1
|
Sun C, Du K, He Z, Zhu Z, Hu Y, Wang C, Mei L, Xie Q, Chen Y, Liu Y, Luo G, Mustafa S, Chen X, Du X. Liquid nitrogen ball-milled mechanochemical modification of starches with typically selected A, B and C crystal types on multiscale structure and physicochemical properties. Food Chem 2025; 463:141148. [PMID: 39243611 DOI: 10.1016/j.foodchem.2024.141148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the effect of liquid nitrogen ball-milled mechanochemical treatment on multiscale structure and physicochemical properties of starches with typically selected A (rice starch, ReS), B (potato starch, PtS) and C (pea starch, PeS) crystal types. The morphology of starch samples changed from integral granules to irregular fragments, and the interaction between the exposure OH bonds led to a serious agglomeration. As the treatment times extended, the crystalline structure of starch samples was gradually destroyed, and the excessive treatment approached amorphization. Moreover, the thermal stability of starch samples showed the downward tendency; and with amorphization increased, the swelling power (SP), solubility (S), water absorption capacity (WAC), oil absorption capacity (OAC) and hydrolysis rate of starch samples gradually increased. The obtained results provided a theoretical foundation for broadening the application range of ball-milled starches with different crystal types.
Collapse
Affiliation(s)
- Chengyi Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kai Du
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, No. 193 Tunxi Road, Hefei University of Technology, Hefei 230009, China
| | - Zhaoxian He
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhijie Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Caihong Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Liping Mei
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qingling Xie
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yajie Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanyan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guangli Luo
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Saddam Mustafa
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xu Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Xianfeng Du
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Boonkerd S, Hao H, Wantha L. Preparation and characterization of acetylated starch/papain composites. RSC Adv 2024; 14:37820-37832. [PMID: 39601000 PMCID: PMC11590454 DOI: 10.1039/d4ra05814c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
This research aimed to prepare and characterize acetylated starch/papain composites by encapsulating papain within acetylated cassava starch with a low degree of substitution (DS = 0.037) through a stepwise antisolvent precipitation method. The effects of starch concentrations, starch solution volumes, and surfactant types and concentrations were examined. An increase in starch concentration generally enhanced EE, but an excessive concentration led to a decrease in performance due to the aggregation of starch. Furthermore, LC decreased as the starch concentration increased, while the volume of the starch solution primarily influenced LC. Surfactants were employed to disperse the particles and prevent their aggregation during encapsulation, with higher concentrations, particularly of Tween 80, improving both EE and LC but reducing the activity of papain. Optimal results were achieved with a starch concentration of 30 mg mL-1, solution volume of 7 mL, and 3% v/v Tween 80, resulting in an EE of 96.23% and LC of 12.40%. However, the residual papain activity under these conditions dropped to approximately 56%. In contrast, Tween 20 at 1% v/v preserved higher papain activity (87%), although it yielded a lower EE of 69.87% and LC of 9.32%. SEM images revealed that the resulting composite particles had rough, indistinct clusters with surfaces featuring clustered starch nanoparticles. Confirmatory analyses via fluorescence spectra and FTIR confirmed successful entrapment of papain within acetylated starch with a lower degree of substitution.
Collapse
Affiliation(s)
- Sasitorn Boonkerd
- School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Lek Wantha
- School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
3
|
Nguyen VN, Nguyen VB, Tran MD, Doan MD, Nguyen DS, Nguyen TH, Doan CT, Tran TN, Wang SL, Nguyen AD. Enhancing the antibacterial activity of ampicillin loaded into chitosan/starch nanocomposites against AMR Staphylococcusaureus. Carbohydr Res 2024; 545:109274. [PMID: 39303315 DOI: 10.1016/j.carres.2024.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Ampicillin (Amp), an antibiotic, is widely used to treat bacterial infections in humans and livestock, but recently the rate of resistance has increased rapidly. The aim of this work was to enhancing the antibacterial effect of this compound against AMR Staphylococcus aureus via loading Amp into chitosan/starch nanocomposites by spray drying technique. The results showed that the different ratio of chitosan gel and starch gel used in preparing the nanocomposites can affect its properties and performance. The size distribution of the nanocomposite particles was ranging from 122.0 to 816.9 nm. The zeta potential values of the nanocomposites range from +29.47 to +93.07 mV, indicating the stability of the particles and their tendency to repel each other. Ampicillin was loaded into the chitosan/starch nanocomposites with encapsulation efficiency of 70.7-77.3 %, then their releasing and antibacterial effect against AMR S. aureus were investigated. The results indicated that antibacterial activity of chitosan/starch nanocomposites loaded ampicillin was much higher than ampicillin alone. Chitosan/starch nanocomposites loaded ampicillin at concentration 5.0 μg/mL inhibited 88.6 % growth of S. aureus to a similar extent as 7.5 μg/mL of ampicillin alone. Additionally, at same 7.5 μg/mL ampicillin concentration, the nanocomposites loaded ampicillin showed a higher inhibitory rate (93.27 %) compared to ampicillin alone (88.96 %) over a 12 h-period. Especially, the antibacterial activity of chitosan/starch nanocomposites loaded ampicillin still maintained their effectiveness over 48 h (95.43 %) while those the ampicillin decreased down to 85.76 %. This research highlights the potential of using the chitosan/starch nanocomposites as nanocarriers for ampicillin to enhance its antibacterial activity against AMR Staphylococcus aureus. This approach could be a promising strategy to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Vinh Nghi Nguyen
- Ninh Thuan Hospital, Phan Rang-Thap Cham City, 59000, Viet Nam; Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, 630000, Viet Nam
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, 630000, Viet Nam
| | - Minh Dinh Tran
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, 630000, Viet Nam
| | - Manh Dung Doan
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, 630000, Viet Nam
| | - Dinh Sy Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, 630000, Viet Nam
| | - Thi Huyen Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, 630000, Viet Nam
| | - Chien Thang Doan
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot, 630000, Viet Nam
| | - Thi Ngoc Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot, 630000, Viet Nam
| | - San Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan; Life Science Development Center, Tamkang University, New Taipei City, 25137, Taiwan.
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, 630000, Viet Nam.
| |
Collapse
|
4
|
Wang X, Qi Y, Hou W, Wu D, Fang L, Leng Y, Liu X, Wang X, Wang J, Min W. Dual-modified starch micelles as nanocarriers for efficient encapsulation and controlled release of walnut-derived active peptides. Food Chem 2024; 454:139750. [PMID: 38810457 DOI: 10.1016/j.foodchem.2024.139750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Hydrophilic and hydrophobic modified nanomicelles might be more conducive to passage of the gastrointestinal barrier than walnut peptide (WP). In this study, a novel double modified starch polymer, SB-CST-DCA, was synthesized by grafting sulfabetaine (SB) and deoxycholic acid (DCA) onto corn starch (CST) molecules through etherification and esterification. The modification mechanism was discussed to determine its chemical structure, morphological properties, and thermal stability. Peptide-loaded nanomicelles (SB-CST-DCA-WP) were prepared using WP as the core material. The encapsulation efficiency and peptide loading amount reached 76.90 ± 1.52% and 18.27 ± 0.53%, respectively, with good stability and pH-responsive release behavior observed to effectively control WP release and enhance its antioxidant activity. The composite exhibited safety, non-toxicity, and good blood compatibility at concentrations below 125 μg/mL. Duodenum was identified as the main absorption site with an absorption ratio of 41.16 ± 0.36%.
Collapse
Affiliation(s)
- Xuehang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yuan Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Weiyu Hou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Weihong Min
- State Key Laboratory of Subtropical Silviculture and College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, PR China
| |
Collapse
|
5
|
Nguyen VN, Wang SL, Nguyen TH, Nguyen VB, Doan MD, Nguyen AD. Preparation and Characterization of Chitosan/Starch Nanocomposites Loaded with Ampicillin to Enhance Antibacterial Activity against Escherichia coli. Polymers (Basel) 2024; 16:2647. [PMID: 39339112 PMCID: PMC11435967 DOI: 10.3390/polym16182647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan/starch nanocomposites loaded with ampicillin were prepared using the spray-drying method by mixing various ratios of chitosan and starch. The morphology of chitosan/starch nanoparticles was studied using a scanning electron microscope (SEM), and the zeta potential value and size distribution were determined by a Nanoparticle Analyzer. The results show that the chitosan/starch nanocomposites have a spherical shape, smooth surface, and stable structure. Nanoparticle size distribution ranged from 100 to 600 nm, and the average particle size ranged from 300 to 400 nm, depending on the ratio between chitosan and starch. The higher the ratio of starch in the copolymer, the smaller the particle size. Zeta potential values of the nanocomposite were very high, ranging from +54.4 mV to +80.3 mV, and decreased from 63.2 down to +37.3 when loading with ampicillin. The chitosan/starch nanocomposites were also characterized by FT-IR to determine the content of polymers and ampicillin in the nanocomposites. The release kinetics of ampicillin from the nanocomposites were determined in vitro using an HPLC profile for 24 h. The loading efficiency (LE) of ampicillin into chitosan/starch nanoparticles ranged from 75.3 to 77.3%. Ampicillin-loaded chitosan/starch nanocomposites were investigated for their antibacterial activity against antibiotic-resistant Escherichia coli in vitro. The results demonstrate that the antibacterial effectiveness of nanochitosan/starch loading with ampicillin against E.coli was 95.41%, higher than the 91.40% effectiveness of ampicillin at the same concentration of 5.0 µg/mL after 24 h of treatment. These results suggest that chitosan/starch nanocomposites are potential nanomaterials for antibiotic drug delivery in the pharmaceutical field.
Collapse
Affiliation(s)
- Vinh Nghi Nguyen
- Ninh Thuan Hospital, Phan Rang-Thap Cham City 59000, Vietnam
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Thi Huyen Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Manh Dung Doan
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| |
Collapse
|
6
|
Li X, Gao J, Chen W, Liang J, Gao W, Bodjrenou DM, Zeng H, Zhang Y, Farag MA, Cao H, Zheng B. Properties and functions of acylated starch with short-chain fatty acids: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39023856 DOI: 10.1080/10408398.2024.2365343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Short-chain fatty acids (SCFAs) are the primary energy source of colonic epithelial cells, but oral SCFAs are digested, absorbed, or degraded before reaching the colon. The acylated starch with SCFAs can be fermented and release specific SCFAs under the action of colonic intestinal microbiota. This review first introduces the preparation method, reaction mechanism, and substitution factors. Second, the structure, physical and chemical properties, in vitro function, and mechanism of acylated starch were expounded. Finally, the application of acylated starch in foods is introduced, and its safety is evaluated, providing a basis for the further development of acylated starch-based foods. The acylated starch obtained by different acylation types and preparation methods is different in particle, molecular, and crystal structures, leading to changes in the function and physicochemical properties. Meanwhile, acylated starch has the functional potential of targeted delivery of SCFAs to the colon, which can increase SCFAs in feces and intestine, selectively regulate the intestinal microbiota, and produce a prebiotic effect conducive to host health. The safety of acetylated starch has been supported by relevant studies, which have been widely used in various food fields and have great potential in the food industry.
Collapse
Affiliation(s)
- Xin Li
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Fujian, Xiamen, P.R. China
| | - Jingyi Gao
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Wei Chen
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Jiachen Liang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Wenjie Gao
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - David Mahoudjro Bodjrenou
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Hongliang Zeng
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Yi Zhang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, Ourense, Spain
| | - Baodong Zheng
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| |
Collapse
|
7
|
Sun C, Hu Y, Zhu Z, He Z, Mei L, Wang C, Xie Q, Chen X, Du X. Starch nanoparticles with predictable size prepared by alternate treatments of ball milling and ultrasonication. Int J Biol Macromol 2024; 272:132862. [PMID: 38838880 DOI: 10.1016/j.ijbiomac.2024.132862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
In this study, starch nanoparticles (SNPs) were prepared by alternate treatments of liquid nitrogen ball milling and ultrasonication. The impact, shear and friction forces produced by ball milling, and acoustic cavitation and shear effects generated by ultrasonication disrupted starch granules to prepare SNPs. The SNPs possessed narrow particle size distribution (46.91-210.52 nm) and low polydispersity index (0.28-0.45). Additionally, the SNPs exhibited the irregular fragments with good uniformity. The relative crystallinity decreased from 34.91 % (waxy corn starch, WCS) to 0-25.91 % (SNPs), and the absorbance ratios of R1047/1022 decreased from 0.81 (WCS) to 0.60-0.76 (SNPs). The SNPs had lower thermal stability than that of WCS, characterized by a decrease in Td (temperature at maximum weight loss) from 309.39 °C (WCS) to 300.39-305.75 °C (SNPs). Furthermore, the SNPs exhibited excellent swelling power (3.48-28.02 %) and solubility (0.34-0.97 g/g). Notably, oil absorption capacity of the SNPs (9.77-15.67 g/g) was rather greater than that of WCS (1.33 g/g). Furthermore, the SNPs possessed the lower storage modulus (G'), loss modulus (G″) and viscosity than that of WCS. The SNPs with predictable size and high dispersion capability prepared in this study lay a foundation for expanding the application of SNPs.
Collapse
Affiliation(s)
- Chengyi Sun
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuqing Hu
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhijie Zhu
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoxian He
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Liping Mei
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Caihong Wang
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qingling Xie
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xu Chen
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Xianfeng Du
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
8
|
Fatima R, Prasher P, Sharma M, Singh SK, Gupta G, Dua K. The contemplation of amylose for the delivery of ulcerogenic nonsteroidal anti-inflammatory drugs. Future Med Chem 2024; 16:791-809. [PMID: 38573051 PMCID: PMC11221539 DOI: 10.4155/fmc-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
This manuscript proposes an innovative approach to mitigate the gastrointestinal adversities linked with nonsteroidal anti-inflammatory drugs (NSAIDs) by exploiting amylose as a novel drug delivery carrier. The intrinsic attributes of V-amylose, such as its structural uniqueness, biocompatibility and biodegradability, as well as its capacity to form inclusion complexes with diverse drug molecules, are meticulously explored. Through a comprehensive physicochemical analysis of V-amylose and ulcerogenic NSAIDs, the plausibility of amylose as a protective carrier for ulcerogenic NSAIDs to gastrointestinal regions is elucidated. This review further discusses the potential therapeutic advantages of amylose-based drug delivery systems in the management of gastric ulcers. By providing controlled release kinetics and enhanced bioavailability, these systems offer promising prospects for the development of more effective ulcer therapies.
Collapse
Affiliation(s)
- Rabab Fatima
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
9
|
Lee SH, Huang WY, Hwang J, Yoon H, Heo W, Hong J, Kim MJ, Kang CS, Han BK, Kim YJ. Characteristics of amylose-lipid complex prepared from pullulanase-treated rice and wheat flour. Food Sci Biotechnol 2024; 33:1113-1122. [PMID: 38440677 PMCID: PMC10908976 DOI: 10.1007/s10068-023-01411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 03/06/2024] Open
Abstract
This study aimed to evaluate the properties of amylose-lipid complexes in rice and wheat flours utilizing pullulanase as a debranching enzyme. Rice and flour were both treated with pullulanase before being combined with free fatty acids to form compounds denoted as RPF (rice-pullulanase-fatty acid) and FPF (flour-pullulanase-fatty acid), respectively. Our results showed that RPF and FPF had higher complex index and lower hydrolysis values than enzyme-untreated amylose-lipid complexes. Furthermore, RPF and FPF demonstrated lower swelling power and higher water solubility values, indicating changes in the physical properties of the starches. In vivo studies showed that RPF and FPF caused a smaller increase in blood glucose levels than untreated rice and flour, highlighting their potential use as functional food ingredients. These findings provide valuable information for the development of novel rice-and wheat-based foods with improved nutritional and physiological properties. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01411-0.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Wen Yan Huang
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Jinhee Hwang
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Hyeock Yoon
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| | - Wan Heo
- Department of Food & Nutrition, Seowon University, Cheongju, 28674 Republic of Korea
| | - Jiyoun Hong
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| | - Mi Jeong Kim
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Chang-Soo Kang
- Department of Agriculture & Fisheries Processing, Korea National College of Agriculture and Fisheres, Jeonju, 54874 Republic of Korea
| | - Bok Kyung Han
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| | - Young Jun Kim
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| |
Collapse
|
10
|
Yao S, Zhu Q, Xianyu Y, Liu D, Xu E. Polymorphic nanostarch-mediated assembly of bioactives. Carbohydr Polym 2024; 324:121474. [PMID: 37985040 DOI: 10.1016/j.carbpol.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Starch as an edible, biosafe, and functional biopolymer, has been tailored at nanoscale to deliver bioactive guests. Nanostarches fabricated in various morphologies including nanosphere, nanorod, nanoworm, nanovesicle, nanopolyhedron, nanoflake, nanonetwork etc., enable them to assemble different kinds of bioactives due to structural particularity and green modification. Previous studies have reviewed nanostarch for its preparation and application in food, however, no such work has been done for the potential of delivery system via polymorphic nanostarches. In this review, we focus on the merits of nanostarch empowered by multi-morphology for delivery system, and also conclude the assembly strategies and corresponding properties of nanostarch-based carrier. Additionally, the advantages, limitations, and future perspectives of polymorphic nanostarch are summarized to better understand the micro/nanostarch architectures and their regulation for the compatibility of bioactive molecules. According to the morphology of carrier, nanostarch effectively captures bioactives on the surface and/or inside core to form tight complexes, which maintains their stability in the human microenvironment. It improves the bioavailability of bioactive guests by different assembly approaches of carrier/guest surface combination, guest@carrier embedment, and nanostarch-mediated encapsulation. Targeted release of delivery systems is stimulated by the microenvironment conditions based on the complex structure of nanostarch loaded with bioactives.
Collapse
Affiliation(s)
- Siyu Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
11
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
12
|
Chi C, Lian S, Zou Y, Chen B, He Y, Zheng M, Zhao Y, Wang H. Preparation, multi-scale structures, and functionalities of acetylated starch: An updated review. Int J Biol Macromol 2023; 249:126142. [PMID: 37544556 DOI: 10.1016/j.ijbiomac.2023.126142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Acetylated starch has been widely used as food additives. However, there was limited information available regarding the impact of acetylation on starch structure and functionalities, as well as the advanced acetylation technologies. This review aimed to summarize current methods for starch acetylation and discuss the structure and functionalities of acetylated starch. Innovative techniques, such as milling, microwave, pulsed electric fields, ultrasonic, and extrusion, could be employed for environmental-friendly synthesis of acetylated starch. Acetylation led to the degradation of starch structures and weakening of the interactions between starch molecules, resulting in the disorganization of starch multi-scale ordered structure. The introduction of acetyl groups retarded the self-reassembly behavior of starch, leading to increased solubility, clarity, and softness of starch-based hydrogels. Moreover, the acetyl groups improved water/oil absorption capacity, emulsifiability, film-forming properties, and colonic fermentability of starch, while reduced the susceptibility of starch molecules to enzymes. Importantly, starch functionalities were largely influenced by the decoration of acetyl groups on starch molecules, while the impact of multi-scale ordered structures on starch physicochemical properties was relatively minor. These findings will aid in the design of structured acetylated starch with desirable functionalities.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Suyang Lian
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yiqing Zou
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongwei Wang
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| |
Collapse
|
13
|
Zhang X, Chen Y, Huang R, Zhang J, Xiong C, Huang G. Study on the effect of different concentrations of choline glycine ionic liquid-water mixtures on debranched starch butyrylation reaction. Carbohydr Polym 2023; 308:120680. [PMID: 36813330 DOI: 10.1016/j.carbpol.2023.120680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
In this study, the effect of choline glycine ionic liquids on the butyrylation of starch was investigated by the butyrylation of debranched cornstarch in different concentrations of choline glycine ionic liquid-water mixtures (choline glycine ionic liquids to water in mass ratios of 0:10, 4:6, 5:5, 6:4, 7:3, 8:2 and 10:0). The butyryl characteristic peaks in 1H NMR and FTIR of the butyrylated samples indicated the success of butyrylation modification. 1H NMR calculations showed that the most effective mass ratio of choline glycine ionic liquids to water (6:4) increased the butyryl substitution degree from 0.13 to 0.42. X-ray diffraction results showed that the crystalline type of the starch modified in the choline glycine ionic liquid-water mixtures changed from B-type to a mixture of V-type and B-type isomers. The butyrylated starch modified in the ionic liquid increased its own content of resistant starch from 25.42 % to 46.09 %. This study highlights the effect of different concentrations of choline glycine ionic liquid-water mixtures on the promotion of starch butyrylation reactions.
Collapse
Affiliation(s)
- Xi Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Rui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW. Reinvention of starch for oral drug delivery system design. Int J Biol Macromol 2023; 241:124506. [PMID: 37085071 DOI: 10.1016/j.ijbiomac.2023.124506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Starch is a polysaccharide with varying amylose-to-amylopectin ratios as a function of its biological sources. It is characterized by low shear stress resistance, poor aqueous/organic solubility and gastrointestinal digestibility which limit its ease of processing and functionality display as an oral drug delivery vehicle. Modulation of starch composition through genetic engineering primarily alters amylose-to-amylopectin ratio. Greater molecular properties changes require chemical and enzymatic modifications of starch. Acetylation reduces water solubility and enzymatic digestibility of starch. Carboxymethylation turns starch acid-insoluble and aggregative at low pHs. The summative effects are sustaining drug release in the upper gut. Acid-insoluble carboxymethylated starch can be aminated to provide an ionic character essential for hydrogel formation which further reduces its drug release. Ionic starch can coacervate with oppositely charged starch, non-starch polyelectrolyte or drug into insoluble, controlled-release complexes. Enzymatically debranched and resistant starch has a small molecular size which confers chain aggregation into a helical hydrogel network that traps the drug molecules, protecting them from biodegradation. The modified starch has been used to modulate the intestinal/colon-specific or controlled systemic delivery of oral small molecule drugs and macromolecular therapeutics. This review highlights synthesis aspects of starch and starch derivatives, and their outcomes and challenges of applications in oral drug delivery.
Collapse
Affiliation(s)
- NorulNazilah Ab'lah
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA Selangor, Dengkil 43800, Dengkil, Malaysia
| | - Chong Yu Lok Yusuf
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin, 77300, Merlimau, Melaka, Malaysia
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, 10330 Bangkok, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers (Basel) 2023; 15:polym15051167. [PMID: 36904409 PMCID: PMC10007494 DOI: 10.3390/polym15051167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Starch as a natural polymer is abundant and widely used in various industries around the world. In general, the preparation methods for starch nanoparticles (SNPs) can be classified into 'top-down' and 'bottom-up' methods. SNPs can be produced in smaller sizes and used to improve the functional properties of starch. Thus, they are considered for the various opportunities to improve the quality of product development with starch. This literature study presents information and reviews regarding SNPs, their general preparation methods, characteristics of the resulting SNPs and their applications, especially in food systems, such as Pickering emulsion, bioplastic filler, antimicrobial agent, fat replacer and encapsulating agent. The aspects related to the properties of SNPs and information on the extent of their utilisation are reviewed in this study. The findings can be utilised and encouraged by other researchers to develop and expand the applications of SNPs.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Dina Intan Rizki
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Agroindustrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute (SERI), Universitas Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yana Cahyana
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
16
|
Xu Q, Ma R, Zhan J, Lu X, Liu C, Tian Y. Acylated resistant starches: Changes in structural properties during digestion and their fermentation characteristics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
17
|
Morán D, Gutiérrez G, Mendoza R, Rayner M, Blanco-López C, Matos M. Synthesis of controlled-size starch nanoparticles and superparamagnetic starch nanocomposites by microemulsion method. Carbohydr Polym 2023; 299:120223. [PMID: 36876824 DOI: 10.1016/j.carbpol.2022.120223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
In this study, a synthesis process based on the microemulsion method (ME) was developed with the aim to produce controlled-size starch nanoparticles (SNPs). Several formulations were tested for the preparation of the W/O microemulsions varying the organic/aqueous phase ratios and co-stabilizers concentrations. SNPs were characterized in terms of size, morphology, monodispersity and crystallinity. Spherical shape particles with mean sizes 30-40 nm were prepared. The method was then used to simultaneously synthesize SNPs and iron oxide nanoparticles with superparamagnetic properties. Starch-based nanocomposites with superparamagnetic properties and controlled size were obtained. Therefore, the microemulsion method developed could be considered an innovative technology for the design and development of novel functional nanomaterials. The starch-based nanocomposites were evaluated in terms of morphology and magnetic properties, and they are being considered as promising sustainable nanomaterials for different biomedical applications.
Collapse
Affiliation(s)
- Diana Morán
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Rafael Mendoza
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Marilyn Rayner
- Department of Food Technology, Engineering, and Nutrition, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Carmen Blanco-López
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
18
|
Aldana Porras AE, Montoya Yepes DF, Murillo Arango W, Méndez Arteaga JJ, Jiménez Rodríguez ÁA. Physicochemical, functional, and digestibility properties of rice starches esterified with gulupa seed oil ( Passiflora edulis Sims. f. edulis). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2148167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | - Walter Murillo Arango
- GIPRONUT, Chemistry Department, Basic Sciences School, Universidad Del Tolima, Ibagué-Tolima, Colombia
| | - John Jairo Méndez Arteaga
- GIPRONUT, Chemistry Department, Basic Sciences School, Universidad Del Tolima, Ibagué-Tolima, Colombia
| | | |
Collapse
|
19
|
Effect of Acyl Chain Length on Hydrophobized Cashew Gum Self-Assembling Nanoparticles: Colloidal Properties and Amphotericin B Delivery. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Given its many potential applications, cashew gum hydrophobic derivatives have gained increasing attraction in recent years. We report here the effect of acyl chain length on hydrophobized cashew gum derivatives, using acetic, propionic, and butyric anhydrides on self-assembly nanoparticle properties and amphotericin B delivery. Nanoparticles with unimodal particle size distribution, highly negative zeta potential, and low PDI were produced. Butyrate cashew gum nanoparticles presented smaller size (<~100 nm) than acetylated and propionate cashew gum nanoparticles and no cytotoxicity in murine fibroblast cells was observed up to 100 µg/mL for loaded and unloaded nanoparticles. As a proof of concept of the potential use of the developed nanoparticle as a drug carrier formulation, amphotericin B (AmB) was encapsulated and fully characterized in their physicochemical, AmB association and release, stability, and biological aspects. They exhibited average hydrodynamic diameter lower than ~200 nm, high AmB efficiency encapsulations (up to 94.9%), and controlled release. A decrease in AmB release with the increasing of the anhydride chain length was observed, which explains the differences in antifungal activity against Candida albicans strains. An excellent storage colloidal stability was observed for unloaded and loaded AmB without use of surfactant. Considering the AmB delivery, the acyl derivative with low chain length is shown to be the best one, as it has high drug loading and AmB release, as well as low minimum inhibitory concentration against Candida albicans strains.
Collapse
|
20
|
Sivamaruthi BS, Nallasamy PK, Suganthy N, Kesika P, Chaiyasut C. Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Starch acylation of different short-chain fatty acids and its corresponding influence on gut microbiome and diabetic indexes. Food Chem 2022; 389:133089. [DOI: 10.1016/j.foodchem.2022.133089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/29/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022]
|
22
|
Gangopadhyay A, Bose A, Rout SS, Mohapatra R. Application of dual modified corn starch as a polymer for the colon targeted direct compressible budesonide tablet. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Yun L, Li K, Liu C, Deng L, Li J. Dual-modified starch micelles as a promising nanocarrier for doxorubicin. Int J Biol Macromol 2022; 219:685-693. [PMID: 35878670 DOI: 10.1016/j.ijbiomac.2022.07.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Natural amphiphilic polymer micelles have garnered considerable research attention as nanocarriers for delivering drugs. The objective of this study was to explore the possibility of applying biocompatible dual-modified starch micelles as drug delivery vehicles. To this end, a dual-modified corn starch polymer (SCD) was synthesized with zwitterionic sulfobetaine and deoxycholic acid; spherical micelles with an average particle size of ~200 nm were prepared through the self-assembly of SCD. The effects of dual modification on the degree of substitution, molecular structure, and functional properties of SCD were investigated. Further, doxorubicin was successfully incorporated into the micelles, and an in vitro drug release study was performed to confirm that the drug-loaded micelles displayed pH-sensitive properties with controlled and sustained release. The dissolve-diffuse-erosion-degradation release process was described according to the dynamic models of drug release for SCD micelles. The results can be used as reference information for further studies in the biotechnology and pharmaceutical domains.
Collapse
Affiliation(s)
- Linqi Yun
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; The Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, PR China
| | - Cancan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Ligao Deng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
24
|
Priyanka U, Lens PNL. Light driven Aspergillus niger-ZnS nanobiohybrids for degradation of methyl orange. CHEMOSPHERE 2022; 298:134162. [PMID: 35302000 DOI: 10.1016/j.chemosphere.2022.134162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Inorganic-microbial hybrid systems have potential to be sustainable, efficient and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with microbial cells. Here, we demonstrate light-driven photocatalytic semiconducting Aspergillus niger cells-ZnS nanoparticles for enhanced removal of the dye methyl orange. Chemically synthesized ZnS nanoparticles exhibited a zinc blende pattern in X-ray diffraction, had a dimension of 20-90 nm with a band gap (Ebg) of 3.4 eV at 1.83 × 1018 photons/second. Biologically synthesized ZnS nanoparticles of 40-90 nm showed a hexagonal pattern in the X-ray powder diffraction spectra with an Ebg 3.7 eV at 1.68 × 1018 photons/second. At a methyl orange (MO) concentration of 100 mg/L, dosage of 0.5 × 105 mol catalyst and pH 4, a 97.5% and 98% removal efficiency of MO was achieved in 90 min and 60 min for, respectively, chemically and biologically synthesized ZnS nanobiohybrids in the presence of UV-A light. The major degradation products of photocatalysis for chemically synthesized ZnS nanobiohybrids were naphtholate (C10H7O m/z 143) and hydroquinone (C9H5m/z 113). For the biologically synthesized ZnS nanobiohybrids, the degradation products were hydroquinone (C9H5m/z 113) and 2-phenylphenol (C12H10O m/z 170).
Collapse
Affiliation(s)
| | - Piet N L Lens
- National University of Ireland, University Road, Galway, Ireland.
| |
Collapse
|
25
|
Biodegradable Nanoparticles Loaded with Levodopa and Curcumin for Treatment of Parkinson's Disease. Molecules 2022; 27:molecules27092811. [PMID: 35566173 PMCID: PMC9101601 DOI: 10.3390/molecules27092811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. Levodopa (L-DOPA) remains the gold-standard drug available for treating PD. Curcumin has many pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anti-amyloid, and antitumor properties. Copolymers composed of Poly (ethylene oxide) (PEO) and biodegradable polyesters such as Poly (ε-caprolactone) (PCL) can self-assemble into nanoparticles (NPs). This study describes the development of NH2–PEO–PCL diblock copolymer positively charged and modified by adding glutathione (GSH) on the outer surface, resulting in a synergistic delivery of L-DOPA curcumin that would be able to pass the blood–brain barrier. Methods: The NH2–PEO–PCL NPs suspensions were prepared by using a nanoprecipitation and solvent displacement method and coated with GSH. NPs were submitted to characterization assays. In order to ensure the bioavailability, Vero and PC12 cells were treated with various concentrations of the loaded and unloaded NPs to observe cytotoxicity. Results: NPs have successfully loaded L-DOPA and curcumin and were stable after freeze-drying, indicating advancing into in vitro toxicity testing. Vero and PC12 cells that were treated up to 72 h with various concentrations of L-DOPA and curcumin-loaded NP maintained high viability percentage, indicating that the NPs are biocompatible. Conclusions: NPs consisting of NH2–PEO–PCL were characterized as potential formulations for brain delivery of L-DOPA and curcumin. The results also indicate that the developed biodegradable nanomicelles that were blood compatible presented low cytotoxicity.
Collapse
|
26
|
Du J, Hong Y, Cheng L, Gu Z, Li Z, Li C. Effects of acid-ethanol hydrolysis and debranch on acetylated starch and its potential used for curcumin carrier. Carbohydr Polym 2022; 279:119019. [PMID: 34980359 DOI: 10.1016/j.carbpol.2021.119019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Acetylated acid-ethanol hydrolyzed (AHS) and acetylated debranched starch (ADS) were investigated as prospective nanocarriers. Both acid-ethanol hydrolysis and debranching decreased the molecular weight and viscosity of starch. Acid-ethanol hydrolyzed starch remained the original microstructure, which was confirmed by results of scanning electron microscopy. New absorption peaks in FTIR spectra of starch confirmed the occurrence of acetylation. The substitution degree (DS) of ADS could reach up to 1.18, while that of AHS could be improved by increasing the ethanol concentration. The developed nanoparticles showed uniform spherical structure and the size of that approximated 180-260 nm. The critical micelle concentration was 0.049 mg/mL, and the shift in fluorescence spectra confirmed the interaction between starch and curcumin. These results indicate show that high DS of AHS and ADS could be used as a potential carrier for curcumin delivery.
Collapse
Affiliation(s)
- Jing Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
27
|
Bashash M, Varidi M, Varshosaz J. Sucrose stearate based niosomes as an alternative to ordinary vehicles for efficient curcumin delivery. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01309-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chem 2022; 369:130895. [PMID: 34438343 DOI: 10.1016/j.foodchem.2021.130895] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
Quinoa starch nanoparticles (QSNPs) prepared by nanoprecipitation method under the optimal condition was developed as a carrier for quercetin. The QSNPs prepared under the optimal condition (90 DMSO/H2O ratio, 10 ethanol/solvent ratio, and ultrasonic oscillation dispersion mode) had the smallest particle size and polymer dispersity index through full factorial design. Compared with maize starch nanoparticles (MSNPs), QSNPs exhibited a smaller particle size of 166.25 nm and a higher loading capacity of 26.62%. Starch nanoparticles (SNPs) interacted with quercetin through hydrogen bonding. V-type crystal structures of SNPs were disappeared and their crystallinity increased after loading with quercetin. QSNPs was more effective in protecting and prolonging quercetin bioactivity because of their small particle sizes and high loading capacities. This study will be useful for preparing starch-based carrier used to load sensitive bioactive compounds.
Collapse
|
29
|
Lian F, Gong E, Liang H, Lin Y, Chen J, He Y, Hebelstrup KH, Xia W. Nano-encapsulation of polyphenols in starch nanoparticles: fabrication, characterization and evaluation. Food Funct 2022; 13:7762-7771. [DOI: 10.1039/d1fo04197e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoparticles are more promising than microcapsules as drug carriers because they can be absorbed directly by intestinal epithelial cells, significantly increasing the uptake and bioaccessibility of polyphenols.
Collapse
Affiliation(s)
- Fengli Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ersheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Hanni Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yanyun Lin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Kim Henrik Hebelstrup
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, Slagelse, 4200, Denmark
| | - Wen Xia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, Slagelse, 4200, Denmark
| |
Collapse
|
30
|
Torres FG, De-la-Torre GE. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int J Biol Macromol 2022; 194:289-305. [PMID: 34863968 DOI: 10.1016/j.ijbiomac.2021.11.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, starch nanoparticles (SNPs) are drawing attention to the scientific community due to their versatility and wide range of applications. Although several works have extensively addressed the SNP production routes, not much is discussed about the SNPs modification techniques, as well as the use of modified SNPs in typical and unconventional applications. Here, we focused on the SNP modification strategies and characteristics and performance of the resulting products, as well as their practical applications, while pointing out the main limitations and recommendations. We aim to guide researchers by identifying the next steps in this emerging line of research. SNPs esterification and oxidation are preferred chemical modifications, which result in changes in the functional groups. Moreover, additional polymers are incorporated into the SNP surface through copolymer grafting. Physical modification of starch has demonstrated similar changes in the functional groups without the need for toxic chemicals. Modified SNPs rendered differentiated properties, such as size, shape, crystallinity, hydrophobicity, and Zeta-potential. For multiple applications, tailoring the aforementioned properties is key to the performance of nanoparticle-based systems. However, the number of studies focusing on emerging applications is fairly limited, while their applications as drug delivery systems lack in vivo studies. The main challenges and prospects were discussed.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru.
| | | |
Collapse
|
31
|
Montoya Yepes DF, Murillo Arango W, Jiménez Rodríguez ÁA, Méndez Arteaga JJ, Aldana Porras ÁE. Encapsulation of phenols of gulupa seed extract using acylated rice starch: Effect on the release and antioxidant activity. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
32
|
Chin SF, Salim A, Pang SC. Starch Acetate Nanoparticles as Controlled Release Nanocarriers for Piperine. STARCH-STARKE 2021. [DOI: 10.1002/star.202100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suk Fun Chin
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak 94 300 Kota Samarahan Sarawak Malaysia
| | - Asniar Salim
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak 94 300 Kota Samarahan Sarawak Malaysia
| | - Suh Cem Pang
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak 94 300 Kota Samarahan Sarawak Malaysia
| |
Collapse
|
33
|
Sanchez LT, Arbelaez LM, Villa CC. Comparison of the Release Kinetics of Bioactive Molecules from Native and Modified Starch Nanoparticles into Food and Gastric Simulants. STARCH-STARKE 2021. [DOI: 10.1002/star.202100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Leidy T. Sanchez
- Programa de Ingeniería de Alimentos Facultad de Ciencias Agroindustriales Carrera 12 Calle 15 N Armenia Universidad del Quindío Quindío Colombia
| | - Lina M. Arbelaez
- Programa de Ingeniería de Alimentos Facultad de Ciencias Agroindustriales Carrera 12 Calle 15 N Armenia Universidad del Quindío Quindío Colombia
| | - Cristian C. Villa
- Programa de Química Facultad de Ciencias Básicas y Tecnologías Carrera 12 Calle 15 N Armenia Universidad del Quindío Quindío Colombia
| |
Collapse
|
34
|
Duyen TTM, Phi NTL, Hung PV. Comparison in morphology, structure and functionality of curcumin‐loaded starch nanoparticles fabricated from short, medium and long chain‐length debranched cassava starches. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Trinh Thi My Duyen
- Department of Food Technology International University Quarter 6, Linh Trung Ward Thu Duc City Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Nguyen Thi Lan Phi
- Vietnam National University Ho Chi Minh City Vietnam
- Department of Food Technology Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
| | - Pham Van Hung
- Department of Food Technology International University Quarter 6, Linh Trung Ward Thu Duc City Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
35
|
Iles B, Ribeiro de Sá Guimarães Nolêto I, Dourado FF, de Oliveira Silva Ribeiro F, de Araújo AR, de Oliveira TM, Souza JMT, Barros AB, Sousa GC, de Jesus Oliveira AC, da Silva Martins C, de Oliveira Viana Veras M, de Carvalho Leitão RF, de Souza de Almeida Leite JR, da Silva DA, Medeiros JVR. Alendronate sodium-polymeric nanoparticles display low toxicity in gastric mucosal of rats and Ofcol II cells. NANOIMPACT 2021; 24:100355. [PMID: 35559814 DOI: 10.1016/j.impact.2021.100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/15/2023]
Abstract
The use of bisphosphonates constitutes the gold-standard therapy for the control and treatment of bone diseases. However, its long-term use may lead to gastric problems, which limits the treatment. Thus, this study aimed to formulate a nanostructured system with biodegradable polymers for the controlled release of alendronate sodium. The nanoparticles were characterized, and its gastric toxicity was investigated in rats. The synthesis process proved to be effective for encapsulating alendronate sodium, exhibiting nanoparticles with an average size of 51.02 nm and 98.5% of alendronate sodium incorporation. The release tests demonstrated a controlled release of the drug in 420 min, while the morphological analyzes showed spherical shapes and no apparent roughness. The biological tests demonstrated that the alendronate sodium nanoformulation reversed the gastric lesions, maintaining the normal levels of malondialdehyde and myeloperoxidase. Also, the encapsulated alendronate sodium showed no toxicity in murine osteoblastic cells, even at high concentrations.
Collapse
Affiliation(s)
- Bruno Iles
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Isabela Ribeiro de Sá Guimarães Nolêto
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Flaviane França Dourado
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Fábio de Oliveira Silva Ribeiro
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Alyne Rodrigues de Araújo
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Taiane Maria de Oliveira
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Jessica Maria Teles Souza
- Parnaíba Delta Cell Culture Laboratory (LCC-Delta), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ayslan Batista Barros
- Parnaíba Delta Cell Culture Laboratory (LCC-Delta), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabrielle Costa Sousa
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Center for Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - University City, Recife, PE 50670-901, Brazil
| | - Conceição da Silva Martins
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - Mariana de Oliveira Viana Veras
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - Renata Ferreira de Carvalho Leitão
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - José Roberto de Souza de Almeida Leite
- Center for Research in Applied Morphology and Immunology - NuPMIA, University of Brasilia, Campus Darcy Ribeiro - Asa Norte-Brasília-DF, CEP 70.910-900 Brasilia, Brazil
| | - Durcilene Alves da Silva
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Jand Venes Rolim Medeiros
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil.
| |
Collapse
|
36
|
Yu B, Xiang D, Mahfuz H, Patterson N, Bing D. Understanding Starch Metabolism in Pea Seeds towards Tailoring Functionality for Value-Added Utilization. Int J Mol Sci 2021; 22:8972. [PMID: 34445676 PMCID: PMC8396644 DOI: 10.3390/ijms22168972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review outlines the understanding of starch metabolism with a particular focus on peas and highlights the knowledge of pea starch granule structure and its relationship with functional properties, and industrial applications. Using the currently available pea genetics and genomics knowledge and breakthroughs in omics technologies, we discuss the perspectives and possible avenues to advance our understanding of starch metabolism in peas at an unprecedented level, to ultimately enable the molecular design of multi-functional native pea starch and to create value-added utilization.
Collapse
Affiliation(s)
- Bianyun Yu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Humaira Mahfuz
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Dengjin Bing
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada;
| |
Collapse
|
37
|
Gardouh AR, Srag El-Din ASG, Salem MSH, Moustafa Y, Gad S. Starch Nanoparticles for Enhancement of Oral Bioavailability of a Newly Synthesized Thienopyrimidine Derivative with Anti-Proliferative Activity Against Pancreatic Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3071-3093. [PMID: 34305395 PMCID: PMC8292977 DOI: 10.2147/dddt.s321962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Purpose This research aimed to improve water solubility and oral bioavailability of a newly synthesized thienopyrimidine derivative (TPD) with anti-pancreatic cancer activity by loading on starch nanoparticles (SNPs). Methods TPD was synthesized, purified and its ADME behavior was predicted using Swiss ADME software. A UV spectroscopy method was developed and validated to measure TPD concentration at various dosage forms. SNPs loaded with TPD (SNPs-TPD) were prepared, characterized for particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), entrapment efficiency, in-vitro release, and in-vivo animal study. Results The Swiss ADME results showed that TPD can be administered orally; however, it has low oral bioavailability (0.55) and poor water solubility. The significant regression coefficient of the calibration curve (r2 = 0.9995), the precision (%RSD < 0.5%) and the accuracy (99.46−101.72%) confirmed the efficacy of the developed UV method. SNPs-TPD had a spherical monodispersed (PDI= 0.12) shape, nanoparticle size (22.98 ± 4.23) and good stability (−21 ± 4.72 mV). Moreover, FT-IR and DSC revealed changes in the physicochemical structure of starch resulting in SNPs formation. The entrapment efficiency was 97% ± 0.45%, and the in-vitro release showed that the SNPs enhanced the solubility of the TPD. The in-vivo animal study and histopathology showed that SNPs enhanced the oral bioavailability of TPD against solid Ehrlich carcinoma. Conclusion SNPs-TPD were superior in drug solubility and oral bioavailability than those obtained from TPD suspension.
Collapse
Affiliation(s)
- Ahmed R Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, 21110, Jordan
| | - Ahmed S G Srag El-Din
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science & Technology, Gamasa City, Egypt
| | - Mohamed S H Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.,The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Yasser Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
38
|
Li M, Wang F, Wang J, Wang R, Strappe P, Zheng B, Zhou Z, Chen L. Manipulation of the internal structure of starch by propionyl treatment and its diverse influence on digestion and in vitro fermentation characteristics. Carbohydr Polym 2021; 270:118390. [PMID: 34364631 DOI: 10.1016/j.carbpol.2021.118390] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
High amylose maize starch (HAMS) and waxy maize starch (WMS) were modified by propionylation and their corresponding physicochemical characteristics, digestion and fermentation properties were studied. The results indicated that two new peaks related to methylene (2.20 ppm) and methyl (0.97 ppm) in the NMR spectrum were formed, indicating the occurrence of propionylation, and this was further confirmed by the formation of a characteristic absorption at 1747 cm-1 in the FTIR spectrum. The propionylation led the modified starch having a lower electron density contrast between the crystalline and amorphous flakes, resulting in the formation of a more compact structure following the increased degrees of substitution (DS). The propionylated starch also had a higher thermal stability and hydrophobicity. These structural changes increased the content of resistant starch (RS) and reduced the predicted glycemic index. More importantly, the gut microbiota fermentation properties indicated that the propionylation of the starch can not only increase the yield of propionate, but also increase the concentration of total short-chain fatty acids (SCFAs). This study highlights a new approach to significantly enhance the RS content in starch, together with an increased SCFA generation capacity.
Collapse
Affiliation(s)
- Mei Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fenfen Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jing Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rui Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4700, Australia
| | - Bo Zheng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
39
|
Lu H, Tian Y. Nanostarch: Preparation, Modification, and Application in Pickering Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6929-6942. [PMID: 34142546 DOI: 10.1021/acs.jafc.1c01244] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostarch, as a food-grade Pickering emulsion stabilizer, has attracted wide attention owing to its biodegradability, nontoxicity, small size, and large specific surface area. In this review, the preparation, modification, and application of Pickering emulsions incorporating nanostarch are described. At present, methods for nanostarch preparation mainly include acid hydrolysis, acid hydrolysis combined with other treatments, nanoprecipitation, ultrasonication, ball milling, and cross-linking. Nanostarch is a promising Pickering emulsion stabilizer, and its emulsifying ability of nanostarch is significantly improved by hydrophobic modification. The hydrophobicity, charge, size, and content of nanostarch affect the emulsion stability. Future developments in this area of research include the efficient and environmentally friendly preparation of nanostarch as well as the control of its hydrophobicity via modification. Future studies should focus on the digestibility and storage stability of Pickering emulsions stabilized by nanostarch under different conditions.
Collapse
Affiliation(s)
- Hao Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
40
|
Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials. Int J Biol Macromol 2021; 184:218-234. [PMID: 34144062 DOI: 10.1016/j.ijbiomac.2021.06.077] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022]
Abstract
Starch derivatives are versatile compounds that are widely used in the pharmaceutical industry. This article reviews the advances in the research on hydrophilic and hydrophobic starch derivatives used to develop drug delivery systems over the last ten years, specifically microparticles, nanoparticles, nanocrystals, hydrogels, and scaffolds using these materials. The fundamentals of drug delivery systems, regulatory aspects, and chemical modifications are also discussed, along with the synthesis of starch derivatives via oxidation, etherification, acid hydrolysis, esterification, and cross-linking. The chemical modification of starch as a means to overcome the challenges in obtaining solid dosage forms is also reviewed. In particular, dialdehyde starches are potential derivatives for direct drug attachment; carboxymethyl starches are used for drug encapsulation and release, giving rise to pH-sensitive devices through electrostatic interactions; and starch nanocrystals have high potential as hydrogel fillers to improve mechanical properties and control drug release through hydrophilic interactions. Starch esterification with alginate and acidic drugs could be very useful for site-specific, controlled release. Starch cross-linking with other biopolymers such as xanthan gum is promising for obtaining novel polyelectrolyte hydrogels with improved functional properties. Surface modification of starch nanoparticles by cross-linking and esterification reactions is a potential approach to obtain novel, smart solid dosages.
Collapse
|
41
|
Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, starch nanoparticles (SNPs) have attracted growing attention due to their unique properties as a sustainable alternative to common nanomaterials since they are natural, renewable and biodegradable. SNPs can be obtained by the breakdown of starch granules through different techniques which include both physical and chemical methods. The final properties of the SNPs are strongly influenced by the synthesis method used as well as the operational conditions, where a controlled and monodispersed size is crucial for certain bioapplications. SNPs are considered to be a good vehicle to improve the controlled release of many bioactive compounds in different research fields due to their high biocompatibility, potential functionalization, and high surface/volume ratio. Their applications are frequently found in medicine, cosmetics, biotechnology, or the food industry, among others. Both the encapsulation properties as well as the releasing processes of the bioactive compounds are highly influenced by the size of the SNPs. In this review, a general description of the different types of SNPs (whole and hollow) synthesis methods is provided as well as on different techniques for encapsulating bioactive compounds, including direct and indirect methods, with application in several fields. Starches from different botanical sources and different bioactive compounds are compared with respect to the efficacy in vitro and in vivo. Applications and future research trends on SNPs synthesis have been included and discussed.
Collapse
|
42
|
Liang S, Hong Y, Gu Z, Cheng L, Li C, Li Z. Effect of debranching on the structure and digestibility of octenyl succinic anhydride starch nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Caldonazo A, Almeida SL, Bonetti AF, Lazo REL, Mengarda M, Murakami FS. Pharmaceutical applications of starch nanoparticles: A scoping review. Int J Biol Macromol 2021; 181:697-704. [PMID: 33766602 DOI: 10.1016/j.ijbiomac.2021.03.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
Starch nanoparticles (SNPs) have been applied to different areas of material sciences, especially in pharmaceuticals due to their characteristics such as small particle size, high surface ratio-volume, and biological compatibility. However, in pharmaceutical sciences, there are no records of a scoping review that had extensively mapped all available information about SNPs. A scoping review was performed here by searching electronic databases (Pubmed and Science Direct) to identify studies published previous to June 2020. From 699 total records, 37 matched the criteria for inclusion. The findings showed that SNPs have been used, not only for the development of different active pharmaceutical ingredient delivery systems, but also as an enzyme inhibitor, adsorption, and DNA precipitation agent. In conclusion, by combining different starch sources and methods SNPs show a remarkable diversity in pharmaceutical applications. Future studies should explore SNPs safety and provide information about variables that may affect important properties for this kind of application.
Collapse
Affiliation(s)
- Aline Caldonazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil.
| | - Susana Leao Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Aline F Bonetti
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Mariana Mengarda
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Fabio Seigi Murakami
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| |
Collapse
|
44
|
Morphology, crystalline structure and digestibility of debranched starch nanoparticles varying in average degree of polymerization and fabrication methods. Carbohydr Polym 2021; 256:117424. [PMID: 33483014 DOI: 10.1016/j.carbpol.2020.117424] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
The objective of this study is to investigate physicochemical characteristics and digestibility of starch nanoparticles (SNPs) fabricated from debranched cassava starch varying degree of polymerization (DP¯n) using nanoprecipitation and microemulsion methods. The high DP¯n starch (HDPS) with DP¯n > 35 monomers, medium DP¯n starch (MDPS) with 15 < DP¯n < 30) and low DP¯n starch (LDPS) with DP¯n < 10 were used. The SNPs fabricated from the HDPS were well-dispersed and smaller size, whereas those prepared from the MDPS and LDPS had bigger size and more aggregation. The SNPs produced by the microemulsion method were larger and more aggregated than those by the nanoprecipitation method. All SNPs exhibited the V + B-type X-ray diffraction pattern with higher relative crystallinity and more ordered structure than native starch. The SNPs fabricated from the LDPS also had higher amount of RS with lower blood glucose response in mice than those from the MDPS and HDPS.
Collapse
|
45
|
Desoqi MH, El-Sawy HS, Kafagy E, Ghorab M, Gad S. Fluticasone propionate-loaded solid lipid nanoparticles with augmented anti-inflammatory activity: optimisation, characterisation and pharmacodynamic evaluation on rats. J Microencapsul 2021; 38:177-191. [PMID: 33583315 DOI: 10.1080/02652048.2021.1887383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work aimed to elaborate an optimised fluticasone propionate (FP)-loaded solid lipid nanoparticles (SLNs) to enhance FP effectiveness for topical inflammatory remediation. The influences of drug amount, lipid, and surfactant ratios, on drug release pattern and stability were investigated utilising Box-Behnken design. Elaboration, characterisation, and pharmacodynamic evaluation in comparison with the marketed formulation (Cutivate® cream, 0.05%w/w FP), were conducted for the optimised SLNs. The optimised SLNs with a size of 248.3 ± 1.89 nm (PDI = 0.275) and -32.4 ± 2.85 mV zeta potential were evidenced good stability physiognomies. The optimised SLNs pre-treated rats exhibited non-significant difference in paw volume from that of the control group and showed a significant reduction in both PGE2 and TNF-α levels by 51.5 and 61%, respectively, in comparison with the Carrageenan group. The optimised FP-loaded SLNs maximised the efficacy of FP towards inflammation alleviation that increase its potential as efficient implement in inflammatory skin diseases remediation.
Collapse
Affiliation(s)
- Mohamed H Desoqi
- Pharmacy Department, The Armed Forces Medical Complex, Al Qobry El Qoba, Ministry of Defence, Cairo, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Elsayed Kafagy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mamdouh Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
46
|
Gardouh AR, Ewedah TM, Abd-Allah FI, Ghorab MM, Omran MM, El-Sawy HS. Enhanced efficacy, cellular uptake, and antiangiogenic activity of the optimized imatinib mesylate-loaded proniosomal-derived nanovesicles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Awg Suhai AAK, Chin S. Green Synthesis and Characterization of Amine‐Modified Starch Nanoparticles. STARCH-STARKE 2021. [DOI: 10.1002/star.202000020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Suk‐Fun Chin
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| |
Collapse
|
48
|
Wang Y, Zhang G. The preparation of modified nano-starch and its application in food industry. Food Res Int 2020; 140:110009. [PMID: 33648241 DOI: 10.1016/j.foodres.2020.110009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Starch, which is a carbohydrate polymer with a semicrystalline granular structure, has been the subject of academic research for decades due to its renewable and biodegradable property as well as various applications in food, pharmaceutical and other industries. Nano-starch (NS) is a novel type of starch material with unique physiochemical properties due to its small size. However, the nano-size nature of NS determines its tendency to agglomeration as a natural process to approach a thermodynamically steady state, and the single hydroxyl functional group is also not favorable to its applications in hydrophobic environments. Thus, modified-NS with improved dispersion property, hydrophobicity, and stability is emerging as a new research direction. However, information about modified-NS is sporadic in literature, and a systematic review from its preparation, application, the problem and challenge as well as related health concerns is carried out to further the understanding of modified-NS. It is expected that the theoretical basis and new insight into the development of modified-NS will be improved.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
49
|
Yu M, Ji N, Wang Y, Dai L, Xiong L, Sun Q. Starch‐based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components. Compr Rev Food Sci Food Saf 2020; 20:1075-1100. [DOI: 10.1111/1541-4337.12677] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Mengting Yu
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Na Ji
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Yanfei Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Lei Dai
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Liu Xiong
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Qingjie Sun
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| |
Collapse
|
50
|
Nadaf S, Jadhav A, Killedar S. Mung bean (Vigna radiata) porous starch for solubility and dissolution enhancement of poorly soluble drug by solid dispersion. Int J Biol Macromol 2020; 167:345-357. [PMID: 33253744 DOI: 10.1016/j.ijbiomac.2020.11.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
In this study, a novel Vigna radiata based porous starch (PS) is prepared by solvent exchange technique and explored as a solubilizer for model drug albendazole (ABZ). PS carrier was investigated for different chemical, functional, and micromeritic properties. Solubilizing potential of PS is evaluated by formulating ABZ-PS solid dispersion (1:0.5-1:2) based tablets (SDT). ABZ-PS solid dispersions were evaluated for micromeritic properties, dissolution studies, and anthelmintic activity. Direct compression suitability and susceptibility of mung bean starch were studied by SeDem diagram, Heckel, and Kawakita analysis respectively. PS had an A-type crystallinity pattern and evinced functional properties similar to other legume starches. PS was determined to be suitable for direct compression (good compressibility index = 5.50). SD (1:2) manifested 36.18 fold and 1.6-3.04 fold improvement in the % dissolution and anthelmintic activity of ABZ respectively. All SD batches (R2 = 0.949-0.996) and ABZ (R2 = 0.168) followed the Higuchi-matrix release kinetic model. DSC and P-XRD analysis corroborated the amorphous form of ABZ. SDT showed ≈ a 1.90 fold improvement in dissolution rate than the marketed formulation. Conclusively, Vigna radiata PS could be explored as an alternative to reduce the large burden on the established starches.
Collapse
Affiliation(s)
- Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, site Chinchewadi, Mahagaon, 416503, Maharashtra, India.
| | - Amrita Jadhav
- Adarsh College of Pharmacy, Bhavaninagar, Vita 415311, Maharashtra, India
| | - Suresh Killedar
- Sant Gajanan Maharaj College of Pharmacy, site Chinchewadi, Mahagaon, 416503, Maharashtra, India
| |
Collapse
|