 11/24/2022]
Abstract
Arsenic and copper, two toxic pollutants, are powerful inducers of oxidative stress. Exposure to copper and arsenic can cause intestinal injury in cockerel. This study was carried out to investigate the effects of these two pollutants on the gastrointestinal tract of cockerels. Experimental results showed that the activity of antioxidant enzymes (catalase and glutathione peroxidase) was inhibited and the ionic balance was destroyed after exposure to copper sulfate (300 mg/kg) and/or arsenic trioxide (30 mg/kg). However, the expression of pro-inflammatory cytokines (nuclear factor kappa-B, cyclooxygenase-2, tumor necrosis factor-α, and prostaglandin E2 synthases) increased markedly. Damages to the biofilm structure and inflammatory cell infiltration were simultaneously observed during histological examination. Heat-shock proteins were also expressed in large quantities after exposure to the poisons. Collectively, exposure to arsenite and/or Cu2+ can cause rectal damage in cockerels, inducing inflammation and an imbalance in immune system responses. Sometimes, exposure to both pollutants can produce even more toxic effects. Heat-shock proteins can protect the tissue from the exotoxins but the specific mechanisms require exploration. After oral ingestion of toxins, the rectum can still be damaged, necessitating attention to the safety of poultry breeding, human food safety, and environmental protection.
Collapse
Affiliation(s)
- Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Juanjuan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
8
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
9
|
Charoenwongpaiboon T, Supraditaporn K, Klaimon P, Wangpaiboon K, Pichyangkura R, Issaragrisil S, Lorthongpanich C. Effect of alternan versus chitosan on the biological properties of human mesenchymal stem cells. RSC Adv 2019; 9:4370-4379. [PMID: 35520166 PMCID: PMC9060545 DOI: 10.1039/c8ra10263e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Alternan α-1,3- and α-1,6-linked glucan, promotes proliferation, migration, and differentiation of human MSCs.
Collapse
Affiliation(s)
| | - Kantpitchar Supraditaporn
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| | - Phatchanat Klaimon
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| | - Karan Wangpaiboon
- Department of Biochemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok
- Thailand
| | - Rath Pichyangkura
- Department of Biochemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok
- Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research
- Department of Medicine
- Faculty of Medicine Siriraj Hospital
- Mahidol University
- Bangkok 10700
| |
Collapse
|
10
|
Potential of glucans as vaccine adjuvants: A review of the α-glucans case. Carbohydr Polym 2017; 165:103-114. [DOI: 10.1016/j.carbpol.2017.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023]
|
11
|
Olivry T, Paps JS, Dunston SM. Proof of concept of the preventive efficacy of high-dose recombinant mono-allergen immunotherapy in atopic dogs sensitized to theDermatophagoides farinaeallergen Der f 2. Vet Dermatol 2016; 28:183-e40. [DOI: 10.1111/vde.12395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Thierry Olivry
- Department of Clinical Sciences; College of Veterinary Medicine; NC State University; 1060 William Moore Drive Raleigh NC 27607 USA
- Comparative Medicine Institute; NC State University; Raleigh NC 27606 USA
| | - Judy S. Paps
- Department of Clinical Sciences; College of Veterinary Medicine; NC State University; 1060 William Moore Drive Raleigh NC 27607 USA
| | - Stanley M. Dunston
- Department of Clinical Sciences; College of Veterinary Medicine; NC State University; 1060 William Moore Drive Raleigh NC 27607 USA
| |
Collapse
|
12
|
Yu X, Hong F, Zhang YQ. Cardiac inflammation involving in PKCε or ERK1/2-activated NF-κB signalling pathway in mice following exposure to titanium dioxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:68-77. [PMID: 27054666 DOI: 10.1016/j.jhazmat.2016.03.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
The evaluation of toxicological effects of nanoparticles (NPs) is increasingly important due to their growing occupational use and presence as compounds in consumer products. Recent researches have demonstrated that long-term exposure to air particulate matter can induce cardiovascular events, but whether cardiovascular disease, such as cardiac damage, is induced by NP exposure and its toxic mechanisms is rarely evaluated. In the present study, when mice were continuously exposed to TiO2 NPs at 2.5, 5 or 10mg/kg BW by intragastric administration for 90days, obvious histopathological changes, and great alterations of NF-κB and its inhibitor I-κB, as well as TNF-α, IL-1β, IL-6 and IFN-α expression were induced. The NPs significantly decreased Ca(2+)-ATPase, Ca(2+)/Mg(2+)-ATPase and Na(+)/K(+)-ATPase activities and enhanced NCX-1 content. The NPs also considerably increased CAMK II and α1/β1-AR expression and up-regulated p-PKCε and p-ERK1/2 in a dose-dependent manner in the mouse heart. These data suggest that low-dose and long-term exposure to TiO2 NPs may cause cardiac damage such as cardiac fragmentation or disordered myocardial fibre arrangement, tissue necrosis, myocardial haemorrhage, swelling or cardiomyocyte hypertrophy, and the inflammatory response was potentially mediated by NF-κB activation via the PKCε or ERK1/2 signalling cascades in mice.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China.
| |
Collapse
|