1
|
Borse K, Shende P. 3D-to-4D Structures: an Exploration in Biomedical Applications. AAPS PharmSciTech 2023; 24:163. [PMID: 37537517 DOI: 10.1208/s12249-023-02626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
3D printing is a cutting-edge technique for manufacturing pharmaceutical drugs (Spritam), polypills (guaifenesin), nanosuspension (folic acid), and hydrogels (ibuprofen) with limitations like the choice of materials, restricted size of manufacturing, and design errors at lower and higher dimensions. In contrast, 4D printing represents an advancement on 3D printing, incorporating active materials like shape memory polymers and liquid crystal elastomers enabling printed objects to change shape in response to stimuli. 4D printing offers numerous benefits, including greater printing capacity, higher manufacturing efficiency, improved quality, lower production costs, reduced carbon footprint, and the ability to produce a wider range of products with greater potential. Recent examples of 4D printing advancements in the clinical setting include the development of artificial intravesicular implants for bladder disorders, 4D-printed hearts for transplant, splints for tracheobronchomalacia, microneedles for tissue wound healing, hydrogel capsules for ulcers, and theragrippers for anticancer drug delivery. This review highlights the advantages of 4D printing over 3D printing, recent applications in manufacturing smart pharmaceutical drug delivery systems with localized action, lower incidence of drug administration, and better patient compliance. It is recommended to conduct substantial research to further investigate the development and applicability of 4D printing in the future.
Collapse
Affiliation(s)
- Kadambari Borse
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Hashtrodylar Y, Rabbani S, Dadashzadeh S, Haeri A. Berberine-phospholipid nanoaggregate-embedded thiolated chitosan hydrogel for aphthous stomatitis treatment. Nanomedicine (Lond) 2023; 18:1227-1246. [PMID: 37712555 DOI: 10.2217/nnm-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Aim: This study aimed to develop nanoaggregates of berberine-phospholipid complex incorporated into thiolated chitosan (TCS) hydrogel for the treatment of aphthous stomatitis. Methods: The berberine-phospholipid complex was formulated through the solvent evaporation technique and assembled into nanoaggregates. TCS was synthesized through the attachment of thioglycolic acid to chitosan (CS). Nanoaggregates-TCS was prepared by the incorporation of nanoaggregates into TCS and underwent in vitro and in vivo tests. Results: Nanoaggregates-TCS exhibited prolonged release of berberine. The mucoadhesive strength of nanoaggregates-TCS increased 1.75-fold compared with CS hydrogel. In vivo studies revealed the superior therapeutic efficacy of nanoaggregates-TCS compared with that of other groups. Conclusion: Due to prolonged drug release, appropriate residence time and anti-inflammatory effects, nanoaggregates-TCS is an effective system for the treatment of aphthous stomatitis.
Collapse
Affiliation(s)
- Yasaman Hashtrodylar
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, 1313814117, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| |
Collapse
|
3
|
Xie Y, Jin Z, Ma D, Yin TH, Zhao K. Palmitic acid- and cysteine-functionalized nanoparticles overcome mucus and epithelial barrier for oral delivery of drug. Bioeng Transl Med 2023; 8:e10510. [PMID: 37206211 PMCID: PMC10189451 DOI: 10.1002/btm2.10510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 05/21/2023] Open
Abstract
Nanoparticles (NPs) used for oral administration have greatly improved drug bioavailability and therapeutic efficacy. Nevertheless, NPs are limited by biological barriers, such as gastrointestinal degradation, mucus barrier, and epithelial barrier. To solve these problems, we developed the PA-N-2-HACC-Cys NPs loaded with anti-inflammatory hydrophobic drug curcumin (CUR) (CUR@PA-N-2-HACC-Cys NPs) by self-assembled amphiphilic polymer, composed of the N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), hydrophobic palmitic acid (PA), and cysteine (Cys). After oral administration, the CUR@PA-N-2-HACC-Cys NPs had good stability and sustained release under gastrointestinal conditions, followed by adhering to the intestine to achieve drug mucosal delivery. Additionally, the NPs could penetrate mucus and epithelial barriers to promote cellular uptake. The CUR@PA-N-2-HACC-Cys NPs could open tight junctions between cells for transepithelial transport while striking a balance between mucus interaction and diffusion through mucus. Notably, the CUR@PA-N-2-HACC-Cys NPs improved the oral bioavailability of CUR, which remarkably relieved colitis symptoms and promoted mucosal epithelial repair. Our findings proved that the CUR@PA-N-2-HACC-Cys NPs had excellent biocompatibility, could overcome mucus and epithelial barriers, and had significant application prospects for oral delivery of the hydrophobic drugs.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou UniversityTaizhou318000China
| | - Tan Hui Yin
- Tunku Abdul Rahman University of Management and TechnologyJalan Genting KelangKuala Lumpur53300Malaysia
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| |
Collapse
|
4
|
Ghaffari-Bohlouli P, Simińska-Stanny J, Jafari H, Mirzaei M, Nie L, Delporte C, Shavandi A. Printable hyaluronic acid hydrogel functionalized with yeast-derived peptide for skin wound healing. Int J Biol Macromol 2023; 232:123348. [PMID: 36682658 DOI: 10.1016/j.ijbiomac.2023.123348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Targeted delivery of bioactive agents, growth factors, and drugs to skin wounds is a growing trend in biomaterials development for wound healing. This study presents a printable hyaluronic acid (HA) based hydrogel to deliver yeast-derived ACE-inhibitory peptide of VLSTSFPPW (VW-9) to the wound site. We first conjugated tyramine (Ty) on the carboxyl groups of the HA to form a phenol-functionalized HA (HA-Ty); then, the carboxylic acid groups of HA-Ty were aminated with ethylenediamine (HA-Ty-NH2). The primary amine groups of the HA-Ty-NH2 could then react with the carboxylic acids of the peptide. The hydrogel was then 3D printed and crosslinked with visible light. The modification of HA was confirmed by 1H NMR and FTIR. The swelling capacity of the conjugated hydrogels was 1.5-fold higher compared to the HA-Ty-NH2 hydrogel. The conjugated peptide did not affect on rheological properties and morphology of the hydrogels. The 3T3-L1 fibroblast cells seeded on the peptide-modified hydrogels exhibited higher viability than the hydrogels without the peptide, indicating that the peptide-enriched hydrogels may have the potential for wound healing applications.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Hafez Jafari
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Mahta Mirzaei
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Medical School, Université Libre de Bruxelles, Route de Lennik, 808, CP611, Brussels 1070, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
5
|
A Dual-Crosslinked Hydrogel Based on Gelatin Methacryloyl and Sulfhydrylated Chitosan for Promoting Wound Healing. Int J Mol Sci 2023; 24:ijms24032447. [PMID: 36768768 PMCID: PMC9917266 DOI: 10.3390/ijms24032447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The skin is the largest organ of the human body. Skin injuries, especially full-thickness injuries, are a major treatment challenge in clinical practice. Therefore, wound dressing materials with therapeutic effects have great practical significance in healthcare. This study used photocrosslinkable gelatin methacryloyl (GelMA) and sulfhydrylated chitosan (CS-SH) to design a double-crosslinked hydrogel for wound dressing. When crosslinked together, the resulting hydrogels showed a highly porous inner structure, and enhanced mechanical properties and moisture retention capacity. The compression modulus of the GelMA/CS-SH hydrogel (GCH) reached up to about 40 kPa and was much higher than that of pure GelMA hydrogel, and the compression modulus was increased with the amount of CS-SH. In vitro study showed no cytotoxicity of obtained hydrogels. Interestingly, a higher concentration of CS-SH slightly promoted the proliferation of cells. Moreover, the double-crosslinked hydrogel exhibited antibacterial properties because of the presence of chitosan. In vivo study based on rats showed that full-thickness skin defects healed on the 15th day. Histological results indicate that the hydrogel accelerated the repair of hair follicles and encouraged the orderly growth of collagen fibers in the wound. Furthermore, better blood vessel formation and a higher expression of VEGFR were observed in the hydrogel group when compared with the untreated control group. Based on our findings, GCH could be a promising candidate for full-thickness wound dressing.
Collapse
|
6
|
Younas F, Zaman M, Aman W, Farooq U, Raja MAG, Amjad MW. Thiolated Polymeric Hydrogels for Biomedical Applications: A Review. Curr Pharm Des 2023; 29:3172-3186. [PMID: 37622704 DOI: 10.2174/1381612829666230825100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Hydrogels are a three-dimensional (3D) network of hydrophilic polymers. The physical and chemical crosslinking of polymeric chains maintains the structure of the hydrogels even when they are swollen in water. They can be modified with thiol by thiol epoxy, thiol-ene, thiol-disulfide, or thiol-one reactions. Their application as a matrix for protein and drug delivery, cellular immobilization, regenerative medicine, and scaffolds for tissue engineering was initiated in the early 21st century. This review focuses on the ingredients, classification techniques, and applications of hydrogels, types of thiolation by different thiol-reducing agents, along with their mechanisms. In this study, different applications for polymers used in thiolated hydrogels, including dextran, gelatin, polyethylene glycol (PEG), cyclodextrins, chitosan, hyaluronic acid, alginate, poloxamer, polygalacturonic acid, pectin, carrageenan gum, arabinoxylan, carboxymethyl cellulose (CMC), gellan gum, and polyvinyl alcohol (PVA) are reviewed.
Collapse
Affiliation(s)
- Farhan Younas
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Waqar Aman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Umer Farooq
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, PA 15213, USA
| |
Collapse
|
7
|
Mehrabi A, Karimi A, Mashayekhan S, Samadikuchaksaraei A, Milan PB. In-situ forming hydrogel based on thiolated chitosan/carboxymethyl cellulose (CMC) containing borate bioactive glass for wound healing. Int J Biol Macromol 2022; 222:620-635. [PMID: 36167099 DOI: 10.1016/j.ijbiomac.2022.09.177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
Suitable wound dressings for accelerating wound healing are actively being designed and synthesised. In this study, thiolated chitosan (tCh)/oxidized carboxymethyl cellulose (OCMC) hydrogel containing Cu-doped borate bioglass (BG) was developed as a wound dressing to improve wound healing in a full-thickness skin defect of mouse animal model. Thiolation was used to incorporate thiol groups into chitosan (Ch) to enhance its water solubility and mucoadhesion characteristics. Here, the in situ forming hydrogel was successfully developed using the Schiff-based reaction, and its physio-chemical and antibacterial characteristics were examined. Borate BG was also incorporated in the generated hydrogel to promote angiogenesis and tissue regeneration at the wound site. Investigations of in vitro cytotoxicity assays demonstrated that the synthesised hydrogels showed good biocompatibility and promoted cell growth. These results inspired us to investigate the effectiveness of skin wound healing in a mouse model. On the backs of animals, two full-thickness wounds were created and treated utilising two different treatment conditions: (1) OCMC/tCh hydrogel, (2) OCMC/tCh/borate BG, and (3) control defect. The wound closure ratio, collagen deposition, and angiogenesis activity were measured after 14 days to determine the healing efficacy of the in situ hydrogels used as wound dressings. Overall, the hydrogel containing borate BG was maintained in the defect site, healing efficiency was replicable, and wound healing was apparent. In conclusion, we found consistent angiogenesis, remodelling, and accelerated wound healing, which we propose may have beneficial effects on the repair of skin defects.
Collapse
Affiliation(s)
- Arezou Mehrabi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afzal Karimi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shoherh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. J Control Release 2021; 330:470-482. [DOI: 10.1016/j.jconrel.2020.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
|
9
|
Ecofriendly multifunctional thiolated carboxymethyl chitosan-based 3D scaffolds with luminescent properties for skin repair and theragnostic of tissue regeneration. Int J Biol Macromol 2020; 165:3051-3064. [PMID: 33127543 DOI: 10.1016/j.ijbiomac.2020.10.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/12/2023]
Abstract
Luminescent biopolymers, namely carboxymethyl chitosan, have become a target of attention due to their potential for biomedical applications. In this context, biomaterials capable of improving theragnostic tissue regeneration and provide a tissue repair remain a challenge. This study introduces a new 3D scaffold based on two innovative thiolated carboxymethyl chitosan with cysteine (CMCCys) and 11-mercaptoundecanoic acid (CMCMerc) resulting in enhanced fluorescence of CMC for repair and theragnostic of tissue regeneration. Those thiolated CMCs were intensively characterized by spectroscopy techniques (FTIR, NMR), swelling degree, chemical stability (Gel-fraction, GF) and morphological analysis (SEM, microtomography, BET). In addition, the photoluminescence properties were evaluated and cytocompatibility was performed via in vitro bioassays. The results demonstrated that those scaffolds presented interconnected 3D porous (porosity > 80%), a great GF, and a high degree of thiolation (2%-11%). Furthermore, the spectroscopy analysis elucidated a significant disulfide bond formation, which guaranteed mechanical stability for applications in tissue engineering (elastic modulus, (22 ± 3) kPa and (35 ± 2) kPa, for CMCCys and CMCMerc, respectively). Additionally, the incorporation of thiol group improved the fluorescence of CMC and they presented cytocompatibility > 90%. Thus, for the first time, a multifunctional 3D CMC thiomer was produced for applications in repair and theragnostic of tissue regeneration.
Collapse
|
10
|
Migliorini E, Guevara-Garcia A, Albiges-Rizo C, Picart C. Learning from BMPs and their biophysical extracellular matrix microenvironment for biomaterial design. Bone 2020; 141:115540. [PMID: 32730925 PMCID: PMC7614069 DOI: 10.1016/j.bone.2020.115540] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/19/2023]
Abstract
It is nowadays well-accepted that the extracellular matrix (ECM) is not a simple reservoir for growth factors but is an organization center of their biological activity. In this review, we focus on the ability of the ECM to regulate the biological activity of BMPs. In particular, we survey the role of the ECM components, notably the glycosaminoglycans and fibrillary ECM proteins, which can be promoters or repressors of the biological activities mediated by the BMPs. We examine how a process called mechano-transduction induced by the ECM can affect BMP signaling, including BMP internalization by the cells. We also focus on the spatio-temporal regulation of the BMPs, including their release from the ECM, which enables to modulate their spatial localization as well as their local concentration. We highlight how biomaterials can recapitulate some aspects of the BMPs/ECM interactions and help to answer fundamental questions to reveal previously unknown molecular mechanisms. Finally, the design of new biomaterials inspired by the ECM to better present BMPs is discussed, and their use for a more efficient bone regeneration in vivo is also highlighted.
Collapse
Affiliation(s)
- Elisa Migliorini
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| | - Amaris Guevara-Garcia
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France; Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Catherine Picart
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| |
Collapse
|
11
|
Ogay V, Mun EA, Kudaibergen G, Baidarbekov M, Kassymbek K, Zharkinbekov Z, Saparov A. Progress and Prospects of Polymer-Based Drug Delivery Systems for Bone Tissue Regeneration. Polymers (Basel) 2020; 12:E2881. [PMID: 33271770 PMCID: PMC7760650 DOI: 10.3390/polym12122881] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the high regenerative capacity of bone tissue, there are some cases where bone repair is insufficient for a complete functional and structural recovery after damage. Current surgical techniques utilize natural and synthetic bone grafts for bone healing, as well as collagen sponges loaded with drugs. However, there are certain disadvantages associated with these techniques in clinical usage. To improve the therapeutic efficacy of bone tissue regeneration, a number of drug delivery systems based on biodegradable natural and synthetic polymers were developed and examined in in vitro and in vivo studies. Recent studies have demonstrated that biodegradable polymers play a key role in the development of innovative drug delivery systems and tissue engineered constructs, which improve the treatment and regeneration of damaged bone tissue. In this review, we discuss the most recent advances in the field of polymer-based drug delivery systems for the promotion of bone tissue regeneration and the physical-chemical modifications of polymers for controlled and sustained release of one or more drugs. In addition, special attention is given to recent developments on polymer nano- and microparticle-based drug delivery systems for bone regeneration.
Collapse
Affiliation(s)
- Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan; (V.O.); (G.K.)
| | - Ellina A. Mun
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Gulshakhar Kudaibergen
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan; (V.O.); (G.K.)
| | - Murat Baidarbekov
- Research Institute of Traumatology and Orthopedics, Nur-Sultan 010000, Kazakhstan;
| | - Kuat Kassymbek
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.K.); (Z.Z.)
| |
Collapse
|
12
|
de Sousa Victor R, Marcelo da Cunha Santos A, Viana de Sousa B, de Araújo Neves G, Navarro de Lima Santana L, Rodrigues Menezes R. A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4995. [PMID: 33171898 PMCID: PMC7664280 DOI: 10.3390/ma13214995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Chitosan, derived from chitin, is a biopolymer consisting of arbitrarily distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine that exhibits outstanding properties- biocompatibility, biodegradability, non-toxicity, antibacterial activity, the capacity to form films, and chelating of metal ions. Most of these peculiar properties are attributed to the presence of free protonable amino groups along the chitosan backbone, which also gives it solubility in acidic conditions. Moreover, this biopolymer can also be physically modified, thereby presenting a variety of forms to be developed. Consequently, this polysaccharide is used in various fields, such as tissue engineering, drug delivery systems, and cancer treatment. In this sense, this review aims to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications. We present the most relevant and new information about this polysaccharide-based biomaterial's applications in distinct fields and also the ability of chitosan and its various derivatives to selectively permeate through the cancer cell membranes and exhibit anticancer activity, and the possibility of adding several therapeutic metal ions as a strategy to improve the therapeutic potential of this polymer.
Collapse
Affiliation(s)
- Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Adillys Marcelo da Cunha Santos
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of Recôncavo da Bahia (UFRB), Feira de Santana 44042-280, Brazil;
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| |
Collapse
|
13
|
Wang Z, Liu X, Martin VT, Abdi MA, Chen L, Gong Y, Yan Y, Song L, Liu Z, Zhang X, Chen Y, Yu B. Sequential Delivery of BMP2-Derived Peptide P24 by Thiolated Chitosan/Calcium Carbonate Composite Microspheres Scaffolds for Bone Regeneration. JOURNAL OF NANOMATERIALS 2020; 2020:1-10. [DOI: 10.1155/2020/4929151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The combination of tissue-engineered bone scaffolds with osteogenic induction molecules is an important strategy for critical-sized bone defects repair. We synthesized a novel thiolated chitosan/calcium carbonate composite microsphere (TCS-P24/CA) scaffold as a carrier for bone morphogenetic protein 2- (BMP2-) derived peptide P24 and evaluated the release kinetics of P24. The effect of TCS-P24/CA scaffolds on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs) was evaluated by scanning electron microscope (SEM), CCK-8, ALP assay, alizarin red staining, and PCR. A 5 mm diameter calvarial defect was created, then new bone formation was evaluated by Micro-CT and histological examination at 4 and 8 weeks after operation. We found the sequential release of P24 could last for 29 days. Meanwhile, BMSCs revealed spindle-shaped surface morphology, indicating the TCS-P24/CA scaffolds could support cell adhesion and mRNA levels for ALP, Runx2, and COL1a1 were significantly upregulated on TCS-10%P24/CA scaffold compared with other groups in vitro (p<0.05). Similarly, the BMSCs exhibited a higher ALP activity as well as calcium deposition level on TCS-10%P24/CA scaffolds compared with other groups (p<0.05). Analysis of in vivo bone formation showed that the TCS-10%P24/CA scaffold induced more bone formation than TCS-5%P24/CA, TCS/CA, and control groups. This study demonstrates that the novel TCS-P24/CA scaffolds might contribute to the delivery of BMP2-derived Peptide P24 and is considered to be a potential candidate for repairing bone defects.
Collapse
Affiliation(s)
- Zhaozhen Wang
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Xujie Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Vidmi Taolam Martin
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Mohamed Abdullahi Abdi
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Lijun Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yong Gong
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Yiran Yan
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Liming Song
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Zhongxun Liu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Xianliao Zhang
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Yan Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
14
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Wang C, Ye X, Zhao Y, Bai L, He Z, Tong Q, Xie X, Zhu H, Cai D, Zhou Y, Lu B, Wei Y, Mei L, Xie D, Wang M. Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects. Biofabrication 2020; 12:035004. [DOI: 10.1088/1758-5090/ab6d35] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Establishment of Collagen: Hydroxyapatite/BMP-2 Mimetic Peptide Composites. MATERIALS 2020; 13:ma13051203. [PMID: 32155998 PMCID: PMC7085073 DOI: 10.3390/ma13051203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/27/2022]
Abstract
Extensive efforts were undertaken to develop suitable biomaterials for tissue engineering (TE) applications. To facilitate clinical approval processes and ensure the success of TE applications, bioinspired concepts are currently focused on. Working on bone tissue engineering, we describe in the present study a method for biofunctionalization of collagen/hydroxyapatite composites with BMP-2 mimetic peptides. This approach is expected to be fundamentally transferable to other tissue engineering fields. A modified BMP-2 mimetic peptide containing a negatively charged poly-glutamic acid residue (E7 BMP-2 peptide) was used to bind positively charged hydroxyapatite (HA) particles by electrostatic attraction. Binding efficiency was biochemically detected to be on average 85% compared to 30% of BMP-2 peptide without E7 residue. By quartz crystal microbalance (QCM) analysis, we could demonstrate the time-dependent dissociation of the BMP-2 mimetic peptides and the stable binding of the E7 BMP-2 peptides on HA-coated quartz crystals. As shown by immunofluorescence staining, alkaline phosphatase expression is similar to that detected in jaw periosteal cells (JPCs) stimulated with the whole BMP-2 protein. Mineralization potential of JPCs in the presence of BMP-2 mimetic peptides was also shown to be at least similar or significantly higher when low peptide concentrations were used, as compared to JPCs cultured in the presence of recombinant BMP-2 controls. In the following, collagen/hydroxyapatite composite materials were prepared. By proliferation analysis, we detected a decrease in cell viability with increasing HA ratios. Therefore, we chose a collagen/hydroxyapatite ratio of 1:2, similar to the natural composition of bone. The following inclusion of E7 BMP-2 peptides within the composite material resulted in significantly elevated long-term JPC proliferation under osteogenic conditions. We conclude that our advanced approach for fast and cost-effective scaffold preparation and biofunctionalization is suitable for improved and prolonged JPC proliferation. Further studies should prove the functionality of composite scaffolds in vivo.
Collapse
|
17
|
Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater 2020; 101:26-42. [PMID: 31672585 DOI: 10.1016/j.actbio.2019.10.038] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Four-dimensional (4D) bioprinting, in which the concept of time is integrated with three-dimensional (3D) bioprinting as the fourth dimension, has currently emerged as the next-generation solution of tissue engineering as it presents the possibility of constructing complex, functional structures. 4D bioprinting can be used to fabricate dynamic 3D-patterned biological architectures that will change their shapes under various stimuli by employing stimuli-responsive materials. The functional transformation and maturation of printed cell-laden constructs over time are also regarded as 4D bioprinting, providing unprecedented potential for bone tissue engineering. The shape memory properties of printed structures cater to the need for personalized bone defect repair and the functional maturation procedures promote the osteogenic differentiation of stem cells. In this review, we introduce the application of different stimuli-responsive biomaterials in tissue engineering and a series of 4D bioprinting strategies based on functional transformation of printed structures. Furthermore, we discuss the application of 4D bioprinting in bone tissue engineering, as well as the current challenges and future perspectives. STATEMENTS OF SIGNIFICANCE: In this review, we have demonstrated the 4D bioprinting technologies, which integrate the concept of time within the traditional 3D bioprinting technology as the fourth dimension and facilitate the fabrications of complex, functional biological architectures. These 4D bioprinting structures could go through shape or functional transformation over time via using different stimuli-responsive biomaterials and a series of 4D bioprinting strategies. Moreover, by summarizing potential applications of 4D bioprinting in the field of bone tissue engineering, these emerging technologies could fulfill unaddressed medical requirements. The further discussions about future challenges and perspectives will give us more inspirations about widespread applications of this emerging technology for tissue engineering in biomedical field.
Collapse
Affiliation(s)
- Zhuqing Wan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
18
|
Du Z, Liu J, Zhang H, Wu X, Zhang B, Chen Y, Liu B, Ding L, Xiao H, Zhang T. N-Acetyl-l-cysteine/l-Cysteine-Functionalized Chitosan-β-Lactoglobulin Self-Assembly Nanoparticles: A Promising Way for Oral Delivery of Hydrophilic and Hydrophobic Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12511-12519. [PMID: 31626537 DOI: 10.1021/acs.jafc.9b05219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembled and cross-linked hybrid hydrogels for entrapment and delivery of hydrophilic and hydrophobic bioactive compounds were developed based on N-acetyl-l-cysteine (NAC)- or l-cysteine (CYS)-functionalized chitosan-β-lactoglobulin nanoparticles (NPs). In both the systems, amphiphilic protein β-lactoglobulin (β-lg) was self-assembled by using glutaraldehyde for affinity binding with egg white-derived peptides (EWDP) and curcumin and then coated with NAC- or CYS-functionalized chitosan (CS) by electrostatic interaction. The resulting NPs were characterized in terms of size, polydispersity, and surface charge by dynamic light scattering. Results corroborated pH-sensitive properties of NAC-CS-β-lg NPs and CYS-CS-β-lg NPs with the particle size as small as 118 and 48 nm, respectively. The two kinds of NPs also showed excellent entrapment of EWDP and curcumin with the entrapment efficiency (EE) of EWDP and curcumin ranging from 51 to 89% and 42 to 57% in NAC-CS-β-lg NPs, as well as 50-81% and 41-57% in CYS-CS-β-lg NPs under different pH values. Fourier transform infrared and molecular docking studies provided support for the interaction mechanism of NAC/CYS-CS with β-lg as well as the NPs with EWDP and curcumin. Strikingly, the in vitro release kinetics of EWDP and curcumin exhibited the controlled and sustained release properties up to 58 and 70 h from the NPs, respectively. Note that the permeability of QIGLF (pentapeptide, isolated from EWDP) and curcumin passing through Caco-2 cell monolayers were all improved after the entrapment in the NPs. This work offers promising methods for effective entrapment and oral delivery of both hydrophilic and hydrophobic bioactive compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Long Ding
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , People's Republic of China
| | - Hang Xiao
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | | |
Collapse
|
19
|
Liu J, Yang B, Li M, Li J, Wan Y. Enhanced dual network hydrogels consisting of thiolated chitosan and silk fibroin for cartilage tissue engineering. Carbohydr Polym 2019; 227:115335. [PMID: 31590851 DOI: 10.1016/j.carbpol.2019.115335] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Thiolated chitosan (CS-NAC) was synthesized and the selected CS-NAC was used together with silk fibroin (SF) to produce dual network CS-NAC/SF hydrogels. The CS-NAC/SF solutions with formulated compositions were able to form hydrogels at physiological temperature and pH. Rheological measurements showed that elastic modulus of some CS-NAC/SF gels could reach around 3 kPa or higher and was much higher than their respective viscous modulus, indicating that they behaved like strong gels. Deformation measurements verified that CS-NAC/SF gels had well-defined elasticity. The optimized CS-NAC/SF gels exhibited jointly enhanced properties in terms of strength, stiffness and elasticity when compared to the gels resulted from either CS-NAC or SF. Examinations of dry CS-NAC/SF gels revealed that they were highly porous with well-interconnected pore features. Cell culture demonstrated that CS-NAC/SF gels supported the growth of chondrocytes while effectively maintaining their phenotype. Results suggest that these dual network gels have promising potential in cartilage repair.
Collapse
Affiliation(s)
- Jiaoyan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Bin Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Minhui Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jing Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
20
|
Cai Q, Qiao C, Ning J, Ding X, Wang H, Zhou Y. A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9177-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Xi Y, Miao X, Li Y, Lai K, Du X, Jiang Z, Wang Y, Yang G. BMP2-mimicking peptide modified with E7 coupling to calcined bovine bone enhanced bone regeneration associating with activation of the Runx2/SP7 signaling axis. J Biomed Mater Res B Appl Biomater 2019; 108:80-93. [PMID: 30912295 DOI: 10.1002/jbm.b.34368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Commercial bone substitute, such as calcined bovine bone (CBB), is currently extensively used as an alternative to autogenous bone. However, CBB lacks osteoinductivity and merely serves as a scaffold for native bone formation. To address this issue, we designed and prepared a heptaglutamate (E7)-modified BMP2-mimicking peptide (7E) and carried out a series of comprehensive physical characterizations and in vivo and in vitro studies to evaluate its role in the repair of cranial defects. The data elucidated that the amount of peptide anchoring to the bone graft materials was remarkably increased after modified with E7. Of note, 7E had a relatively stable and durable release, which promoted the osteogenic differentiation of rat derived bone marrow mesenchymal stem cells (BMSCs) and enhanced the bone regeneration of a rabbit calvarial defect by regulating the expression of the Runx2/SP7 axis. In summary, the composite biomaterials incorporating the E7-modified BMP2-mimicking peptide and CBB prepared in this study is a novel bone augmentation material with the merits of non-immunotoxicity, convenience, and low cost. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:80-93, 2020.
Collapse
Affiliation(s)
- Yue Xi
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoyan Miao
- Department of Science and Education, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yongzheng Li
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kaichen Lai
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xue Du
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol 2019; 121:38-54. [DOI: 10.1016/j.ijbiomac.2018.10.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
23
|
Jiao J, Huang J, Zhang Z. Hydrogels based on chitosan in tissue regeneration: How do they work? A mini review. J Appl Polym Sci 2018. [DOI: 10.1002/app.47235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiao Jiao
- Neuropsychiatric Institute; Medical School of Southeast University; Nanjing Jiangsu 210009 China
- Department of Neurology; Affiliated ZhongDa Hospital; Nanjing Jiangsu 210009 China
| | - Jinjian Huang
- Lab for Trauma and Surgical Infections, Department of Surgery; Jinling Hospital; Nanjing Jiangsu 210002 China
| | - Zhijun Zhang
- Neuropsychiatric Institute; Medical School of Southeast University; Nanjing Jiangsu 210009 China
- Department of Neurology; Affiliated ZhongDa Hospital; Nanjing Jiangsu 210009 China
| |
Collapse
|
24
|
Medeiros Borsagli FG, Carvalho IC, Mansur HS. Amino acid-grafted and N-acylated chitosan thiomers: Construction of 3D bio-scaffolds for potential cartilage repair applications. Int J Biol Macromol 2018; 114:270-282. [DOI: 10.1016/j.ijbiomac.2018.03.133] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 02/09/2023]
|
25
|
Damia C, Marchat D, Lemoine C, Douard N, Chaleix V, Sol V, Larochette N, Logeart-Avramoglou D, Brie J, Champion E. Functionalization of phosphocalcic bioceramics for bone repair applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:343-354. [PMID: 30573258 DOI: 10.1016/j.msec.2018.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 09/18/2017] [Accepted: 01/28/2018] [Indexed: 01/05/2023]
Abstract
This work is devoted to the processing of bone morphogenetic protein (BMP-2) functionalized silicate substituted hydroxyapatite (SiHA) ceramic spheres. The motivation behind it is to develop injectable hydrogel/bioceramic composites for bone reconstruction applications. SiHA microspheres were shaped by spray drying and thoroughly characterized. The silicate substitution was used to provide preferred chemical sites at the ceramic surface for the covalent immobilization of BMP-2. In order to control the density and the release of the immobilized BMP-2, its grafting was performed via ethoxysilanes and polyethylene glycols. A method based on Kaiser's test was used to quantify the free amino groups of grafted organosilanes available at the ceramic surface for BMP-2 immobilization. The SiHA surface modification was investigated by means of X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and thermogravimetry coupled with mass spectrometry. The BMP-2 bioactivity was assessed, in vitro, by measuring the luciferase expression of a stably transfected C3H10 cell line (C3H10-BRE/Luc cells). The results provided evidence that the BMP-2 grafted onto SiHA spheres remained bioactive.
Collapse
Affiliation(s)
- Chantal Damia
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France.
| | - David Marchat
- Ecole Nationale Supérieure des Mines, CIS-EMSE, INSERM U1059, 158 cours Fauriel, F-42023 Saint-Etienne cedex 2, France
| | - Charly Lemoine
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France
| | - Nathalie Douard
- Ecole Nationale Supérieure des Mines, CIS-EMSE, INSERM U1059, 158 cours Fauriel, F-42023 Saint-Etienne cedex 2, France
| | | | - Vincent Sol
- Univ. Limoges, LCSN EA 1069, F-87000 Limoges, France
| | - Nathanaël Larochette
- Laboratory of Bioengineering and Bioimaging for Osteo-Articular tissues, UMR 7052, CNRS, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Delphine Logeart-Avramoglou
- Laboratory of Bioengineering and Bioimaging for Osteo-Articular tissues, UMR 7052, CNRS, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Joël Brie
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France; CHU Limoges, Service de Chirurgie Maxillo-Faciale, F-87000, Limoges, France
| | - Eric Champion
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France
| |
Collapse
|
26
|
Liu X, Xie Y, Liu R, Zhang R, Yan H, Yang X, Huang Q, He W, Yu B, Feng Q, Mi S, Cai Q. A cyclo-trimer of acetonitrile combining fluorescent property with ability to induce osteogenesis and its potential as multifunctional biomaterial. Acta Biomater 2018; 65:163-173. [PMID: 29061377 DOI: 10.1016/j.actbio.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/17/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022]
Abstract
A biomaterial combining fluorescent property with ability to induce osteogenesis can serve as an ideal multifunctional scaffold in bone tissue engineering. However, the frequently used fluorescent agents can only serve as imaging probes. The polymer or oligomer with a conjugated system containing nitrogen atoms will fulfill these criteria. In this study, a cyclo-trimer of acetonitrile is synthesized using a facile method, which is proved to be 4-amino-2,6-dimethylpyrimidine. The cyclo-trimer of acetonitrile demonstrates strong intrinsic photoluminescence and has the potential for in vivo imaging. The cyclo-trimer of acetonitrile shows no toxicity both in vitro and in vivo. Moreover, the cyclo-trimer of acetonitrile significantly promotes the osteogenesis of SaOS-2 cells by improving alkaline phosphatase activity, collagen type I and osteocalcin expression, as well as expressions of osteoblastic genes, and enhances the matrix mineralization of rBMSCs. Thus, the cyclo-trimer of acetonitrile synthesized in present study illustrates the employment of this kind multifunctional biomaterial in bone tissue engineering and may offer great potential in biomedical applications where bioimaging and osteogenesis are both required. STATEMENT OF SIGNIFICANCE A conjugated cyclo-trimer of acetonitrile combining intrinsic fluorescent property with ability to induce osteogenesis was reported. Different from the traditional fluorescent dye or quantum dots, which are just "imaging agents", the cyclo-trimer of acetonitrile can serve as a multifunctional biomaterial and offer great potential in biomedical applications where bioimaging and osteogenesis are both required. To our best knowledge, the fluorescent property, especially fluorescent property in vivo and the ability of this molecule to induce osteogenesis have not been reported before. Our work illustrates the employment of this kind multifunctional biomaterial in bone tissue engineering and will highlight the importance of multifunctional biomaterial in biomedical applications.
Collapse
|
27
|
Kiene K, Porta F, Topacogullari B, Detampel P, Huwyler J. Self-assembling chitosan hydrogel: A drug-delivery device enabling the sustained release of proteins. J Appl Polym Sci 2017. [DOI: 10.1002/app.45638] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Klara Kiene
- Division of Pharmaceutical Technology University of Basel; Basel 4056 Switzerland
| | - Fabiola Porta
- Division of Pharmaceutical Technology University of Basel; Basel 4056 Switzerland
| | - Buket Topacogullari
- Division of Pharmaceutical Technology University of Basel; Basel 4056 Switzerland
| | - Pascal Detampel
- Division of Pharmaceutical Technology University of Basel; Basel 4056 Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology University of Basel; Basel 4056 Switzerland
| |
Collapse
|
28
|
Venkatesan J, Anil S, Kim SK, Shim MS. Chitosan as a vehicle for growth factor delivery: Various preparations and their applications in bone tissue regeneration. Int J Biol Macromol 2017; 104:1383-1397. [PMID: 28109812 DOI: 10.1016/j.ijbiomac.2017.01.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/05/2017] [Accepted: 01/15/2017] [Indexed: 02/04/2023]
Abstract
The replacement of conventional autografts and allografts by bone fragments constructed from alternate materials, cells, and molecules (growth factors, drugs, etc.) is an exciting prospect in the field of bone tissue engineering. Bone morphogenetic protein-2 (BMP-2) is a growth factor that has been extensively studied from this point of view. This review analyzes the relevance of chitosan and its derivatives and composites with various materials such as ceramics, heparin, silica, stem cells, titanium implants, etc., in terms of delivering BMP-2 for the purpose of bone regeneration. Chitosan offers the versatility to be modified into any shapes or sizes including conversion to nanoparticles, microspheres, nanofibers, porous scaffolds, and films. The results presented in this review clearly demonstrate that chitosan-based materials are biocompatible and have the potential to systematically and sustainably release BMP-2 where required. This release results in enhanced cell proliferation levels, enhancement of alkaline phosphatase activity, increased differentiation as well as increased mineralization under in vitro and in vivo conditions. This review also shines a spotlight on the currently developed chitosan-based products that are being used for BMP-2 delivery.
Collapse
Affiliation(s)
| | - Sukumaran Anil
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, 153, AIkharj, 11942, Riyadh, Saudi Arabia
| | - Se-Kwon Kim
- Institute for Life Science of Seogo (ILSS), Kolmar Korea Co, Seoul 137-876, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea.
| |
Collapse
|