1
|
Cao L, Van de Walle D, Hirmz H, Wynendaele E, Dewettinck K, Parakhonskiy BV, Skirtach AG. Food-based biomaterials: pH-responsive alginate/gellan gum/carboxymethyl cellulose hydrogel beads for lactoferrin delivery. BIOMATERIALS ADVANCES 2024; 165:213999. [PMID: 39213959 DOI: 10.1016/j.bioadv.2024.213999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/15/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The present study utilizes a combination of sodium alginate (Alg), gellan gum (GG), and sodium carboxymethyl cellulose (CMC) to fabricate a ternary composite hydrogel system to encapsulate and release lactoferrin (LF). Rheological properties as well as extensive microscopy and spectroscopy characterization are performed on these materials demonstrating that the physical properties of the resultant hydrogels, such as particle size, water content, gray value, and shrinkage rate were related to the concentration of Alg. In addition, most of these hydrogels were found to have reticulated shells and inner laminar structures assembled based on hydrogen bonding and electrostatic forces. Furthermore, the encapsulation efficiency of LF in hydrogels ranged from 78.3 ± 0.3 to 83.5 ± 0.2 %. Notably, a small amount of encapsulated LF was released from the hydrogel beads in an acid environment (up to 2.2 ± 0.3 % in 2 h), while a controlled release manner was found to take place in an alkaline environment. This phenomenon indicated the potential of these hydrogels as promising matrices for bioactive compound loading and adsorption. The release mechanism varied from Alg concentration suggesting the tunable and versatile properties of this ternary composite hydrogel system. Our findings identify the potential of Alg-GG-CMC hydrogel as a delivery system suitable for various applications in the food industry.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Davy Van de Walle
- Food Structure and Function Laboratory, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Hannah Hirmz
- Drug Quality & Registration, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality & Registration, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Laboratory, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Si S, Huang X, Wang Q, Manickam S, Zhao D, Liu Y. Enhancing refrigerated chicken breasts preservation: Novel composite hydrogels incorporated with antimicrobial peptides, bacterial cellulose, and polyvinyl alcohol. Int J Biol Macromol 2024; 281:136505. [PMID: 39395516 DOI: 10.1016/j.ijbiomac.2024.136505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Microbial contamination annually leads to substantial food resource loss. Effective food packaging can mitigate food contamination and waste, yet conventional materials such as plastics often lack bacteriostatic activity. This study aimed to synthesise FengycinA-M3@bacterial cellulose@polyvinyl alcohol composite hydrogels via dual cross-linking with hydrogen and borate bonding, with the goal of enhancing antibacterial properties and prolonging the preservation period of refrigerated chicken breast. The composite hydrogel was subjected to comprehensive characterisation for structural, mechanical, water absorption, slow peptide release, antimicrobial capacity, biocompatibility, and chicken breast freshness preservation. The results showed that the composite hydrogel had a porous network structure and excellent gel elasticity and biocompatibility. It was effective in inhibiting Staphylococcus aureus and Escherichia coli, and prolonged the storage time of frozen chicken breast for up to 12 days. These findings emphasise the potential of hydrogel food packaging to prolong storage periods and its suitability for food industry applications due to ease of manufacture.
Collapse
Affiliation(s)
- Sha Si
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo 315800, PR China
| | - Xiaoxia Huang
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo 315800, PR China
| | - Qi Wang
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo 315800, PR China
| | - Sivakuma Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam.
| | - Dan Zhao
- School of Marine Science, Ningbo University, Ningbo 315211, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Provincial Key Laboratory of Animal Protein Food Intensive Processing Technology, Ningbo University, Ningbo 315800, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China; Ningbo Key Laboratory of Detection, Control, and Early Warning of Key Hazardous Materials in Food, Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, PR China.
| |
Collapse
|
3
|
Singhmar R, Son Y, Jo YJ, Zo S, Min BK, Sood A, Han SS. Fabrication of alginate composite hydrogel encapsulated retinoic acid and nano Se doped biphasic CaP to augment in situ mineralization and osteoimmunomodulation for bone regeneration. Int J Biol Macromol 2024; 275:133597. [PMID: 38960232 DOI: 10.1016/j.ijbiomac.2024.133597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Bone tissue engineering endows alternates to support bone defects/injuries that are circumscribed to undergo orchestrated process of remodeling on its own. In this regard, hydrogels have emerged as a promising platform that can confront irregular defects and encourage in situ bone repair. METHODS In this study, we aimed to develop a new approach for bone tissue regeneration by developing an alginate based composite hydrogel incorporating selenium doped biphasic calcium phosphate nanoparticles, and retinoic acid. The fabricated hydrogel was physiochemically evaluated for morphological, bonding, and mechanical behavior. Additionally, the biological response of the fabricated hydrogel was evaluated on MC3T3-E1 pre-osteoblast cells. RESULTS The developed composite hydrogel confers excellent biocompatibility, and osteoconductivity owing to the presence of alginate, and biphasic calcium phosphate, while selenium presents pro osteogenic, antioxidative, and immunomodulatory properties. The hydrogels exhibited highly porous microstructure, superior mechanical attributes, with enhanced calcification, and biomineralization abilities in vitro. SIGNIFICANCE By combining the osteoconductive properties of biphasic calcium phosphate with multifaceted benefits of selenium and retinoic acid, the fabricated composite hydrogel offers a potential transformation in the landscape of bone defect treatment. This strategy could direct a versatile and effective approach to tackle complex bone injuries/defects and present potential for clinical translation.
Collapse
Affiliation(s)
- Ritu Singhmar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Yumi Son
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Yoo Jung Jo
- Core Research Support Centre for Natural Products and Medical Materials, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Sunmi Zo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Bong Ki Min
- Core Research Support Centre for Natural Products and Medical Materials, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Core Research Support Centre for Natural Products and Medical Materials, 280 Daehak-ro, Gyeongsan 38541, South Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
4
|
Liu S, Wang Y, Huang Y, Hu M, Lv X, Zhang Y, Dai H. Gelatin-nanocellulose stabilized emulsion-filled hydrogel beads loaded with curcumin: Preparation, encapsulation and release behavior. Int J Biol Macromol 2024:133551. [PMID: 38997845 DOI: 10.1016/j.ijbiomac.2024.133551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
In this study, the curcumin was firstly encapsulated in gelatin (GLT) and/or cellulose nanocrystals (CNC) stabilized emulsions, then further mixed with sodium alginate (SA) to form emulsion-filled hydrogel beads loaded with curcumin (Cur). The Cur-loaded emulsions showed a droplet size of 20.3-24.4 μm with a uniform distribution. Introducing CNC and/or SA increased the viscosity of emulsions accompanied by viscoelastic transition, while the modulus was reduced due to destruction of GLT gel. Cur was doubly immobilized in the hydrogel beads with >90 % of encapsulation efficiency. The results of simulated gastrointestinal tract experiments revealed that the beads possessed a good pH sensitivity and controlled release behavior to prolong the retention of Cur in the gastrointestinal tract. After 6 h of UV irradiation, the Cur-loaded emulsion-filled hydrogel beads showed a higher antioxidant activity than that of pure Cur, effectively delaying the photodegradation of Cur. In addition, the beads had better stability in aqueous and acidic environments, which was favorable for prolonging the release of Cur. These results suggest that the emulsion-filled hydrogel beads have great potential for the delivery of lipophilic bioactive molecules.
Collapse
Affiliation(s)
- Siyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China
| | - Mengtao Hu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
5
|
Zhang M, Li W, Yin L, Chen M, Zhang J, Li G, Zhao Y, Yang Y. Multifunctional double-network hydrogel with antibacterial and anti-inflammatory synergistic effects contributes to wound healing of bacterial infection. Int J Biol Macromol 2024; 271:132672. [PMID: 38810855 DOI: 10.1016/j.ijbiomac.2024.132672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Wound infection not only hinders the time sequence of tissue repair, but also may lead to serious complications. Multifunctional wound dressings with biocompatibility, excellent mechanical properties and antibacterial properties can promote wound healing during skin infection and reduce the use of antibiotics. In this study, a multifunctional dual-network antibacterial hydrogel was constructed based on the electrostatic interaction of two polyelectrolytes, hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and sodium alginate (SA). Attributing to the suitable physical crosslinking between HACC and SA, the hydrogel not only has good biocompatibility, mechanical property, but also has broad-spectrum antibacterial properties. In vivo results showed that the hydrogel could regulate M2 polarization, promote early vascular regeneration, and create a good microenvironment for wound healing. Therefore, this hydrogel is an effective multifunctional wound dressing. Consequently, we propose a novel hydrogel with combined elements to expedite the intricate repair of wound infection.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Wanhua Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Long Yin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Min Chen
- Medical School, Nantong University, Nantong 226001, PR China
| | - Jianye Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China; Medical School, Nantong University, Nantong 226001, PR China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China; Medical School, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
6
|
Banihashemian SA, Zamanlui Benisi S, Hosseinzadeh S, Shojaei S, Abbaszadeh HA. Chitosan/Hyaluronan and Alginate-Nanohydroxyapatite Biphasic Scaffold as a Promising Matrix for Osteoarthritis Disorders. Adv Pharm Bull 2024; 14:176-191. [PMID: 38585453 PMCID: PMC10997938 DOI: 10.34172/apb.2024.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/24/2023] [Accepted: 07/19/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Regenerative medicine offers new techniques for osteoarthritis (OA) disorders, especially while considering simultaneous chondral and subchondral regenerations. Methods Chitosan and hyaluronan were chemically bound as the chondral phase and the osteogenic layer was prepared with alginate and nano-hydroxyapatite (nHAP). These scaffolds were fixed by fibrin glue as a biphasic scaffold and then examined. Results Scanning electron microscopy (SEM) confirmed the porosity of 61.45±4.51 and 44.145±2.81 % for the subchondral and chondral layers, respectively. The composition analysis by energy dispersive X-ray (EDAX) indicated the various elements of both hydrogels. Also, their mechanical properties indicated that the highest modulus and resistance values corresponded to the biphasic hydrogel as 108.33±5.56 and 721.135±8.21 kPa, despite the same strain value as other groups. Their individual examinations demonstrated the proteoglycan synthesis of the chondral layer and also, the alkaline phosphatase (ALP) activity of the subchondral layer as 13.3±2.2 ng. After 21 days, the cells showed a mineralized surface and a polygonal phenotype, confirming their commitment to bone and cartilage tissues, respectively. Immunostaining of collagen I and II represented greater extracellular matrix (ECM) secretion in the biphasic composite group due to the paracrine effect of the two cell types on each other. Conclusion For the first time, the ability of this biphasic scaffold to regenerate both tissue types was evaluated and the results showed satisfactory cellular commitment to bone and cartilage tissues. Thus, this scaffold can be considered a new strategy for the preparation of implants for OA.
Collapse
Affiliation(s)
- Seyed Abdolvahab Banihashemian
- Advanced Medical Sciences and Technologies Department, Faculty of Biomedical Engineering, Central Tehran Branch Islamic Azad University, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Shojaei
- Islamic Azad University Central Tehran Branch, Department of Biomedical Engineering, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Rana AK, Gupta VK, Hart P, Thakur VK. Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications. ENVIRONMENTAL RESEARCH 2024; 243:117889. [PMID: 38086501 DOI: 10.1016/j.envres.2023.117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
In the last decade, both cellulose and alginate polysaccharides have been extensively utilized for the synthesis of biocompatible hydrogels because of their alluring characteristics like low cost, biodegradability, hydrophilicity, biodegradability, ease of availability and non-toxicity. The presence of abundant hydrophilic functional groups (like carboxyl and hydroxyl) on the surface of cellulose and alginate or their derivatives makes these materials promising candidates for the preparation of hydrogels with appealing structures and characteristics, leading to growing research in water treatment and biomedical fields. These two polysaccharides are typically blended together to improve hydrogels' desired qualities (mechanical strength, adsorption properties, cellulose/alginate yield). So, keeping in view their extensive applicability, in the present review article, recent advances in the development of cellulose/nanocellulose-alginate-based hydrogels and their relevance in water treatment (adsorption of dyes, heavy metals, etc.) and biomedical field (wound healing, tissue engineering, drug delivery) has been reviewed. Further, impact of other inorganic/organic additives in cellulose/nanocellulose-alginate-based hydrogels properties like contaminants adsorption, drug delivery, tissue engineering, etc., has also been studied. Moreover, the current difficulties and future prospects of nanocellulose-alginate-based hydrogels regarding their water purification and biomedical applications are also discussed at the end.
Collapse
Affiliation(s)
- Ashvinder K Rana
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK
| | - Phil Hart
- Renewable and Sustainable Energy Research Centre, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
8
|
Channab BE, El Idrissi A, Essamlali Y, Zahouily M. Nanocellulose: Structure, modification, biodegradation and applications in agriculture as slow/controlled release fertilizer, superabsorbent, and crop protection: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119928. [PMID: 38219662 DOI: 10.1016/j.jenvman.2023.119928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
This review investigates the potential of nanocellulose in agriculture, encompassing its structure, synthesis, modification, and applications. Our investigation of the characteristics of nanocellulose includes a comprehensive classification of its structure. Various mechanical, chemical and enzymatic synthesis techniques are evaluated, each offering distinct possibilities. The central role of surface functionalization is thoroughly examined. In particular, we are evaluating the conventional production of nanocellulose, thus contributing to the novelty. This review is a pioneering effort to comprehensively explore the use of nanocellulose in slow and controlled release fertilizers, revolutionizing nutrient management and improving crop productivity with reduced environmental impact. Additionally, our work uniquely integrates diverse applications of nanocellulose in agriculture, ranging from slow-release fertilizers, superabsorbent cellulose hydrogels for drought stress mitigation, and long-lasting crop protection via nanocellulose-based seed coatings. The study ends by identifying challenges and unexplored opportunities in the use of nanocellulose in agriculture. This review makes an innovative contribution by being the first comprehensive study to examine the multiple applications of nanocellulose in agriculture, including slow-release and controlled-release fertilizers.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco
| | - Younes Essamlali
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
9
|
Kolipaka T, Pandey G, Abraham N, Srinivasarao DA, Raghuvanshi RS, Rajinikanth PS, Tickoo V, Srivastava S. Stimuli-responsive polysaccharide-based smart hydrogels for diabetic wound healing: Design aspects, preparation methods and regulatory perspectives. Carbohydr Polym 2024; 324:121537. [PMID: 37985111 DOI: 10.1016/j.carbpol.2023.121537] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Diabetes adversely affects wound-healing responses, leading to the development of chronic infected wounds. Such wound microenvironment is characterized by hyperglycaemia, hyperinflammation, hypoxia, variable pH, upregulation of matrix metalloproteinases, oxidative stress, and bacterial colonization. These pathological conditions pose challenges for the effective wound healing. Therefore, there is a paradigm shift in diabetic wound care management wherein abnormal pathological conditions of the wound microenvironment is used as a trigger for controlling the drug release or to improve properties of wound dressings. Hydrogels composed of natural polysaccharides showed tremendous potential as wound dressings as well as stimuli-responsive materials due to their unique properties such as biocompatibility, biodegradability, hydrophilicity, porosity, stimuli-responsiveness etc. Hence, polysaccharide-based hydrogels have emerged as advanced healthcare materials for diabetic wounds. In this review, we presented important aspects for the design of hydrogel-based wound dressings with an emphasis on biocompatibility, biodegradability, entrapment of therapeutic agents, moisturizing ability, swelling, and mechanical properties. Further, various crosslinking methods that enable desirable properties and stimuli responsiveness to the hydrogels have been mentioned. Subsequently, state-of-the-art developments in mono- and multi- stimuli-responsive hydrogels have been presented along with the case studies. Finally regulatory perspectives, challenges for the clinical translation and future prospects have been discussed.
Collapse
Affiliation(s)
- Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vidya Tickoo
- Department of Endocrinology, Yashoda Hospitals, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
10
|
Suneetha M, Kim H, Han SS. Bone-like apatite formation in biocompatible phosphate-crosslinked bacterial cellulose-based hydrogels for bone tissue engineering applications. Int J Biol Macromol 2024; 256:128364. [PMID: 38000603 DOI: 10.1016/j.ijbiomac.2023.128364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Addressing major bone injuries is a challenge in bone regeneration, necessitating innovative 3D hydrogel-based therapeutic approaches to enhance scaffold properties for better bioactivity. Bacterial cellulose (BC) is an excellent scaffold for bone tissue engineering due to its biocompatibility, high porosity, substantial surface area, and remarkable mechanical strength. However, its practical application is limited due to a lack of inherent osteogenic activity and biomineralization ability. In this study, we synthesized bone-like apatite in biocompatible BC hydrogel by introducing phosphate groups. Hydrogels were prepared using fibrous BC, acrylamide (AM), and bis [2-methacryloyloxy] ethyl phosphate (BMEP) as a crosslinker through free radical polymerization (P-BC-PAM). P-BC-PAM hydrogels exhibited outstanding compressive mechanical properties, highly interconnected porous structures, good swelling, and biodegradable properties. BMEP content significantly influenced the physicochemical and biological properties of the hydrogels. Increasing BMEP content enhanced the fibrous structure, porosity from 85.1 % to 89.5 %, and compressive mechanical strength. The optimized hydrogel (2.0P-BC-PAM) displayed maximum compressive stress, toughness, and elastic modulus at 75 % strain: 221 ± 0.08 kPa, 24,674.2 ± 978 kPa, and 11 ± 0.47 kPa, respectively. P-BC-PAM hydrogels underwent biomineralization in simulated body fluid (SBF) for 14 days, forming bone-like apatite with a Ca/P ratio of 1.75, similar to hydroxyapatite. Confirmed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM), this suggests their potential as scaffolds for bone tissue engineering. MC3T3-E1 osteoblast cells effectively attached and proliferated on P-BC-PAM. In summary, this study contributes insights into developing phosphate-functionalized BC-based hydrogels with potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Hyeonjin Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
11
|
Chen M, Quan Q, You Z, Dong Y, Zhou X. Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties. Int J Biol Macromol 2023; 253:127396. [PMID: 37827399 DOI: 10.1016/j.ijbiomac.2023.127396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Bioelectronics based on high-performance conductive ionic hydrogels, which can create novel technological interfaces with the human body, have attracted significant interest from both academia and industry. However, it is still a challenge to fabricate hydrogel sensor with integration of good mechanical properties, fast self-healing ability and flexible strain sensitivity below 0 °C. In this paper, we present a moldable, self-healing and adhesive cellulose-based ionic conductive hydrogel with strain-sensitivity, which was prepared by forming dual-crosslinked networks using poly(vinyl alcohol) (PVA) with borax, calcium chloride (CaCl2), zinc chloride (ZnCl2) and 2,2,6,6-tetramethylpiperidine-1-oxyl oxidized cellulose nanofibril (TCNF). The hydrogel exhibited fast self-healing within 10 s, moderate modulus of 5.13 kPa, high elongation rate of 1500 % and excellent adhesion behavior on various substrates. Due to multiple hydrogen bonding and the presence of CaCl2 and ZnCl2, the hydrogel presented a reduced freezing point as low as -41.1 °C, which enabled its application as a low-temperature strain sensor. The proposed hydrogel provides a simple and facile method for fabricating multi-functional hydrogels that can be used as suitable strain sensors for applications such as wearable electronic sensor, soft robotics and electronic skins in a wide temperature range.
Collapse
Affiliation(s)
- Minzhi Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Fast-growing Tree & Agro-fibre Materials Engineering Center, Nanjing Forestry University, Nanjing 210037, China.
| | - Qi Quan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Fast-growing Tree & Agro-fibre Materials Engineering Center, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenping You
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Fast-growing Tree & Agro-fibre Materials Engineering Center, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Dong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Fast-growing Tree & Agro-fibre Materials Engineering Center, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyan Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Fast-growing Tree & Agro-fibre Materials Engineering Center, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Ghaedamini S, Karbasi S, Hashemibeni B, Honarvar A, Rabiei A. PCL/Agarose 3D-printed scaffold for tissue engineering applications: fabrication, characterization, and cellular activities. Res Pharm Sci 2023; 18:566-579. [PMID: 37842514 PMCID: PMC10568963 DOI: 10.4103/1735-5362.383711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 07/15/2023] [Indexed: 10/17/2023] Open
Abstract
Background and purpose Biomaterials, scaffold manufacturing, and design strategies with acceptable mechanical properties are the most critical challenges facing tissue engineering. Experimental approach In this study, polycaprolactone (PCL) scaffolds were fabricated through a novel three-dimensional (3D) printing method. The PCL scaffolds were then coated with 2% agarose (Ag) hydrogel. The 3D-printed PCL and PCL/Ag scaffolds were characterized for their mechanical properties, porosity, hydrophilicity, and water absorption. The construction and morphology of the printed scaffolds were evaluated via Fourier-Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The attachment and proliferation of L929 cells cultured on the scaffolds were investigated through MTT assay on the cell culture study upon the 1st, 3rd, and 7th days. Findings/Results The incorporation of Ag hydrogel with PCL insignificantly decreased the mechanical strength of the scaffold. The presence of Ag enhanced the hydrophilicity and water absorption of the scaffolds, which could positively influence their cell behavior compared to the PCL scaffolds. Regarding cell morphology, the cells on the PCL scaffolds had a more rounded shape and less cell spreading, representing poor cell attachment and cell-scaffold interaction due to the hydrophobic nature of PCL. Conversely, the cells on the PCL/Ag scaffolds were elongated with a spindle-shaped morphology indicating a positive cell-scaffold interaction. Conclusion and implications PCL/Ag scaffolds can be considered appropriate for tissue-engineering applications.
Collapse
Affiliation(s)
- Sho’leh Ghaedamini
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Honarvar
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abbasali Rabiei
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Malektaj H, Drozdov AD, deClaville Christiansen J. The Effect of Temperature on the Mechanical Properties of Alginate Gels in Water/Alcohol Solutions. Gels 2023; 9:579. [PMID: 37504458 PMCID: PMC10378887 DOI: 10.3390/gels9070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Alginate organohydrogels prepared in water/alcohol mixtures play an important role in electronic and superconductor applications in low-temperature environments. The study deals with the preparation of Ca-alginate organohydrogels and the analysis of their equilibrium swelling and mechanical properties at sub-zero temperatures. It is shown that the equilibrium degree of swelling at room temperature is noticeably affected by the concentration of co-solvents (methanol, ethanol, and 2-propanol) in the mixtures and the number of carbon atoms in the co-solvent molecules. Mechanical properties are studied in small-amplitude oscillatory tests. The data are fitted with a model that involves three material parameters. The influence of temperature is investigated in temperature-sweep oscillatory tests under a cooling-heating program, where a noticeable difference is observed between the storage and loss moduli under cooling and heating (the hysteresis curves). The hysteresis areas are affected by the cooling/heating rate and the number of carbon atoms in the co-solvents.
Collapse
Affiliation(s)
- Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220 Aalborg, Denmark
| | - Aleksey D Drozdov
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220 Aalborg, Denmark
| | | |
Collapse
|
14
|
Chai X, Tang J, Li Y, Cao Y, Chen X, Chen T, Zhang Z. Highly Stretchable and Stimulus-Free Self-Healing Hydrogels with Multiple Signal Detection Performance for Self-Powered Wearable Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18262-18271. [PMID: 37002947 DOI: 10.1021/acsami.2c21663] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A flexible wearable temperature sensor is a novel electronic sensor that can monitor real-time changes in human body temperature in a variety of application scenarios and is regarded as the "crown jewel" of information collection technology. Although flexible strain sensors based on hydrogels have excellent self-healing effects and mechanical durability, their widespread application is still limited by external power sources. Herein, a novel self-energizing hydrogel was developed by embellishing cellulose nanocrystals (CNC) with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The resultant thermoelectrically conductive CNC was then employed as a booster for poly(vinyl alcohol) (PVA)/borax hydrogels. The obtained hydrogels exhibit remarkable self-healing performance (92.57%) and exceptional stretchability (989.60%). Additionally, the hydrogel was capable of accurately and reliably identifying human motion. Most importantly, it exhibits excellent thermoelectric performance, capable of generating stable and reproducible voltages. It shows a large Seebeck coefficient of 1.31 mV k-1 at ambient temperatures. When subjected to a temperature difference of 25 K, the output voltage reaches 31.72 mV. CNC-PEDOT:PSS/PVA conductive hydrogel is multifunctional with self-healing, self-powering, and temperature sensing, which has the potential to be used for the preparation of intelligent wearable temperature-sensing devices.
Collapse
Affiliation(s)
- Xuyang Chai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Printing Industry Innovation Service Complex, Century Avenue, Longgang 325802, China
| | - Jinhong Tang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingzhan Li
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Printing Industry Innovation Service Complex, Century Avenue, Longgang 325802, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, China
| | - Yiwen Cao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Printing Industry Innovation Service Complex, Century Avenue, Longgang 325802, China
| | - Xinyi Chen
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Printing Industry Innovation Service Complex, Century Avenue, Longgang 325802, China
| | - Tianying Chen
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
15
|
Wang C, Feng X, Shang S, Liu H, Song Z, Zhang H. Lignin/sodium alginate hydrogel for efficient removal of methylene blue. Int J Biol Macromol 2023; 237:124200. [PMID: 36972829 DOI: 10.1016/j.ijbiomac.2023.124200] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
In this work, a class of bio-based hydrogels (LN-NH-SA hydrogel) were prepared from aminated lignin and sodium alginate. The physical and chemical properties of the LN-NH-SA hydrogel were fully characterized using field emission scanning electron microscopy, thermogravimetric analysis, fourier transform infrared spectroscopy, N2 adsorption-desorption isotherms, and other techniques. LN-NH-SA hydrogels were tested for the adsorption of dyes (methyl orange and methylene blue). The LN-NH-SA@3 hydrogel showed better adsorption efficiency for MB with a maximum adsorption capacity of 388.81 mg·g-1, a bio-based adsorbent with a high adsorption capacity. The adsorption process followed the pseudo-second-order model and fitted to the Freundlich isotherm equation. More importantly, LN-NH-SA@3 hydrogel maintained 87.64 % adsorption efficiency after 5 cycles. Overall, the proposed hydrogel with environmentally friendly and low cost is promising for the absorption of dye contamination.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, China; National Engineering Lab. for Biomass Chemical Utilization, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China; Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| |
Collapse
|
16
|
Huang X, Lee CS, Zhang K, Alhamzani AG, Hsiao BS. Sodium Alginate-Aldehyde Cellulose Nanocrystal Composite Hydrogel for Doxycycline and Other Tetracycline Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1161. [PMID: 37049257 PMCID: PMC10096764 DOI: 10.3390/nano13071161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
A novel composite hydrogel bead composed of sodium alginate (SA) and aldehyde cellulose nanocrystal (DCNC) was developed for antibiotic remediation through a one-step cross-linking process in a calcium chloride bath. Structural and physical properties of the hydrogel bead, with varying composition ratios, were analyzed using techniques such as BET analysis, SEM imaging, tensile testing, and rheology measurement. The optimal composition ratio was found to be 40% (SA) and 60% (DCNC) by weight. The performance of the SA-DCNC hydrogel bead for antibiotic remediation was evaluated using doxycycline (DOXY) and three other tetracyclines in both single- and multidrug systems, yielding a maximum adsorption capacity of 421.5 mg g-1 at pH 7 and 649.9 mg g-1 at pH 11 for DOXY. The adsorption mechanisms were investigated through adsorption studies focusing on the effects of contact time, pH, concentration, and competitive contaminants, along with X-ray photoelectron spectroscopy analysis of samples. The adsorption of DOXY was confirmed to be the synergetic effects of chemical reaction, electrostatic interaction, hydrogen bonding, and pore diffusion/surface deposition. The SA-DCNC composite hydrogel demonstrated high reusability, with more than 80% of its adsorption efficiency remaining after five cycles of the adsorption-desorption test. The SA-DCNC composite hydrogel bead could be a promising biomaterial for future antibiotic remediation applications in both pilot and industrial scales because of its high adsorption efficiency and ease of recycling.
Collapse
Affiliation(s)
- Xiangyu Huang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Cheng-Shiuan Lee
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, USA
- Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan
| | - Katherine Zhang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | | | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
17
|
Zhou X, Luo G, Wang H, Xu D, Zeng K, Wu X, Ren D. Development of a novel bamboo cellulose nanofibrils hybrid aerogel with high thermal-insulating performance for fresh strawberry cold-chain logistics. Int J Biol Macromol 2023; 229:452-462. [PMID: 36596373 DOI: 10.1016/j.ijbiomac.2022.12.316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Affiliation(s)
- Xiaowan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guorong Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hankun Wang
- Institute of New Bamboo and Rattan Based Materials, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Dan Xu
- College of Food Science, Southwest University, Chongqing 400715, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Xiyu Wu
- College of Food Science, Southwest University, Chongqing 400715, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Dan Ren
- College of Food Science, Southwest University, Chongqing 400715, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
18
|
N’Gatta KM, Belaid H, El Hayek J, Assanvo EF, Kajdan M, Masquelez N, Boa D, Cavaillès V, Bechelany M, Salameh C. 3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering. Sci Rep 2022; 12:21244. [PMID: 36482172 PMCID: PMC9732347 DOI: 10.1038/s41598-022-25652-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Cellulose nanocrystals (CNC) are drawing increasing attention in the fields of biomedicine and healthcare owing to their durability, biocompatibility, biodegradability and excellent mechanical properties. Herein, we fabricated using fused deposition modelling technology 3D composite scaffolds from polylactic acid (PLA) and CNC extracted from Ficus thonningii. Scanning electron microscopy revealed that the printed scaffolds exhibit interconnected pores with an estimated average pore size of approximately 400 µm. Incorporating 3% (w/w) of CNC into the composite improved PLA mechanical properties (Young's modulus increased by ~ 30%) and wettability (water contact angle decreased by ~ 17%). The mineralization process of printed scaffolds using simulated body fluid was validated and nucleation of hydroxyapatite confirmed. Additionally, cytocompatibility tests revealed that PLA and CNC-based PLA scaffolds are non-toxic and compatible with bone cells. Our design, based on rapid 3D printing of PLA/CNC composites, combines the ability to control the architecture and provide improved mechanical and biological properties of the scaffolds, which opens perspectives for applications in bone tissue engineering and in regenerative medicine.
Collapse
Affiliation(s)
- Kanga Marius N’Gatta
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France ,grid.452889.a0000 0004 0450 4820Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
| | - Habib Belaid
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France ,grid.121334.60000 0001 2097 0141IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, 34298 Montpellier, France
| | - Joelle El Hayek
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Edja Florentin Assanvo
- grid.452889.a0000 0004 0450 4820Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
| | - Marilyn Kajdan
- grid.121334.60000 0001 2097 0141IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, 34298 Montpellier, France
| | - Nathalie Masquelez
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - David Boa
- grid.452889.a0000 0004 0450 4820Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
| | - Vincent Cavaillès
- grid.121334.60000 0001 2097 0141IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, 34298 Montpellier, France
| | - Mikhael Bechelany
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Chrystelle Salameh
- grid.4444.00000 0001 2112 9282Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| |
Collapse
|
19
|
Deng Z, Wu Z, Tan X, Deng F, Chen Y, Chen Y, Zhang H. Preparation, Characterization and Antibacterial Property Analysis of Cellulose Nanocrystals (CNC) and Chitosan Nanoparticles Fine-Tuned Starch Film. Molecules 2022; 27:molecules27238542. [PMID: 36500634 PMCID: PMC9739116 DOI: 10.3390/molecules27238542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
To improve the mechanical and antibacterial properties of traditional starch-based film, herein, cellulose nanocrystals (CNCs) and chitosan nanoparticles (CS NPs) were introduced to potato starch (PS, film-forming matrix) for the preparation of nanocomposite film without incorporation of additional antibacterial agents. CNCs with varied concentrations were added to PS and CS NPs composite system to evaluate the optimal film performance. The results showed that tensile strength (TS) of nanocomposite film with 0, 0.01, 0.05, and 0.1% (w/w) CNCs incorporation were 41, 46, 47 and 41 MPa, respectively. The elongation at break (EAB) reached 12.5, 10.2, 7.1 and 13.3%, respectively. Due to the reinforcing effect of CNCs, surface morphology and structural properties of nanocomposite film were altered. TGA analysis confirmed the existence of hydrogen bondings and electrostatic attractions between components in the film-forming matrix. The prepared nanocomposite films showed good antibacterial properties against both E. coli and S. aureus. The nanocomposite film, consist of three most abundant biodegradable polymers, could potentially serve as antibacterial packaging films with strong mechanical properties for food and allied industries.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiao Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fangkun Deng
- Jiangxi New Dragon Biotechnology Co., Ltd., Yichun 336000, China
| | - Yaobang Chen
- Sibang Environmental Protection Technology Co., Ltd., Yichun 336000, China
| | - Yanping Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongcai Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel./Fax: +86-021-3420-6567
| |
Collapse
|
20
|
Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration. Int J Mol Sci 2022; 23:ijms232214158. [PMID: 36430637 PMCID: PMC9698198 DOI: 10.3390/ijms232214158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.
Collapse
|
21
|
Brondi M, Florencio C, Mattoso L, Ribeiro C, Farinas C. Encapsulation of Trichoderma harzianum with nanocellulose/carboxymethyl cellulose nanocomposite. Carbohydr Polym 2022; 295:119876. [DOI: 10.1016/j.carbpol.2022.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
|
22
|
Mirzaali MJ, Moosabeiki V, Rajaai SM, Zhou J, Zadpoor AA. Additive Manufacturing of Biomaterials-Design Principles and Their Implementation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5457. [PMID: 35955393 PMCID: PMC9369548 DOI: 10.3390/ma15155457] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 05/04/2023]
Abstract
Additive manufacturing (AM, also known as 3D printing) is an advanced manufacturing technique that has enabled progress in the design and fabrication of customised or patient-specific (meta-)biomaterials and biomedical devices (e.g., implants, prosthetics, and orthotics) with complex internal microstructures and tuneable properties. In the past few decades, several design guidelines have been proposed for creating porous lattice structures, particularly for biomedical applications. Meanwhile, the capabilities of AM to fabricate a wide range of biomaterials, including metals and their alloys, polymers, and ceramics, have been exploited, offering unprecedented benefits to medical professionals and patients alike. In this review article, we provide an overview of the design principles that have been developed and used for the AM of biomaterials as well as those dealing with three major categories of biomaterials, i.e., metals (and their alloys), polymers, and ceramics. The design strategies can be categorised as: library-based design, topology optimisation, bio-inspired design, and meta-biomaterials. Recent developments related to the biomedical applications and fabrication methods of AM aimed at enhancing the quality of final 3D-printed biomaterials and improving their physical, mechanical, and biological characteristics are also highlighted. Finally, examples of 3D-printed biomaterials with tuned properties and functionalities are presented.
Collapse
Affiliation(s)
- Mohammad J. Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Li C, Wang H, Yan G, Dong W, Chu Z, Wang H, Chang Y, Ling Y, Zhang Y. Initial carbon release characteristics, mechanisms and denitrification performance of a novel slow release carbon source. J Environ Sci (China) 2022; 118:32-45. [PMID: 35305771 DOI: 10.1016/j.jes.2021.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 06/14/2023]
Abstract
External carbon source addition is one of the effective methods for the treatment of wastewater with low carbon to nitrogen ratio (C/N). Compared with fast-release liquid carbon sources, slow-release solid carbon sources are more suitable for the denitrification process. A novel slow-release solid carbon source (corncob-polyvinyl alcohol sodium alginate- poly-caprolactone, i.e. CPSP) was prepared using corn cob (CC) and poly-caprolactone with polyvinyl alcohol sodium alginate as hybrid scaffold. The physical properties and carbon release characteristics of CPSP and three other carbon sources were compared. CPSP had stable framework and good carbon release performance, which followed the second order release equation. The formic acid, acetic acid, propionic acid and butyric acid released from CPSP accounted for 8.27% ± 1.66 %, 56.48% ± 3.71 %, 18.46% ± 2.69% and 16.79% ± 3.02% of the total released acids respectively. The start-up period of CPSP was shorter than that of the other carbon sources in denitrification experiment, and no COD pollution was observed in the start-up phase (25-72 h) and stable phase (73-240 hr). The composition and structure of the dissolved organic compounds released by CPSP and other carbon sources were analyzed by UV-Vis absorption spectroscopy and three-dimensional fluorescence spectroscopy, which indicated that CPSP was more suitable for denitrification than the other studied carbon sources.
Collapse
Affiliation(s)
- Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
24
|
Santillo C, Wang Y, Buonocore GG, Gentile G, Verdolotti L, Kaciulis S, Xia H, Lavorgna M. Hybrid Graphenene Oxide/Cellulose Nanofillers to Enhance Mechanical and Barrier Properties of Chitosan-Based Composites. Front Chem 2022; 10:926364. [PMID: 35958229 PMCID: PMC9361047 DOI: 10.3389/fchem.2022.926364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Chitosan-based hybrid nanocomposites, containing cellulose nanocrystals (CNCs), graphene oxide (GO), and borate as crosslinking agents, were successfully prepared by solution-casting technique. The synergistic effect of the two fillers, and the role of the cross-linker, in enhancing the structural and functional properties of the chitosan polymer, was investigated. XPS results confirm the chemical interaction between borate ions and hydroxyl groups of chitosan, GO, and CNCs. The morphological characterization shows that the GO sheets are oriented along the casting surface, whereas the CNC particles are homogenously distributed in the sample. Results of tensile tests reveal that the presence of graphene oxide enhances the elastic modulus, tensile strength, elongation at break, and toughness of chitosan, while cellulose and borate induce an increase in the elastic modulus and stress at the yield point. In particular, the borate-crosslinked chitosan-based sample containing 0.5 wt% of GO and 0.5 wt% of CNCs shows an elongation at a break value of 30.2% and a toughness value of 988 J*m−3 which are improved by 124% and 216%, respectively, compared with the pristine chitosan. Moreover, the water permeability results show that the presence of graphene oxide slightly increases the water barrier properties, whereas the borate and cellulose nanocrystals significantly reduce the water vapor permeability of the polymer by about 50%. Thus, by modulating the content of the two reinforcing fillers, it is possible to obtain chitosan-based nanocomposites with enhanced mechanical and water barrier properties which can be potentially used in various applications such as food and electronic packaging.
Collapse
Affiliation(s)
- C. Santillo
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Yinglei Wang
- Xi’an Modern Chemistry Research Institute, Xi’an, China
| | - G. G. Buonocore
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
- *Correspondence: G. G. Buonocore,
| | - G. Gentile
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - L. Verdolotti
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, National Research Council, Rome, Italy
| | - H. Xia
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - M. Lavorgna
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
- Institute of Polymers, Composites and Biomaterials UOS Lecco, National Research Council, Lecco, Italy
| |
Collapse
|
25
|
Zhou Q, Fang C, Li X, You L, Qi Y, Liu M, Xu Y, He Q, Lu S, Zhou Y. Room‐Temperature Green Recyclable Epoxy Composites with Enhanced Mechanical and Thermal Properties Cross‐Linked via B−O−C Bonds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Quan Zhou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Chaoyu Fang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xin Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Liwen You
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yiqing Qi
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Min Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yuan Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qiuyan He
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shiting Lu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yutong Zhou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
26
|
De la Cruz LG, Abt T, León N, Wang L, Sánchez-Soto M. Ice-Template Crosslinked PVA Aerogels Modified with Tannic Acid and Sodium Alginate. Gels 2022; 8:gels8070419. [PMID: 35877504 PMCID: PMC9321210 DOI: 10.3390/gels8070419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 12/24/2022] Open
Abstract
With the commitment to reducing environmental impact, bio-based and biodegradable aerogels may be one approach when looking for greener solutions with similar attributes to current foam-like materials. This study aimed to enhance the mechanical, thermal, and flame-retardant behavior of poly(vinyl alcohol) (PVA) aerogels by adding sodium alginate (SA) and tannic acid (TA). Aerogels were obtained by freeze-drying and post-ion crosslinking through calcium chloride (CaCl2) and boric acid (H3BO3) solutions. The incorporation of TA and SA enhanced the PVA aerogel’s mechanical properties, as shown by their high compressive specific moduli, reaching up to a six-fold increase after crosslinking and drying. The PVA/TA/SA aerogels presented a thermal conductivity of 0.043 to 0.046 W/m·K, while crosslinked ones showed higher values (0.049 to 0.060 W/m·K). Under TGA pyrolytic conditions, char layer formation reduced the thermal degradation rate of samples. After crosslinking, a seven-fold decrease in the thermal degradation rate was observed, confirming the high thermal stability of the formed foams. Regarding flammability, aerogels were tested through cone calorimetry. PVA/TA/SA aerogels showed a significant drop in the main parameters, such as the heat release rate (HRR) and the fire growth (FIGRA). The ion crosslinking resulted in a further reduction, confirming the improvement in the fire resistance of the modified compositions.
Collapse
Affiliation(s)
- Lucía G. De la Cruz
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
| | - Tobias Abt
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
| | - Noel León
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
| | - Liang Wang
- Key Laboratory of Advanced Textiles Composites of Ministry of Education, Tiangong University, Binshui West Road 399, Xiqing District, Tianjin 300387, China;
| | - Miguel Sánchez-Soto
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
- Correspondence: ; Tel.:+34-937398140
| |
Collapse
|
27
|
Al-Shemy MT, Al-Sayed A, Dacrory S. Fabrication of sodium alginate/graphene oxide/nanocrystalline cellulose scaffold for methylene blue adsorption: Kinetics and thermodynamics study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Doustdar F, Olad A, Ghorbani M. Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold. Int J Biol Macromol 2022; 208:912-924. [PMID: 35367272 DOI: 10.1016/j.ijbiomac.2022.03.193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022]
Abstract
The effect of glutaraldehyde and calcium cations as covalent and ionic crosslinkers was investigated on the main characteristics of scaffolds based on chitosan and cellulose nanocrystals. Therefore, four different scaffolds based on chitosan/cellulose nanocrystals with different crosslinking methods were fabricated using the freeze-drying method for potential use in bone tissue engineering. The structural and chemical features of prepared scaffolds were studied by the FTIR technique. FESEM images revealed that all scaffold samples are porous three-dimensional networks in which the pores are connected. TGA analysis showed that the thermal stability of scaffolds based on chitosan/cellulose nanocrystals has not been changed significantly by using different crosslinking methods. The chitosan/cellulose nanocrystals scaffold crosslinked by glutaraldehyde represented the highest compressive strength and the uncrosslinked scaffold showed the highest swelling ratio in comparison to the other scaffolds. The fastest degradation rate belonged to the scaffold crosslinked by calcium cations. FESEM images and EDX analysis confirmed that fabricated scaffolds have good biomineralization ability. The cell viability and cell attachment results indicated that all four scaffolds support cell proliferation and cell adhesion. However, the viability of NIH3T3 fibroblast cells in the presence of glutaraldehyde-containing scaffolds was lower than that of other scaffolds.
Collapse
Affiliation(s)
- Fatemeh Doustdar
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Bakhtkhosh Hagh H, Unsworth LD, Olad A. Evaluating the effect of graphene oxide PEGylation on the properties of chitosan-graphene oxide nanocomposite scaffold. J Biomed Mater Res B Appl Biomater 2022; 110:2353-2368. [PMID: 35543538 DOI: 10.1002/jbm.b.35082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022]
Abstract
In this study, graphene oxide (GO) was functionalized with polyethylene glycol (PEG) to understand the effect of PEGlayted GO on properties of chitosan-based nanocomposite scaffold. GO was synthesized according to modified Hummer's method and covalently linked to polymeric chains of PEG to produce polyethylene glycolated GO (PGO). Successful preparation of GO and PGO was confirmed by FT-IR and Raman techniques, where the chemical bonding of PEG and GO nanosheets were concluded based on PGOs' lower zeta potential compared to GO. Nanocomposite scaffolds were prepared by adding equal amounts of GO and PGO into 2% (w/v) chitosan (Cs) solutions. The highly porous scaffolds were developed by lyophilization of solutions. Incorporation of GO and PGO into chitosan scaffold network resulted in uniform and spherical pores. Modified samples offered higher porosity and density, indicating adequate scaffold structure. Improvements in the physical properties of prepared chitosan scaffolds were concluded through higher water absorption and retention values. Compressive strength measurement showed 6.33 and 5.5 times improvement respectively for Cs-GO and Cs-PGO samples compared to Cs scaffold. The Cs-GO scaffolds showed minimum susceptibility toward enzymatic degradation and higher degrees of protein adsorption (26% and 23% improvement in value of adsorbed protein respectively for Cs-GO and Cs-PGO compared to Cs scaffold) and biomineral formation on scaffold surface. Also, Cs-PGO sample showed the highest degree of cell viability and lower hemolysis than both Cs and Cs-GO scaffolds. Investigations showed that cell infiltration into scaffold porous structure was more prominent in Cs-PGO scaffolds than in Cs and Cs-GO scaffolds.
Collapse
Affiliation(s)
- Haleh Bakhtkhosh Hagh
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
30
|
Study on the mechanism and performance of polymer gels by
TE
and
PVA
chemical cross‐linking. J Appl Polym Sci 2022. [DOI: 10.1002/app.52043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Doustdar F, Olad A, Ghorbani M. Development of a novel reinforced scaffold based on chitosan/cellulose nanocrystals/halloysite nanotubes for curcumin delivery. Carbohydr Polym 2022; 282:119127. [DOI: 10.1016/j.carbpol.2022.119127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
|
32
|
Wang Y, Su J, Ali A, Chang Q, Bai Y, Gao Z. Enhanced nitrate, manganese, and phenol removal by polyvinyl alcohol/sodium alginate with biochar gel beads immobilized bioreactor: Performance, mechanism, and bacterial diversity. BIORESOURCE TECHNOLOGY 2022; 348:126818. [PMID: 35139430 DOI: 10.1016/j.biortech.2022.126818] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 05/17/2023]
Abstract
Water pollutants, such as nitrate, heavy metals, and organics have attracted attention due to their harms to environmental and biological health. A novel polyvinyl alcohol/sodium alginate with biochar (PVA/SA@biochar) gel beads immobilized bioreactor was established to remove nitrate, manganese, and phenol. The optimum conditions for preparing gel beads were studied by response surface methodology (RSM). Notably, the removal efficiencies of nitrate, Mn(II), and phenol were 94.64, 72.74, and 93.97% at C/N of 2.0; the concentrations of Mn(II) and phenol were 20 and 1 mg L-1, respectively. Moreover, addition of different concentrations of phenol significantly affected the components of dissolved organic matter, bacterial activity, and bioreactor performance. The biological manganese oxide (BMO) with three-dimensional petal-type structure produced during Mn(II) oxidation showed excellent adsorption capacity. The removal of phenol relied on a combination of biological action and adsorption processes. High-throughput analysis showed that Zoogloea sp. was the predominant bacterial group.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
33
|
Facile adjustment on cellulose nanocrystals composite films with glycerol and benzyl acrylate copolymer for enhanced UV shielding property. Int J Biol Macromol 2022; 204:41-49. [PMID: 35122797 DOI: 10.1016/j.ijbiomac.2022.01.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022]
Abstract
In the present work, cellulose nanocrystals (CNCs) composite films with suitable applicable capabilities were prepared by facilely incorporating glycerol (Gly) and poly(benzyl acrylate) (PBA). Chemical and morphological variations during the fabrication of the films were systematically characterized. The properties of modified CNCs composite films including UV blocking ability, mechanical strength and thermal properties were characterized to assess their applicable potentials. As a result, the composite films have good UV shielding property in UVC (220-280 nm) region and UVB (280-320 nm) region. The shielding performance of the modified film in the ultraviolet absorption region reached 92.77% to 95.49% respectively, without damaging the original chiral nematic structure of the films. Along with the modification, BACNC film improved the mechanical properties, presenting the tensile strength 16 times higher compared to pure CNCs film. The nanocomposite films proposed in this work showed promising potentials in broad fields, such as food preservation, medical protection, and surface coating applications.
Collapse
|
34
|
Kumar A, Sood A, Han SS. Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydr Polym 2022; 277:118881. [PMID: 34893284 DOI: 10.1016/j.carbpol.2021.118881] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Advances in polymers have made significant contribution in diverse application oriented fields. Multidisciplinary applicability of polymers generates a range of strategies, which is pertinent in a wide range of fields. Blends of natural and synthetic polymers have spawned a different class of materials with synergistic effects. Specifically, poly (vinyl alcohol) (PVA) and alginate (AG) blends (PVAG) have demonstrated some promising results in almost every segment, ranging from biomedical to industrial sector. Combination of PVAG with other materials, immobilization with specific moieties and physical and chemical crosslinking could result in amendments in the structure and properties of the PVAG matrices. Here, we provide an overview of the recent developments in designing PVAG based matrix and complexes with their structural and functional properties. The article also provides a comprehensive outline on the applicability of PVAG matrix in wastewater treatment, biomedical, photocatalysis, food packaging, and fuel cells and sheds light on the challenges that need to be addressed. Finally, the review elaborates the future prospective of PVAG matrices in other unexplored fields like aircraft industry, nuclear science and space exploration.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
35
|
Narayanan KB, Han SS. Peptide ligases: A Novel and potential enzyme toolbox for catalytic cross-linking of protein/peptide-based biomaterial scaffolds for tissue engineering. Enzyme Microb Technol 2022; 155:109990. [PMID: 35030384 DOI: 10.1016/j.enzmictec.2022.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
The fabrication of novel biomaterial scaffolds with improved biological interactions and mechanical properties is an important aspect of tissue engineering. The three-dimensional (3D) protein/peptide-based polymeric scaffolds are promising in vitro biomaterials to replicate the in vivo microenvironment mimicking the extracellular matrix (ECM) for cell differentiation and subsequent tissue formation. Among different strategies in the fabrication of scaffolds, bioorthogonal enzymatic reactions for rapid in situ zero-length cross-linking are advantageous. Peptide ligases as a novel toolbox have the potentiality to enzymatically cross-link natural/synthetic protein/peptide-based polymeric chains for a wide range of biomedical applications. Although natural peptide ligases, such as sortases and butelase 1 are known cysteine proteases with ligase activity, some serine proteases, such as trypsin and subtilisin, are protein engineered to form trypsiligase and subtiligase, respectively, which exhibited efficient ligase activity by linking proteins/peptides with a great variety of molecules. Peptide ligase activity by these engineered proteases is more efficient than the hydrolysis of peptide bonds (peptidase activity). Peptide esters form acyl-enzyme intermediate with serine/cysteine residues of these proteases, with subsequent aminolysis forming covalent peptide bond with N-terminal residue of another polymeric chain. In addition, peptide ligases have the potential to conjugate with cell-adhesive ECM proteins or motifs and growth factors to (bio)polymeric networks to enhance cell attachment, growth, and differentiation. Here, we review the potential and limitations of natural and engineered peptide ligases as an enzyme toolbox with a focus on sortases (classes A-D), butelase 1, trypsiligase, and subtilisin variants, and the mechanisms for their zero-length cross-linking of (bio)polymeric scaffolds for various tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
36
|
Mali P, Sherje AP. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr Polym 2022; 275:118668. [PMID: 34742407 DOI: 10.1016/j.carbpol.2021.118668] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022]
Abstract
The present review explores the recent developments of cellulose nanocrystals, a class of captivating nanomaterials in variety of applications. CNCs are made by acid hydrolysing cellulosic materials like wood, cotton, tunicate, flax fibers by sonochemistry. It has many desirable properties, including a high tensile strength, wide surface area, stiffness, exceptional colloidal stability, and the ability to be modified. CNCs are colloidally stable, hydrophilic, and rigid rod-shaped bio-based nanomaterials in the form of rigid rods with high strength and surface area that has a diverse set of applications and properties. The intriguing features emerging from numerous fibers studies, such as renewable character and biodegradability, piqued the curiosity of many researchers who worked on lowering the size of these fibers. Physicochemical properties such as rheological, mechanical, thermal, lipid crystalline, swelling capacity, microstructural properties result in affecting surface-area to volume ratio and crystallinity of cellulose nanocrystals. The present article highlights the fundamentals of cellulose nanocrystals such as sources, isolation, fabrication, properties and surface modification with an emphasis on plethora of biomedical applications. Selected nanocellulose studies with significant findings on cellular labelling and bioimaging, tissue engineering, biosensors, gene delivery, anti-viral property, anti-bacterial property, ocular delivery, modified drug release, anti-cancer activity and enzyme immobilization are emphasized.
Collapse
Affiliation(s)
- Prajakta Mali
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Atul P Sherje
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
37
|
Chen Z, Li Z, Lan P, Xu H, Lin N. Hydrophobic and thermal-insulating aerogels based on rigid cellulose nanocrystal and elastic rubber. Carbohydr Polym 2022; 275:118708. [PMID: 34742433 DOI: 10.1016/j.carbpol.2021.118708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/02/2022]
Abstract
Inspired from the ancient China philosophy of "coupling hardness with softness", we attempted the combination of rigid cellulose nanocrystals (CNC) and elastic rubbers to solve the limitations of structural brittleness and water sensitivity of CNC-based aerogels. Three rubber chains with the different chemical structures (silicon rubber, 1,2-polybutadiene, styreneic block copolymer) were covalently bonded on the CNC porous skeleton based on thiol-ene click chemistry, to fabricate the CNC/rubber composite aerogels. With the introduction of moderate loading levels of rubber, the composites aerogels exhibited low density and shrinkage, high porosity and specific surface area and improved mechanical performance. Furthermore, the presence of rubber components completely changed the hydrophilic nature of cellulose skeleton as the hydrophobic aerogels, contributing the superior solvents resistance and self-cleaning property. With their advantages on mechanical stability, heat insulation and hydrophobicity, the fabricated aerogels in this study exhibited the high added values in various potential applications.
Collapse
Affiliation(s)
- Ziyang Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zikang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ping Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Hui Xu
- Department of Engineering Technology, Huzhou College, Huzhou 313000, PR China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, PR China.
| |
Collapse
|
38
|
Liu Y, Qin X, Rogachev A, Rogachev A, Kontsevaya I, Pyzh A, Jiang X, Yarmolenko V, Rudenkov A, Yarmolenko M. Structure and properties of microcellulose-based coatings deposited via a low-energy electron beam and their effect on the properties of onto wound dressings. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
39
|
Stricher M, Sarde CO, Guénin E, Egles C, Delbecq F. Cellulosic/Polyvinyl Alcohol Composite Hydrogel: Synthesis, Characterization and Applications in Tissue Engineering. Polymers (Basel) 2021; 13:3598. [PMID: 34685357 PMCID: PMC8539384 DOI: 10.3390/polym13203598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/29/2022] Open
Abstract
The biomedical field still requires composite materials for medical devices and tissue engineering model design. As part of the pursuit of non-animal and non-proteic scaffolds, we propose here a cellulose-based material. In this study, 9%, 18% and 36% dialdehyde-functionalized microcrystalline celluloses (DAC) were synthesized by sodium periodate oxidation. The latter was subsequently coupled to PVA at ratios 1:2, 1:1 and 2:1 by dissolving in N-methyl pyrrolidone and lithium chloride. Moulding and successive rehydration in ethanol and water baths formed soft hydrogels. While oxidation effectiveness was confirmed by dialdehyde content determination for all DAC, we observed increasing hydrolysis associated with particle fragmentation. Imaging, FTIR and XDR analysis highlighted an intertwined DAC/PVA network mainly supported by electrostatic interactions, hemiacetal and acetal linkage. To meet tissue engineering requirements, an interconnected porosity was optimized using 0-50 µm salts. While the role of DAC in strengthening the hydrogel was identified, the oxidation ratio of DAC showed no distinct trend. DAC 9% material exhibited the highest indirect and direct cytocompatibility creating spheroid-like structures. DAC/PVA hydrogels showed physical stability and acceptability in vivo that led us to propose our DAC 9%/PVA based material for soft tissue graft application.
Collapse
Affiliation(s)
- Mathilde Stricher
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (M.S.); (C.E.)
| | - Claude-Olivier Sarde
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| | - Christophe Egles
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (M.S.); (C.E.)
| | - Frédéric Delbecq
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| |
Collapse
|
40
|
In Vitro Evaluation of a Composite Gelatin-Hyaluronic Acid-Alginate Porous Scaffold with Different Pore Distributions for Cartilage Regeneration. Gels 2021; 7:gels7040165. [PMID: 34698179 PMCID: PMC8544390 DOI: 10.3390/gels7040165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
Although considerable achievements have been made in the field of regenerative medicine, since self-repair is not an advanced ability of articular cartilage, the regeneration of osteochondral defects is still a challenging problem in musculoskeletal diseases. Cartilage regeneration aims to design a scaffold with appropriate pore structure and biological and mechanical properties for the growth of chondrocytes. In this study, porous scaffolds made of gelatin, hyaluronic acid, alginate, and sucrose in different proportions of 2 g (SL2) and 4 g (SL4) were used as porogens in a leaching process. Sucrose with particle size ranges of 88–177 μm (Hμ) and 44–74 μm (SHμ) was added to the colloid, and the individually cross-linked hydrogel scaffolds with controllable pore size for chondrocyte culture were named Hμ-SL2, Hμ-SL4, SHμ-SL2 and SHμ-SL4. The perforation, porosity, mechanical strength, biocompatibility, and proliferation characteristics of the hydrogel scaffold and its influence on chondrocyte differentiation are discussed. Results show that the addition of porogen increases the porosity of the hydrogel scaffold. Conversely, when porogens with the same particle size are added, the pore size decreases as the amount of porogen increases. The perforation effect of the hydrogel scaffolds formed by the porogen is better at 88–177 μm compared with that at 44–74 μm. Cytotoxicity analysis showed that all the prepared hydrogel scaffolds were non-cytotoxic, indicating that no cross-linking agent residues that could cause cytotoxicity were found. In the proliferation and differentiation of the chondrocytes, the SHμ-SL4 hydrogel scaffold with the highest porosity and strength did not achieve the best performance. However, due to the compromise between perforation pores, pore sizes, and strength, as well as considering cell proliferation and differentiation, Hμ-SL4 scaffold provided a more suitable environment for the chondrocytes than other groups; therefore, it can provide the best chondrocyte growth environment for this study. The development of hydrogels with customized pore properties for defective cartilage is expected to meet the requirements of the ultimate clinical application.
Collapse
|
41
|
Kumar A, Han SS. Efficacy of Bacterial Nanocellulose in Hard Tissue Regeneration: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4777. [PMID: 34500866 PMCID: PMC8432490 DOI: 10.3390/ma14174777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Bacterial nanocellulose (BNC, as exopolysaccharide) synthesized by some specific bacteria strains is a fascinating biopolymer composed of the three-dimensional pure cellulosic nanofibrous matrix without containing lignin, hemicellulose, pectin, and other impurities as in plant-based cellulose. Due to its excellent biocompatibility (in vitro and in vivo), high water-holding capacity, flexibility, high mechanical properties, and a large number of hydroxyl groups that are most similar characteristics of native tissues, BNC has shown great potential in tissue engineering applications. This review focuses on and discusses the efficacy of BNC- or BNC-based biomaterials for hard tissue regeneration. In this review, we provide brief information on the key aspects of synthesis and properties of BNC, including solubility, biodegradability, thermal stability, antimicrobial ability, toxicity, and cellular response. Further, modification approaches are discussed briefly to improve the properties of BNC or BNC-based structures. In addition, various biomaterials by using BNC (as sacrificial template or matrix) or BNC in conjugation with polymers and/or fillers are reviewed and discussed for dental and bone tissue engineering applications. Moreover, the conclusion with perspective for future research directions of using BNC for hard tissue regeneration is briefly discussed.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Sung-Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| |
Collapse
|
42
|
Joukhdar H, Seifert A, Jüngst T, Groll J, Lord MS, Rnjak-Kovacina J. Ice Templating Soft Matter: Fundamental Principles and Fabrication Approaches to Tailor Pore Structure and Morphology and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100091. [PMID: 34236118 DOI: 10.1002/adma.202100091] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/22/2021] [Indexed: 06/13/2023]
Abstract
Porous scaffolds are widely used in biomedical applications where pore size and morphology influence a range of biological processes, including mass transfer of solutes, cellular interactions and organization, immune responses, and tissue vascularization, as well as drug delivery from biomaterials. Ice templating, one of the most widely utilized techniques for the fabrication of porous materials, allows control over pore morphology by controlling ice formation in a suspension of solutes. By fine-tuning freezing and solute parameters, ice templating can be used to incorporate pores with tunable morphological features into a wide range of materials using a simple, accessible, and scalable process. While soft matter is widely ice templated for biomedical applications and includes commercial and clinical products, the principles underpinning its ice templating are not reviewed as well as their inorganic counterparts. This review describes and critically evaluates fundamental principles, fabrication and characterization approaches, and biomedical applications of ice templating in polymer-based biomaterials. It describes the utility of porous scaffolds in biomedical applications, highlighting biological mechanisms impacted by pore features, outlines the physical and thermodynamic mechanisms underpinning ice templating, describes common fabrication setups, critically evaluates complexities of ice templating specific to polymers, and discusses future directions in this field.
Collapse
Affiliation(s)
- Habib Joukhdar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Annika Seifert
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070, Würzburg, Germany
| | - Tomasz Jüngst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070, Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070, Würzburg, Germany
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
43
|
Azizi-Lalabadi M, Jafari SM. Bio-nanocomposites of graphene with biopolymers; fabrication, properties, and applications. Adv Colloid Interface Sci 2021; 292:102416. [PMID: 33872984 DOI: 10.1016/j.cis.2021.102416] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023]
Abstract
The unique properties of graphene and graphene oxide (GO) nanocomposites make them suitable for a wide range of medical, industrial, and agricultural applications. The addition of graphene or GO to a polymeric matrix can ameliorate its thermo-mechanical, electrical, and barrier characteristics. The present paper reviews the literature on graphene/GO-based bio-nanocomposites and examines the various fabrication methods, such as chemical vapor deposition, chemical synthesis, microwave synthesis, the solvothermal method, molecular beam epitaxy, and colloidal suspension. Each procedure potentially has its disadvantages, especially for mass production. Therefore, introducing an effective method for fabricating graphene on a large scale with high quality is essential. Recent studies have shown that graphene-based bio-nanocomposites are promising materials given their excellent performance in the development of biosensors, drug delivery systems, antimicrobials, modified electrodes, and energy storage systems among other applications. In this review, we evaluate the various procedures used for developing graphene/GO-based bio-nanocomposites and examine the features and applications of the related products. Furthermore, the toxicity of these compounds and attempts to uncover the optimal combinations of biopolymers and carbon nanomaterials for industrial applications will be discussed.
Collapse
|
44
|
Shuai C, Yuan X, Yang W, Peng S, Qian G, Zhao Z. Synthesis of a mace-like cellulose nanocrystal@Ag nanosystem via in-situ growth for antibacterial activities of poly-L-lactide scaffold. Carbohydr Polym 2021; 262:117937. [DOI: 10.1016/j.carbpol.2021.117937] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
|
45
|
Patil TV, Patel DK, Dutta SD, Ganguly K, Lim KT. Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications. Molecules 2021; 26:2797. [PMID: 34068529 PMCID: PMC8126026 DOI: 10.3390/molecules26092797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.
Collapse
Affiliation(s)
- Tejal V. Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
46
|
Mariia K, Arif M, Shi J, Song F, Chi Z, Liu C. Novel chitosan-ulvan hydrogel reinforcement by cellulose nanocrystals with epidermal growth factor for enhanced wound healing: In vitro and in vivo analysis. Int J Biol Macromol 2021; 183:435-446. [PMID: 33932420 DOI: 10.1016/j.ijbiomac.2021.04.156] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022]
Abstract
Several dressing materials can be used efficiently in recent times, both in their natural and synthetic combinations like; microfibers, film, nanofibers, hydrogels, and various drugs. The specific characteristics, such as biocompatibility and providing a favorable environment for wound healing, make many polysaccharides pivotal as wound dressings. Keeping in view the importance of these polysaccharides, we have developed novel chitosan-ulvan hydrogel incorporated by cellulose nanocrystals (CNCs) loading epidermal growth factor (EGF) drug (CS-U-CNC-EGF) by the freeze-dried process. The morphological features of novel hydrogel were perceived by FTIR, XRD, FESEM, and DSC analysis. The incorporation of the nanocrystals content modified the porous microstructure at pore size from 237 ± 59 μm to 53 ± 16 μm, improved mechanical stress curve from 0.57 MPa to 1.2 MPa, thermal and swelling behavior. The novel nanocomposites revealed non-toxic behavior and excellent cell proliferation. Whereas hydrogel showed sustained release of the epidermal growth factor (EGF), thereby enhancing EGF delivery at the wound site for 15 days from a 100% wound contraction treated group. Moreover, the controlled release of EGF from CS-U-CNC-EGF hydrogels showed significantly faster-wound healing efficiency concerning considerably faster granulations tissue formation and collagen deposition. The study's results point to possible future applications of this composite hydrogel in wound healing as a wound dressing material.
Collapse
Affiliation(s)
- Kazharskaia Mariia
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Muhammad Arif
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Jie Shi
- Qingdao Biotemed Biomaterials Co. Ltd., No. 168 Zhuzhou Road, 266101 Qingdao, China
| | - Fulai Song
- Qingdao Biotemed Biomaterials Co. Ltd., No. 168 Zhuzhou Road, 266101 Qingdao, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
47
|
Kim J, Jang J, Cho DW. Controlling Cancer Cell Behavior by Improving the Stiffness of Gastric Tissue-Decellularized ECM Bioink With Cellulose Nanoparticles. Front Bioeng Biotechnol 2021; 9:605819. [PMID: 33816446 PMCID: PMC8009980 DOI: 10.3389/fbioe.2021.605819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
A physiologically relevant tumor microenvironment is favorable for the progression and growth of gastric cancer cells. To simulate the tumor-specific conditions of in vivo environments, several biomaterials engineering studies have investigated three-dimensional (3D) cultures. However, the implementation of such cultures remains limited because of challenges in outlining the biochemical and biophysical characteristics of the gastric cancer microenvironment. In this study, we developed a 3D cell printing-based gastric cancer model, using a combination of gastric tissue-specific bioinks and cellulose nanoparticles (CN) to provide adequate stiffness to gastric cancer cells. To create a 3D gastric tissue-specific microenvironment, we developed a decellularization process for a gastric tissue-derived decellularized extracellular matrix (g-dECM) bioink, and investigated the effect of the g-dECM bioink on promoting the aggressiveness of gastric cancer cells using histological and genetic validation methods. We found that incorporating CN in the matrix improves its mechanical properties, which supports the progression of gastric cancer. These mechanical properties are distinguishing characteristics that can facilitate the development of an in vitro gastric cancer model. Further, the CN-supplemented g-dECM bioink was used to print a variety of free-standing 3D shapes, including gastric rugae. These results indicate that the proposed model can be used to develop a physiologically relevant gastric cancer system that can be used in future preclinical trials.
Collapse
Affiliation(s)
- Jisoo Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Institute of Convergence Science, Yonsei University, Seoul, South Korea
| | - Dong-Woo Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
- Institute of Convergence Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
48
|
Luo Z, Wang L, Zhou P, Feng R, Li X. Effect of in vitro simulated gastrointestinal digestion on structural characteristics and anti-proliferative activities of the polysaccharides from the shells of Juglans regia L. Food Chem Toxicol 2021; 150:112100. [PMID: 33677040 DOI: 10.1016/j.fct.2021.112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/24/2023]
Abstract
The present research was designed to investigate the effects of simulated gastrointestinal digestion in vitro on the structural characteristics and anti-proliferative activities of polysaccharides from the shells of Juglans regia L. (JRP). Results suggested that JRP was composed of glucose, ribose, galactose, mannose, arabinose and rhamnose in a molar ratio of 10.7:4.9:16.4:2.3:10.8:2.3, with the molecular weight distributed from 3.21 × 105 to 4.55 × 105 Da. JRP belonged to non-crystalline substance, with irregular, smooth and compact morphological characteristics. Nevertheless, during gastrointestinal digestion in vitro, the physicochemical properties of JRP including molecular weight, monosaccharide composition, crystalline properties and morphology were significantly changed, accompanying with the increase of reducing sugar in digestive juice. Through measurements of anti-proliferation activities, the results showed that the digested JRP could remarkably inhibit the viabilities of HeLa cells by induction of apoptosis as a result of the excessive ROS accumulation and cell cycle arrest at G2/M phase, all of which were pronouncedly stronger than the ones induced by undigested JRP. These findings suggested that JRP processed by gastrointestinal digestion possessed more potential anti-proliferative applications that need to be exploited.
Collapse
Affiliation(s)
- Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Xiaoyu Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| |
Collapse
|
49
|
Zhong Y, Seidi F, Li C, Wan Z, Jin Y, Song J, Xiao H. Antimicrobial/Biocompatible Hydrogels Dual-Reinforced by Cellulose as Ultrastretchable and Rapid Self-Healing Wound Dressing. Biomacromolecules 2021; 22:1654-1663. [PMID: 33655745 DOI: 10.1021/acs.biomac.1c00086] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogels as a wound dressing, integrated with ultrastretchability, rapid self-healing, and excellent antimicrobial activity, are in high demand, particularly for joint skin wound healing. Herein, a multifunctional and ductile composite hydrogel was developed using poly(vinyl alcohol) (PVA)-borax gel as a matrix that was synergized or dual-reinforced with dopamine-grafted oxidized carboxymethyl cellulose (OCMC-DA) and cellulose nanofibers (CNF). Moreover, neomycin (NEO), an aminoglycoside antibiotic with multifunctional groups, was incorporated into the hydrogel network as both an antibacterial agent and a cross-linker. The dynamic reversible borate ester linkages and hydrogen bonds between OCMC-DA, PVA, and CNF, along with dynamic cross-linking imine linkages between NEO and OCMC-DA, endowed the hydrogel with excellent self-healing ability and stretchability (3300%). The as-reinforced networks enhanced the mechanical properties of hydrogels significantly. More remarkably, the composite hydrogel with improved biodegradability and biocompatibility is pH-responsive and effective against a broad spectrum of bacteria, which is attributed to the controllable release of NEO for steady availability of the antibiotic on the wound location. Overall, the antimicrobial hydrogel with rapid self-healing and reliable mechanical properties holds significant promise as dressing material for wound healing.
Collapse
Affiliation(s)
- Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhangmin Wan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
50
|
Jayeoye TJ, Eze FN, Singh S, Olatunde OO, Benjakul S, Rujiralai T. Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. Int J Biol Macromol 2021; 179:196-205. [PMID: 33675826 DOI: 10.1016/j.ijbiomac.2021.02.199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite ((PABA-SAL)@AuNPs) was fabricated. Aniline boronic acid (ABA) served as reductant of gold salt, all within the SAL solution. While ABA reduced gold salt to its nanoparticles, the ABA monomer was also oxidized to its conducting polymeric form (PABA). The presence of PABA in the reaction mixture exerted solubility and stability challenge, thus SAL was used as stabilizer and solubilizer for PABA. The numerous cis-diol groups of SAL could bind to boronic acid groups of PABA to furnish PABA-SAL repeating polymer structure for AuNPs anchoring. Sparkling ruby red (PABA-SAL)@AuNPs have absorption peaks at 529 and 718 nm. Average particle sizes of nanocomposite were within 15-20 nm, with hydrodynamic diameter of 48.6 ± 0.9 nm, zeta potential of -32.5 ± 1.6 mV and conductivity value of 2015.3 ± 3.2 μS/cm. (PABA-SAL)@AuNPs possessed antibacterial activities against seafood associated bacterial isolates, with MIC and MBC ranging from 4 to 8 μg/mL. The moderate antioxidant capacity of (PABA-SAL)@AuNPs was observed, without any deleterious damages on human red blood cells. It also has good biocompatibility on Caco-2 and RAW 264.7, with cell viability not less than 70%. These results confirm the high prospect of (PABA-SAL)@AuNPs for possible biomedical applications.
Collapse
Affiliation(s)
- Titilope John Jayeoye
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Analytical Chemistry and Environment Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand; Department of Chemistry/Biochemistry/Molecular Biology, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, Ebonyi State, Nigeria
| | - Fredrick Nwude Eze
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sudarshan Singh
- Excellence Research Laboratory on Natural Products, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Thitima Rujiralai
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Analytical Chemistry and Environment Research Unit, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.
| |
Collapse
|