1
|
Liu J, Huang Y, Zhang G, Wang Q, Shen S, Liu D, Hong Y, Wyman I. Dialdehyde cellulose (DAC) and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for simultaneously removing emulsified oils and anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134341. [PMID: 38642496 DOI: 10.1016/j.jhazmat.2024.134341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Developing high-efficiency membrane for oil and dye removal is very urgent, because wastewater containing them can cause great damage to human and environment. In this study, a coated membrane was fabricated by applying DAC and PEI onto the commercial PVDF microfiltration membrane for supplying the demand. The coated membrane presents superhydrophlic and superoleophobic properties with a water contact angle of 0o and underwater oil contact angle exceed 150°, as well as excellent low underwater oil adhesion performance. The coated membrane shows high separation efficiency exceeded 99.0% and flux 350.0 L·m-2·h-1 when used for separating for six kinds of oil including pump oil, sunflower oil, n-hexadecane, soybean oil, diesel and kerosene in water emulsions. Additionally, the coated membrane can effectively remove anionic dyes, achieving rejection rates of 94.7%, 93.4%, 92.3%, 90.7% for the CR, MB, RB5, AR66, respectively. More importantly, the membrane was able to simultaneously remove emulsified oil and soluble anionic dyes in wastewater containing both of them. Therefore, this novel coated membrane can be a promising candidate for treating complex wastewater.
Collapse
Affiliation(s)
- Junliang Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yixuan Huang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ganwei Zhang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Qianhui Wang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shusu Shen
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dapeng Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaoliang Hong
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
2
|
Sharma K, Kaur M, Tewatia P, Kumar V, Paulik C, Yoshitake H, Sharma M, Rattan G, Singhal S, Kaushik A. Ultra-sensitive detection and scavenging of arsenic ions and ciprofloxacin using 3D multipurpose hemicellulose based aerogel: Adsorption mechanism and RSM optimization. BIORESOURCE TECHNOLOGY 2023; 389:129825. [PMID: 37797803 DOI: 10.1016/j.biortech.2023.129825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Trace level detection and efficient removal of arsenite ions (As (III)) and ciprofloxacin (CPR) antibiotic was achieved using hemicellulose based ratiometric fluorescent aerogel. Hemicellulose derived from rice straw was oxidised to dialdehyde hemicellulose followed by crosslinking using chitosan via a Schiff base reaction (C = N) yielding a highly porous 3D fluorescent aerogel (CS@DAHCA). Various factors governing adsorption were analyzed by applying response surface methodology (RSM) approach. CS@DAHCA exhibited ultra-trace level monitoring with the limit of detection of 3.529 pM and 55.2 nM for As (III) and CPR, respectively. The CS@DAHCA showed maximum adsorption capacity of 185 μg g-1 and 454 mg g-1 for As (III) and CPR, respectively. Finally, the feasibility of CS@DAHCA was ascertained for real water samples confirming it as promising candidate for remediation of As (III) and CPR.
Collapse
Affiliation(s)
- Kavita Sharma
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Vijay Kumar
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University, Austria
| | - Hideaki Yoshitake
- Division of Materials and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan
| | - Mukta Sharma
- Department of Civil Engineering, IKG Punjab Technical University, Jalandhar
| | - Gaurav Rattan
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Anupama Kaushik
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
4
|
Yadav C, Lee JM, Mohanty P, Li X, Jang WD. Graft onto approaches for nanocellulose-based advanced functional materials. NANOSCALE 2023; 15:15108-15145. [PMID: 37712254 DOI: 10.1039/d3nr03087c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The resurgence of cellulose as nano-dimensional 'nanocellulose' has unlocked a sustainable bioeconomy for the development of advanced functional biomaterials. Bestowed with multifunctional attributes, such as renewability and abundance of its source, biodegradability, biocompatibility, superior mechanical, optical, and rheological properties, tunable self-assembly and surface chemistry, nanocellulose presents exclusive opportunities for a wide range of novel applications. However, to alleviate its intrinsic hydrophilicity-related constraints surface functionalization is inevitably needed to foster various targeted applications. The abundant surface hydroxyl groups on nanocellulose offer opportunities for grafting small molecules or macromolecular entities using either a 'graft onto' or 'graft from' approach, resulting in materials with distinctive functionalities. Most of the reviews published to date extensively discussed 'graft from' modification approaches, however 'graft onto' approaches are not well discussed. Hence, this review aims to provide a comprehensive summary of 'graft onto' approaches. Furthermore, insight into some of the recently emerging applications of this grafted nanocellulose including advanced nanocomposite formulation, stimuli-responsive materials, bioimaging, sensing, biomedicine, packaging, and wastewater treatment has also been reviewed.
Collapse
Affiliation(s)
- Chandravati Yadav
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Jeong-Min Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| |
Collapse
|
5
|
Zhang Y, Deng W, Wu M, Rahmaninia M, Xu C, Li B. Tailoring Functionality of Nanocellulose: Current Status and Critical Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091489. [PMID: 37177034 PMCID: PMC10179792 DOI: 10.3390/nano13091489] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Nanocellulose (NC) isolated from natural cellulose resources, which mainly includes cellulose nanofibril (CNF) and cellulose nanocrystal (CNC), has garnered increased attention in recent decades due to its outstanding physical and chemical properties. Various chemical modifications have been developed with the aim of surface-modifying NC for highly sophisticated applications. This review comprehensively summarizes the chemical modifications applied to NC so far in order to introduce new functionalities to the material, such as silanization, esterification, oxidation, etherification, grafting, coating, and others. The new functionalities obtained through such surface-modification methods include hydrophobicity, conductivity, antibacterial properties, and absorbability. In addition, the incorporation of NC in some functional materials, such as films, wearable sensors, cellulose nanospheres, aerogel, hydrogels, and nanocomposites, is discussed in relation to the tailoring of the functionality of NC. It should be pointed out that some issues need to be addressed during the preparation of NC and NC-based materials, such as the low reactivity of these raw materials, the difficulties involved in their scale-up, and their high energy and water consumption. Over the past decades, some methods have been developed, such as the use of pretreatment methods, the adaptation of low-cost starting raw materials, and the use of environmentally friendly chemicals, which support the practical application of NC and NC-based materials. Overall, it is believed that as a green, sustainable, and renewable nanomaterial, NC is will be suitable for large-scale applications in the future.
Collapse
Affiliation(s)
- Yidong Zhang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wangfang Deng
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Meiyan Wu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mehdi Rahmaninia
- Wood and Paper Science and Technology Department, Faculty of Natural Resources, Tarbiat Modares University, Noor 46417-76489, Iran
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
6
|
Chen M, ShangGuan J, Jiang J, Jiang J, Li F, Dong Q, Diao H, Liu X. Durably antibacterial cotton fabrics coated by protamine via Schiff base linkages. Int J Biol Macromol 2023; 227:1078-1088. [PMID: 36464182 DOI: 10.1016/j.ijbiomac.2022.11.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The development of antibacterial cotton fabrics with an overall performance is critical but remains challenging. In this study, we propose a facile method to prepare durable antibacterial cotton fabric without significant sacrifices of wearing comfortability. Cotton fabric is firstly oxidated to obtain dialdehyde groups, then treated with PM molecules to establish a PM coating on the fiber surfaces via Schiff base linkages. The resultant cotton fabrics show durably antibacterial activity, realizing high bacterial reduction rates against both E. coli and S. aureus higher than 99.99 %, and offering remarkable durabilities tolerable 50 washing cycles and 500 rubbing times. These fabrics also show reliable safety for human skin that proofed by a series of cytotoxicity tests with positive results. This work demonstrates an example of versatile strategy to impart effective antibacterial function with durable activity to cotton textiles, showing great potential for practical applications in functional textile fields.
Collapse
Affiliation(s)
- Maoshuang Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianan ShangGuan
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junyi Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fengjuan Li
- School of Mechanical and Electrical Engineering, Xinjiang Institute of Technology, Aksu 843100, China
| | - Qingqi Dong
- Zhe Jiang Hengyi High-Tech Materials Co. Ltd., No. 11268, Red 15th Line, Qiantang New Area, Hangzhou 311228, China.
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Xiangdong Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Firmanda A, Fahma F, Warsiki E, Syamsu K, Arnata IW, Sartika D, Suryanegara L, Qanytah, Suyanto A. Antimicrobial mechanism of nanocellulose composite packaging incorporated with essential oils. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges. Polymers (Basel) 2022; 14:polym14214539. [PMID: 36365532 PMCID: PMC9654449 DOI: 10.3390/polym14214539] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
Polymeric hydrogels have drawn considerable attention as a biomedical material for their unique mechanical and chemical properties, which are very similar to natural tissues. Among the conventional hydrogel materials, self-healing hydrogels (SHH) are showing their promise in biomedical applications in tissue engineering, wound healing, and drug delivery. Additionally, their responses can be controlled via external stimuli (e.g., pH, temperature, pressure, or radiation). Identifying a suitable combination of viscous and elastic materials, lipophilicity and biocompatibility are crucial challenges in the development of SHH. Furthermore, the trade-off relation between the healing performance and the mechanical toughness also limits their real-time applications. Additionally, short-term and long-term effects of many SHH in the in vivo model are yet to be reported. This review will discuss the mechanism of various SHH, their recent advancements, and their challenges in tissue engineering, wound healing, and drug delivery.
Collapse
|
9
|
Rimpy, Ahuja M. Fluconazole-loaded TEOS-modified nanocellulose 3D scaffolds – Fabrication, characterization and its application as vaginal drug delivery system. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Du P, Xu Y, Shi Y, Xu Q, Li S, Gao M. Preparation and shape change of silver nanoparticles (AgNPs) loaded on the dialdehyde cellulose by in-situ synthesis method. CELLULOSE (LONDON, ENGLAND) 2022; 29:6831-6843. [PMID: 35789831 PMCID: PMC9244189 DOI: 10.1007/s10570-022-04692-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/08/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED With the improvement of medical and health care level in our society, the demand for antibacterial materials is increasing. In this work, we prepared the antibacterial materials by loading silver nanoparticles (AgNPs) on the dialdehyde cellulose (DAC) with in-situ synthesis method. DAC was prepared by pretreating cellulose fiber with sodium metaperiodate (NaIO4) to convert the hydroxyl group into aldehyde group, and then reacted with silver nitrate (AgNO3) to obtain AgNPs loaded on DAC. UV-Vis results show that the characteristic absorption peak of AgNPs at 428 nm appeared in the AgNPs-loaded-DAC. It was observed by SEM that the spherical AgNPs were distributed uniformly on the DAC surface without obvious flocculation. The color of DAC was not changed significantly, indicating that a small amount of AgNPs was loaded. In addition, sodium citrate (Na3C6H5O7) was added in the reaction of DAC and AgNO3 and its effect on the formation of AgNPs was studied. The results demonstrated that the color of DAC turned deeper and finally dark yellow with reaction time extended. When the reaction time was 60 h, the spherical AgNPs were gradually grown and transformed into triangular prism on the DAC surface. The antibacterial properties of AgNPs showed inhibition zones of 4.90 mm and 7.35 mm (60 h) against Gram-negative (E. coli) and Gram-positive (S. aureus), respectively, which increased by 40.00% and 14.85% compared with spherical AgNPs (2.5 h) obtained without Na3C6H5O7. The research of AgNPs-loaded cellulose-based materials promotes the development prospect of new nano-antibacterial materials. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-022-04692-6.
Collapse
Affiliation(s)
- Peng Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Yun Shi
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Qinghua Xu
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353 China
| | - Shasha Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Minlan Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 China
| |
Collapse
|
11
|
New chitosan Schiff base and its nanocomposite: Removal of methyl green from aqueous solution and its antibacterial activities. Int J Biol Macromol 2021; 192:1-6. [PMID: 34619269 DOI: 10.1016/j.ijbiomac.2021.09.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
New chitosan Schiff base (CS-NB) and its CS-NB-NiFe nanocomposite have been prepared and characterized by FTIR spectroscopy, XRD, SEM and DSC. FT-IR spectra and XRD patterns revealed the preparation of chitosan Schiff base CS-NB and its CS-NB-NiFe nanocomposite. DSC demonstrated the endo and exothermic correspondence the evaporation of solvent and decomposition of pyranose ring, respectively. Antibacterial activities was evaluated for the as-prepared compounds against two Gram-positive (Staphylococcus aureus and Bacillus cereus) and two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and the results shows that the antibacterial activities of the compounds are found to be stronger than that of chitosan. The order of antibacterial effect according to inhibitory zone around is as follows: S. aureus > E. coli > B. cereus > P. aeruginosa. In addition, the removal of methyl green (MG) dye using CS-NB and its CS-NB-NiFe nanocomposite were analyzed and results showed that the compounds can be effectively used to remove of MG from aqueous solution. Results show that the percentage removal of MG by nanocomposite is higher than Schiff base.
Collapse
|
12
|
Bansal M, Kumar D, Chauhan GS, Kaushik A, Kaur G. Functionalization of nanocellulose to quaternized nanocellulose tri-iodide and its evaluation as an antimicrobial agent. Int J Biol Macromol 2021; 190:1007-1014. [PMID: 34517030 DOI: 10.1016/j.ijbiomac.2021.08.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/31/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The reported research involves formation of quaternized nanocellulose triiodide for use as an agent for controlled release of iodine. Nanocellulose was extracted from bagasse and the extracted cellulose nanofibers (CNFs) were quaternized with 3-chloro-2-hydroxypropyltrimethyl ammonium chloride (CHPTAC) in NaOH/urea solution. This was followed by exchange of Cl- with I3- by reaction with KI/I2. Nanofibers having I3- anions were characterized by SEM, TEM, XRD, XRF and FTIR spectroscopy. The iodine content was estimated to be 33.42% and the fibers showed no leaching of molecular I2 in detectable amounts. The fibers showed a maximum activity of 94.73% and 99.86% against E. coli and S. aureus, respectively. These are capable of sustaining 100% antimicrobial activity over a period of six months. These fibers can thus find potential applications as a disinfectant agent in biomedical and water purification processes.
Collapse
Affiliation(s)
- Monica Bansal
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, India
| | - Dharamender Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, India
| | - Ghanshyam S Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, India.
| | | | - Gagandeep Kaur
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
13
|
Kaur M, Tewatia P, Rattan G, Singhal S, Kaushik A. Diamidoximated cellulosic bioadsorbents from hemp stalks for elimination of uranium (VI) and textile waste in aqueous systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126060. [PMID: 34020347 DOI: 10.1016/j.jhazmat.2021.126060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Selective abolition of hazardous U(VI) ions from nuclear power plants and removal of toxic colorants from textile industries pose great challenge. The work aims to develop cellulosic bioadsorbents from waste stalks of local weed, Cannabis sativa, commonly known as hemp. Cellulose nanofibers (PCFs) were chosen as substrates owing to their unique characteristics like surface hydroxyl groups, large surface to volume ratio and excellent mechanical properties. PCFs were isolated from hemp stalks and their structural characterization using FTIR, TGA and XRD ensured retrieval of pure crystalline cellulose. PCFs were modified via copolymerization to obtain diaminomaleonitrile adorned cellulose grafts (DAMNC) and further converted to get diamidoxime functionalized cellulose (DAOC). DAOC exhibited exceptional affinity with uranium (VI) ions, safranin-o and methylene blue dyes due to presence of two amidoxime groups. Sorption capability was ascertained for optimization of parameters like contact time, pH selectivity, adsorbent dosage and concentration. Sorption followed Pseudo second-order kinetic model with maximum sorption of 220 mg/g, 19.01 mg/g and 46.4 mg/g for U(VI) ions, SO and MB, respectively. EDX mapping revealed uniform adsorption of all the three pollutants on DAOC while XPS ascertained that the sorption originated from multiple interactions between the adsorbent and the pollutants.
Collapse
Affiliation(s)
- Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Gaurav Rattan
- Dr. SSB University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Anupama Kaushik
- Energy Research Centre, Panjab University, Chandigarh, India; Dr. SSB University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
14
|
Wang C, Wang L, Zhang Q, Cheng L, Yue H, Xia X, Zhou H. Preparation and characterization of apoacynum venetum cellulose nanofibers reinforced chitosan-based composite hydrogels. Colloids Surf B Biointerfaces 2021; 199:111441. [DOI: 10.1016/j.colsurfb.2020.111441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022]
|
15
|
Lubis R, Wirjosentono B, Eddyanto, Septevani AA. Preparation, characterization and antimicrobial activity of grafted cellulose fiber from durian rind waste. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Xiao G, Wang Y, Zhang H, Zhu Z, Fu S. Dialdehyde cellulose nanocrystals act as multi-role for the formation of ultra-fine gold nanoparticles with high efficiency. Int J Biol Macromol 2020; 163:788-800. [DOI: 10.1016/j.ijbiomac.2020.07.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
|
17
|
Nypelö T, Berke B, Spirk S, Sirviö JA. Review: Periodate oxidation of wood polysaccharides-Modulation of hierarchies. Carbohydr Polym 2020; 252:117105. [PMID: 33183584 DOI: 10.1016/j.carbpol.2020.117105] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/16/2022]
Abstract
Periodate oxidation of polysaccharides has transitioned from structural analysis into a modification method for engineered materials. This review summarizes the research on this topic. Fibers, fibrils, crystals, and molecules originating from forests that have been subjected to periodate oxidation can be crosslinked with other entities via the generated aldehyde functionality, that can also be oxidized or reduced to carboxyl or alcohol functionality or used as a starting point for further modification. Periodate-oxidized materials can be subjected to thermal transitions that differ from the native cellulose. Oxidation of polysaccharides originating from forests often features oxidation of structures rather than liberated molecules. This leads to changes in macro, micro, and supramolecular assemblies and consequently to alterations in physical properties. This review focuses on these aspects of the modulation of structural hierarchies due to periodate oxidation.
Collapse
Affiliation(s)
- Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.
| | - Barbara Berke
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Graz, Austria
| | - Juho Antti Sirviö
- Fibre and Particle Engineering Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
18
|
Alkabli J, El-Sayed W, Elshaarawy RF, Khedr AI. Upgrading Oryza sativa wastes into multifunctional antimicrobial and antibiofilm nominees; Ionic Metallo-Schiff base-supported cellulosic nanofibers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Antibacterial modification of Lyocell fiber: A review. Carbohydr Polym 2020; 250:116932. [PMID: 33049845 DOI: 10.1016/j.carbpol.2020.116932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022]
Abstract
As the most successful regenerated cellulose fiber developed in recent decades, Lyocell has attracted much attention due to its useful properties, simple manufacturing process, and recyclable solvent. However, Lyocell's lack of antibacterial properties limits its application in medical and health fields. Antibacterial modification of Lyocell fiber can be achieved by three general approaches: physical blending, chemical reaction, and post-treatment. Physical blending methods introduce antibacterial agents directly into the spinning dope. In chemical reaction methods, functional groups of the antibacterial additives are grafted or crosslinked into Lyocell fibers, thereby imparting antimicrobial properties. In post-treatment methods, antibacterial additives are deposited on Lyocell fiber surfaces by physical coating, padding, or impregnation processes. We organize our review of antibacterial modification of Lyocell fibers by these preparation methods. Some of the modified Lyocell fibers are reported to exhibit improved antimicrobial activity against various bacteria and fungi, indicating promise for application in medical or hygienic products.
Collapse
|
20
|
Wang Y, Liu S, Wang J, Tang F. Polymer network strengthened filter paper for durable water disinfection. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Kabanov VL, Novinyuk LV. CHITOSAN APPLICATION IN FOOD TECHNOLOGY: A REVIEW OF RESCENT ADVANCES. ACTA ACUST UNITED AC 2020. [DOI: 10.21323/2618-9771-2020-3-1-10-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- V. L. Kabanov
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| | - L. V. Novinyuk
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| |
Collapse
|
22
|
Li Q, Zhang X, Yu H, Zhang H, Wang J. A facile surface modification strategy for improving the separation, antifouling and antimicrobial performances of the reverse osmosis membrane by hydrophilic and Schiff-base functionalizations. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Preparation and application of nanocellulose from non-wood plants to improve the quality of paper and cardboard. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01242-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Characterization of the physical properties and biological activity of chitosan films grafted with gallic acid and caffeic acid: A comparison study. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100401] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Antony R, Arun T, Manickam STD. A review on applications of chitosan-based Schiff bases. Int J Biol Macromol 2019; 129:615-633. [PMID: 30753877 DOI: 10.1016/j.ijbiomac.2019.02.047] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Biopolymers have become very attractive as they are degradable, biocompatible, non-toxic and renewable. Due to the intrinsic reactive amino groups, chitosan is vibrant in the midst of other biopolymers. Using the versatility of these amino groups, various structural modifications have been accomplished on chitosan through certain chemical reactions. Chemical modification of chitosan via imine functionalization (RR'CNR″; R: alkyl/aryl, R': H/alkyl/aryl and R″: chitosan ring) is significant as it recommends the resultant chitosan-based Schiff bases (CSBs) for the important applications in the fields like biology, catalysis, sensors, water treatment, etc. CSBs are usually synthesized by the Schiff condensation reaction between chitosan's amino groups and carbonyl compounds with the removal of water molecules. In this review, we first introduce the available synthetic approaches for the preparation of CSBs. Then, we discuss the biological applications of CSBs including antimicrobial activity, anticancer activity, drug carrier ability, antioxidant activity and tissue engineering capacity. Successively, the applications of CSBs in other fields such as catalysis, adsorption and sensors are demonstrated.
Collapse
Affiliation(s)
- R Antony
- Centre for Scientific and Applied Research, PSN College of Engineering and Technology (Autonomous), Tirunelveli 627152, Tamil Nadu, India.
| | - T Arun
- Department of Chemistry, Kamaraj College, Thoothukudi 628003, Tamil Nadu, India
| | - S Theodore David Manickam
- Centre for Scientific and Applied Research, PSN College of Engineering and Technology (Autonomous), Tirunelveli 627152, Tamil Nadu, India.
| |
Collapse
|
26
|
|
27
|
Sadeghzadeh SM, Zhiani R. Photooxidation of triarylphosphines under aerobic conditions in the presence of a gold( iii) complex on cellulose extracted from Carthamus tinctorius immobilized on nanofibrous phosphosilicate. RSC Adv 2019; 9:1509-1516. [PMID: 35518055 PMCID: PMC9059722 DOI: 10.1039/c8ra09721f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/14/2018] [Indexed: 01/18/2023] Open
Abstract
Triarylphosphines were converted to the corresponding oxides via photooxidation as a novel method.
Collapse
Affiliation(s)
- Seyed Mohsen Sadeghzadeh
- New Materials Technology and Processing Research Center
- Department of Chemistry
- Neyshabur Branch
- Islamic Azad University
- Neyshabur
| | - Rahele Zhiani
- New Materials Technology and Processing Research Center
- Department of Chemistry
- Neyshabur Branch
- Islamic Azad University
- Neyshabur
| |
Collapse
|
28
|
Cai Q, Yang S, Zhang C, Li Z, Li X, Shen Z, Zhu W. Facile and Versatile Modification of Cotton Fibers for Persistent Antibacterial Activity and Enhanced Hygroscopicity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38506-38516. [PMID: 30360113 DOI: 10.1021/acsami.8b14986] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural fibers with functionalities have attracted considerable attention. However, developing facile and versatile strategies to modify natural fibers is still a challenge. In this study, cotton fibers, the most widely used natural fibers, were partially oxidized by sodium periodate in aqueous solution, to give oxidized cotton fibers containing multiple aldehyde groups on their surface. Then poly(hexamethylene guanidine) was chemically grafted onto the oxidized cotton fibers forming Schiff bases between the terminal amines of poly(hexamethylene guanidine) and the aldehyde groups of oxidized cotton fibers. Finally, carbon-nitrogen double bonds were reduced by sodium cyanoborohydride, to bound poly(hexamethylene guanidine) covalently to the surface of cotton fibers. These functionalized fibers show strong and persistent antibacterial activity: complete inhibition against Escherichia coli and Staphylococcus aureus was maintained even after 1000 consecutive washing in distilled water. On the other hand, cotton fibers with only physically adsorbed poly(hexamethylene guanidine) lost their antibacterial activity entirely after a few washes. According to Cell Counting Kit-8 assay and hemolytic analysis, toxicity did not significantly increase after chemical modification. Attributing to the hydrophilicity of poly(hexamethylene guanidine) coatings, the modified cotton fibers were also more hygroscopic compared to untreated cotton fibers, which can improve the comfort of the fabrics made of modified cotton fibers. This study provides a facile and versatile strategy to prepare modified polysaccharide natural fibers with durable antibacterial activity, biosecurity, and comfortable touch.
Collapse
Affiliation(s)
- Qiuquan Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Shuliang Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Zimeng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , People's Republic of China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province , Hangzhou 310027 , China
| |
Collapse
|
29
|
Bonardd S, Robles E, Barandiaran I, Saldías C, Leiva Á, Kortaberria G. Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydr Polym 2018; 199:20-30. [DOI: 10.1016/j.carbpol.2018.06.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
30
|
l-Cysteine functionalized bagasse cellulose nanofibers for mercury(II) ions adsorption. Int J Biol Macromol 2018; 112:728-736. [PMID: 29425868 DOI: 10.1016/j.ijbiomac.2018.01.206] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/13/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022]
Abstract
Presence of mercury ions in water, even in trace amounts, is a serious environmental hazard. Hence, there is imperative need to develop innovative and environmentally-friendly materials for their removal from wastewaters. In the present study, cellulose nanofibers (CNFs) extracted from bagasse was esterified with l-cysteine to yield thiol and amine functionalized green material (Cys-CNFs) for removal of Hg2+ ions. The Cys-CNFs were well characterized by SEM, TEM, FTIR, EDS and XRD and evaluated for selective removal of Hg2+ ions from the simulated wastewater. It was observed that Cys-CNFs adsorb Hg2+ ions even at a very low concentration of 1.0mg/L and it exhibited a maximum adsorption capacity of 116.822mgg-1. Kinetic analysis of the data revealed that pseudo-second order kinetics and Langmuir isotherm were followed for adsorption of Hg2+ ions.
Collapse
|
31
|
Wang H, Qian J, Ding F. Emerging Chitosan-Based Films for Food Packaging Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:395-413. [PMID: 29257871 DOI: 10.1021/acs.jafc.7b04528] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Printing and Packaging, Wuhan University , Wuhan 430072, PR China
| | - Jun Qian
- School of Printing and Packaging, Wuhan University , Wuhan 430072, PR China
| | - Fuyuan Ding
- School of Printing and Packaging, Wuhan University , Wuhan 430072, PR China
| |
Collapse
|
32
|
Barbash VA, Yaschenko OV, Shniruk OM. Preparation and Properties of Nanocellulose from Organosolv Straw Pulp. NANOSCALE RESEARCH LETTERS 2017; 12:241. [PMID: 28363238 PMCID: PMC5374087 DOI: 10.1186/s11671-017-2001-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/14/2017] [Indexed: 05/28/2023]
Abstract
The object of this work is to present a study of nanocellulose preparation from organosolv straw pulp (OSP) and its properties. OSP was obtained through thermal treatment in the system of isobutyl alcohol-H2O-KOH-hydrazine followed by processing in the mixture of acetic acid and hydrogen peroxide for bleaching and removal of residual non-cellulosic components. We have obtained nanocellulose from OSP through acid hydrolysis with lower consumption of sulfuric acid and followed by ultrasound treatment. The structural change and crystallinity degree of OSP and nanocellulose were studied by means of SEM and XRD techniques. It has been established that nanocellulose has a density up to 1.3 g/cm3, transparency up to 70%, crystallinity degree 72.5%. The TEM and AFM methods shown that nanocellulose have diameter of particles in the range from 10 to 40 nm. Thermogravimetric analysis confirmed that nanocellulose films have more dense structure and smaller mass loss in the temperature range 220-260 °C compared with OSP. The obtained nanocellulose films had high Young's modulus up to 11.45 GPa and tensile strength up to 42.3 MPa. The properties of obtained nanocellulose from OSP exhibit great potential in its application for the preparation of new nanocomposite materials.
Collapse
Affiliation(s)
- V A Barbash
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37, Prospect Peremogy, Kyiv, 03056, Ukraine.
| | - O V Yaschenko
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37, Prospect Peremogy, Kyiv, 03056, Ukraine
| | - O M Shniruk
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37, Prospect Peremogy, Kyiv, 03056, Ukraine
| |
Collapse
|