1
|
Hu Y, Hong H, Zhou J, Cui Y, Zhang B, Zhao J. Recent advances in enzymatic properties, preparation methods, and functions of glycoside hydrolase from Bifidobacterium: a review. World J Microbiol Biotechnol 2023; 39:344. [PMID: 37843698 DOI: 10.1007/s11274-023-03770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Bifidobacterium is a major probiotic of intestinal gut flora and exerts many physiological activities, and it is widely applied in the fields of food and medicine. As an important part of Bifidobacterium, glycoside hydrolase plays a role in its physiological activity. With the continuous development and improvement of genetic engineering technology, research on this type of enzyme will play a crucial role in promoting the further development of Bifidobacterium in the field of probiotics. In this review, the preparation methods, enzymatic properties, and functions of glycoside hydrolase extracted from Bifidobacterium are described and summarized. The common method for preparing glycoside hydrolase derived from Bifidobacterium is heterologous expression in Escherichia coli BL21. The optimal pH range for these glycoside hydrolase enzymes is between 4.5 and 7.5; the optimal temperature is between 30 and 50 °C, which is close to the optimal growth condition of Bifidobacterium. Based on substrate specificity, these glycoside hydrolase could hydrolyze synthetic substrates and natural oligosaccharides, including a series of pNP artificial substrates, disaccharide, and trisaccharides, while they have little ability to hydrolyze polysaccharide substrates. This review will be expected to provide a basis for the development of Bifidobacterium as a probiotic element.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Huili Hong
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Jianing Zhou
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Yangyang Cui
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Baochun Zhang
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Jun Zhao
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
2
|
Peng R, Han P, Fu J, Zhang ZW, Ma SR, Pan LB, Xia YY, Yu H, Xu H, Liu CX, Wang Y. Esterases From Bifidobacteria Exhibit the Conversion of Albiflorin in Gut Microbiota. Front Microbiol 2022; 13:880118. [PMID: 35464989 PMCID: PMC9019491 DOI: 10.3389/fmicb.2022.880118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Bifidobacteria is an important microbe that inhabits the human gut. It is capable of metabolizing complex compounds in the human diet. Albiflorin, an antidepressant natural product from Radix Paeoniae Alba in China, is difficult to absorb after oral administration, and its metabolism has been proven to be closely related to the gut microbiota. In this study, we demonstrated in vitro that several Bifidobacteria species were able to convert albiflorin to benzoic acid, and four esterases (B2, B3, B4, and BL) from Bifidobacterium breve and Bifidobacterium longum were found through genome mining and modeled by SWISS-MODEL. B2 and B3 presented the strongest albiflorin metabolism ability. The optimal conditions, including temperature, buffer, and pH, for the conversion of albiflorin by the four esterases were investigated. Furthermore, the effect of esterase on the metabolism of albiflorin in vivo was confirmed by transplanting bacteria containing esterase B2. This study demonstrated the vital role of esterases from Bifidobacteria in the metabolism of natural compounds containing ester bonds, which could contribute to the development of new enzymes, microbial evolution, and probiotic adjuvant compounds for treatment.
Collapse
Affiliation(s)
- Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Xia
- Tianjin Institute of Pharmaceutical Research, Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Tianjin, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-Xiao Liu
- Tianjin Institute of Pharmaceutical Research, Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Hu Y, Zhai L, Hong H, Shi Z, Zhao J, Liu D. Study on the Biochemical Characterization and Selectivity of Three β-Glucosidases From Bifidobacterium adolescentis ATCC15703. Front Microbiol 2022; 13:860014. [PMID: 35464910 PMCID: PMC9024363 DOI: 10.3389/fmicb.2022.860014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
Three β-glucosidases from Bifidobacterium adolescentis ATCC15703, namely, BaBgl1A, BaBgl3A, and BaBgl3B, were overexpressed in Escherichia coli. The recombinant β-glucosidases were sufficiently purified using Ni2+ affinity chromatography, and BaBgl1A exhibited the best purification efficiency with a purification factor of 2.3-fold and specific activity of 71.2 U/mg. Three recombinant β-glucosidases acted on p-nitrophenyl-β-glucopyranoside (pNPβGlc) at around pH 7.0 and 30–50°C. The results of the substrate specificity assay suggested that BaBgl1A acted exclusively as β-1,2-glucosidase, while BaBgl3A and BaBgl3B acted mostly as β-1,3-glucosidase and β-1,4-glucosidase, respectively. The substrate specificity of the three recombinant enzymes was further studied using the ginsenosides Rb1 and Rd as substrates. The results of thin-layer chromatography and high-performance liquid chromatography analyses showed that BaBgl1A exhibited the highest bioconversion ability on Rb1 and Rd, where it hydrolyzed the outer C-3 glucose moieties of Rb1 and Rd into the rare ginsenosides Gypenoside XVII and F2; BaBgl3A exhibited medium bioconversion ability on Rb1, where it hydrolyzed both the outer C-3 and C-20 glucose moieties of Rb1 into Gyp XVII and Rd; and BaBgl3B was not active on Rb1 and Rd. These β-glucosidases will act as new biocatalytic tools for transforming ginsenosides and preparing active glycosides and aglycone.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Science and Engineering, Changchun University, Changchun, China
| | - Liyuan Zhai
- School of Food Science and Engineering, Changchun University, Changchun, China
| | - Huili Hong
- School of Food Science and Engineering, Changchun University, Changchun, China
| | - Zenghui Shi
- School of Food Science and Engineering, Changchun University, Changchun, China
| | - Jun Zhao
- School of Food Science and Engineering, Changchun University, Changchun, China
- *Correspondence: Jun Zhao,
| | - Duo Liu
- School of Food Science and Engineering, Changchun University, Changchun, China
- School of Life Sciences, Changchun Normal University, Changchun, China
- Duo Liu,
| |
Collapse
|
4
|
Salami M, Sadeghian Motahar SF, Ariaeenejad S, Sheykh Abdollahzadeh Mamaghani A, Kavousi K, Moosavi-Movahedi AA, Hosseini Salekdeh G. The novel homologue of the human α-glucosidase inhibited by the non-germinated and germinated quinoa protein hydrolysates after in vitro gastrointestinal digestion. J Food Biochem 2021; 46:e14030. [PMID: 34914113 DOI: 10.1111/jfbc.14030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Quinoa (Chenopodium quinoa Willd) is a potential source of protein with ideal amino acid profiles which its bioactive compounds can be improved during germination and gastrointestinal digestion. The present investigation studies the impact of germination for 24 hr and simulated gastrointestinal digestion on α-glucosidase inhibitory activity of the quinoa protein and bioactive peptides against the novel homologue of human α-glucosidase, PersiAlpha-GL1. The sprouted quinoa after gastroduodenal digestion was the most effective α-glucosidase inhibitor showing 81.10% α-glucosidase inhibition at concentration 4 mg/ml with the half inhibition rate (IC50 ) of 0.07 mg/ml. Based on the kinetic analysis, both the germinated and non-germinated samples before and after digestion were competitive-type inhibitors of α-glucosidase. Results of this study showed the improved α-glucosidase inhibitory activity of the quinoa bioactive peptides after germination and gastrointestinal digestion and highlighted the potential of metagenome-derived PersiAlpha-GL1 as a novel homologue of the human α-glucosidase for developing the future anti-diabetic drugs. PRACTICAL APPLICATIONS: This study aimed to evaluate the effect of germination and gastrointestinal digestion of the quinoa protein and bioactive peptides on α-glucosidase inhibitory activity against the novel PersiAlpha-GL1. Metagenomic data were used to identify the novel α-glucosidase structurally and functionally homologue of human intestinal. The results showed the highest inhibition on PersiAlpha-GL1 by a germinated quinoa after gastroduodenal digestion and confirmed the potential of PersiAlpha-GL1 to enhance the effectiveness of the anti-diabetic drugs for industrial application.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Seyedeh Fatemeh Sadeghian Motahar
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
5
|
Discovery of a Kojibiose Hydrolase by Analysis of Specificity-Determining Correlated Positions in Glycoside Hydrolase Family 65. Molecules 2021; 26:molecules26206321. [PMID: 34684901 PMCID: PMC8537180 DOI: 10.3390/molecules26206321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
The Glycoside Hydrolase Family 65 (GH65) is an enzyme family of inverting α-glucoside phosphorylases and hydrolases that currently contains 10 characterized enzyme specificities. However, its sequence diversity has never been studied in detail. Here, an in-silico analysis of correlated mutations was performed, revealing specificity-determining positions that facilitate annotation of the family’s phylogenetic tree. By searching these positions for amino acid motifs that do not match those found in previously characterized enzymes from GH65, several clades that may harbor new functions could be identified. Three enzymes from across these regions were expressed in E. coli and their substrate profile was mapped. One of those enzymes, originating from the bacterium Mucilaginibacter mallensis, was found to hydrolyze kojibiose and α-1,2-oligoglucans with high specificity. We propose kojibiose glucohydrolase as the systematic name and kojibiose hydrolase or kojibiase as the short name for this new enzyme. This work illustrates a convenient strategy for mapping the natural diversity of enzyme families and smartly mining the ever-growing number of available sequences in the quest for novel specificities.
Collapse
|
6
|
Qi X, Shao J, Cheng Y, He X, Li Y, Jia H, Yan M. Biocatalytic synthesis of 2-O-α-D-glucopyranosyl-L-ascorbic acid using an extracellular expressed α-glucosidase from Oryza sativa. Biotechnol J 2021; 16:e2100199. [PMID: 34392609 DOI: 10.1002/biot.202100199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND 2-O-α-D-Glucopyranosyl-L-ascorbic acid (AA-2G) is an important derivative of L-ascorbic acid (L-AA), which has the distinct advantages of non-reducibility, antioxidation, and reproducible decomposition into L-AA and glucose. Enzymatic synthesis is a preferred method for AA-2G production over alternative chemical synthesis owing to the regioselective glycosylation reaction. α-Glucosidase, an enzyme classed into O-glycoside hydrolases, might be used in glycosylation reactions to synthesize AA-2G. MAIN METHODS AND MAJOR RESULTS Here, an α-glucosidase from Oryza sativa was heterologously produced in Pichia pastoris GS115 and used for biosynthesis of AA-2G with few intermediates and byproducts. The extracellular recombinant α-glucosidase (rAGL) reached 9.11 U mL-1 after fed-batch cultivation for 102 h in a 5 L fermenter. The specific activity of purified rAGL is 49.83 U mg-1 at 37°C and pH 4.0. The optimal temperature of rAGL was 65°C, and it was stable below 55°C. rAGL was active over the range of pH 3.0-7.0, with the maximal activity at pH 4.0. Under the condition of 37°C, pH 4.0, equimolar maltose and ascorbic acid sodium salt, 8.7 ± 0.4 g L-1 of AA-2G was synthesized by rAGL. CONCLUSIONS AND IMPLICATIONS The production of rAGL in P. pastoris was proved to be beneficial in providing enough enzyme and promoting biocatalytic synthesis of AA-2G. These studies lay the basis for the industrial application of α-glucosidase. GRAPHICAL ABSTRACT LAY SUMMARY 2-O-α-D-Glucopyranosyl-L-ascorbic acid (AA-2G) is an important industrial derivative of L-ascorbic acid (L-AA), which has the distinct advantages of non-reducibility, antioxidation, and reproducible decomposition into L-AA and glucose. In this study, the authors characterized an α-glucosidase from Oryza sativa, which was recombinantly produced in Pichia pastoris GS115, and its potential for AA-2G production via transglycosylation of L-AA was investigated. These studies lay the basis for the industrial application of recombinant α-glucosidase.
Collapse
Affiliation(s)
- Xuelian Qi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Junlan Shao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yinchu Cheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaoying He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Pierau M, Arra A, Brunner-Weinzierl MC. Preventing Atopic Diseases During Childhood - Early Exposure Matters. Front Immunol 2021; 12:617731. [PMID: 33717110 PMCID: PMC7946845 DOI: 10.3389/fimmu.2021.617731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Atopic diseases in childhood are a major burden worldwide and there is still a lack of knowledge about treatable causes. In industrialized countries such as Germany, almost every second child is sensitized to at least one common allergen. Recent studies show that although the predisposition to allergies is inherited, the adaptive immune system of neonates and infants follows a developmental trajectory and whether an allergy actually occurs depends also on timing of allergen exposure including diet as well as environmental factors. New recommendations are far from being rigid of allergen avoidance; it is rather moving toward conditions that stand for more biodiversity. The observation that introduction of peanuts or eggs early in life significantly reduced the development of a later allergy will change our recommendations for the introduction of complementary foods. This is consistent with the hygiene hypothesis that early provocation shapes the developing immune system so that it reacts appropriately. Therefore, promoting the development of tolerance is at the heart of sensible allergy prevention - and this begins with the last trimester of pregnancy. In light of this concept, actual recommendations are discussed.
Collapse
|
8
|
Li D, Fei T, Wang Y, Zhao Y, Dai L, Fu X, Li X. A cold-active 1,4-α-glucan branching enzyme from Bifidobacterium longum reduces the retrogradation and enhances the slow digestibility of wheat starch. Food Chem 2020; 324:126855. [DOI: 10.1016/j.foodchem.2020.126855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
|
9
|
Shin YJ, Woo SH, Jeong HM, Kim JS, Ko DS, Jeong DW, Lee JH, Shim JH. Characterization of novel α-galactosidase in glycohydrolase family 97 from Bacteroides thetaiotaomicron and its immobilization for industrial application. Int J Biol Macromol 2020; 152:727-734. [PMID: 32092418 DOI: 10.1016/j.ijbiomac.2020.02.232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 02/05/2023]
Abstract
Bacteroides thetaiotaomicron (B. thetaiotaomicron), which resides in the human intestinal tract, has a number of carbohydrate enzymes, including glycoside hydrolase (GH) family 97. Only a few GH 97 enzymes have been characterized to date. In this study, a novel α-galactosidase (Bt_3294) was cloned from B. thetaiotaomicron, expressed in Escherichia coli, and purified using affinity chromatography. This novel enzyme showed optimal activity at 60 °C and pH 7.0. Enzyme activity was reduced by 94.4% and 95.7% in the presence of 5 mM Ca2+ and Fe2+, respectively. It is interesting that Bt_3294 specifically hydrolyzed shorter α-galactosyl oligosaccharides, such as melibiose and raffinose. The D-values of Bt_3294 at 40 °C and 50 °C were about 107 and 6 min, respectively. After immobilization of Bt_3294, the D-values at 40 °C and 50 °C were about 37.6 and 29.7 times higher than those of the free enzyme, respectively. As a practical application, the immobilized Bt_3294 was used to hydrolyze raffinose family oligosaccharides (RFOs) in soy milk, decreasing the RFOs by 98.9%.
Collapse
Affiliation(s)
- Yu-Jeong Shin
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Seung-Hye Woo
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Hyun-Mo Jeong
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Ji-Soo Kim
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Dam-Seul Ko
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Da-Woon Jeong
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Jung-Hoon Lee
- Multidisciplinary Genome Institute, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, The Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, Republic of Korea.
| |
Collapse
|
10
|
Jeong DW, Jeong HM, Shin YJ, Woo SH, Shim JH. Properties of recombinant 4-α-glucanotransferase from Bifidobacterium longum subsp. longum JCM 1217 and its application. Food Sci Biotechnol 2019; 29:667-674. [PMID: 32419965 DOI: 10.1007/s10068-019-00707-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022] Open
Abstract
To determine the physiochemical properties of the 4-α-glucanotransferase from Bifidobacterium sp., the bllj_0114 gene encoding 4-α-glucanotransferase was cloned from Bifidobacterium longum subsp. longum JCM 1217 and expressed in Escherichia coli. The amino acid sequence alignment indicated that the recombinant protein, named BL-αGTase, belongs to the glycoside hydrolase (GH) family 77. BL-αGTase was purified using nickel-nitrilotriacetic acid affinity chromatography and characterized using various substrates. The enzyme catalyzed the disproportionation activity, which transfers a glucosyl unit from oligosaccharides to acceptor molecules, and had the highest activity at 40 °C and pH 6.0. In the presence of 5 mM metal ions, in particular Cu2+, Zn2+, and Fe2+, BL-αGTase activity was reduced. To determine whether BL-αGTase can be used to generate thermoreversible gels, potato starch was treated with BL-αGTase for various reaction times. The BL-αGTase-treated starches showed sol-gel reversibility and melted at 59.6-75.7 °C.
Collapse
Affiliation(s)
- Da-Woon Jeong
- Department of Food Science and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Hyun-Mo Jeong
- Department of Food Science and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Yu-Jeong Shin
- Department of Food Science and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Seung-Hye Woo
- Department of Food Science and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon, 24252 Republic of Korea
| |
Collapse
|
11
|
A Transposon Mutagenesis System for Bifidobacterium longum subsp. longum Based on an IS 3 Family Insertion Sequence, IS Blo11. Appl Environ Microbiol 2018; 84:AEM.00824-18. [PMID: 29934330 DOI: 10.1128/aem.00824-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/16/2018] [Indexed: 12/29/2022] Open
Abstract
Bifidobacteria are a major component of the intestinal microbiota in humans, particularly breast-fed infants. Therefore, elucidation of the mechanisms by which these bacteria colonize the intestine is desired. One approach is transposon mutagenesis, a technique currently attracting much attention because, in combination with next-generation sequencing, it enables exhaustive identification of genes that contribute to microbial fitness. We now describe a transposon mutagenesis system for Bifidobacterium longum subsp. longum 105-A (JCM 31944) based on ISBlo11, a native IS3 family insertion sequence. To build this system, xylose-inducible or constitutive bifidobacterial promoters were tested to drive the expression of full-length or a truncated form at the N terminus of the ISBlo11 transposase. An artificial transposon plasmid, pBFS12, in which ISBlo11 terminal inverted repeats are separated by a 3-bp spacer, was also constructed to mimic the transposition intermediate of IS3 elements. The introduction of this plasmid into a strain expressing transposase resulted in the insertion of the plasmid with an efficiency of >103 CFU/μg DNA. The plasmid targets random 3- to 4-bp sequences, but with a preference for noncoding regions. This mutagenesis system also worked at least in B. longum NCC2705. Characterization of a transposon insertion mutant revealed that a putative α-glucosidase mediates palatinose and trehalose assimilation, demonstrating the suitability of transposon mutagenesis for loss-of-function analysis. We anticipate that this approach will accelerate functional genomic studies of B. longum subsp. longumIMPORTANCE Several hundred species of bacteria colonize the mammalian intestine. However, the genes that enable such bacteria to colonize and thrive in the intestine remain largely unexplored. Transposon mutagenesis, combined with next-generation sequencing, is a promising tool to comprehensively identify these genes but has so far been applied only to a small number of intestinal bacterial species. In this study, a transposon mutagenesis system was established for Bifidobacterium longum subsp. longum, a representative health-promoting Bifidobacterium species. The system enables the identification of genes that promote colonization and survival in the intestine and should help illuminate the physiology of this species.
Collapse
|
12
|
Del Moral S, Barradas-Dermitz DM, Aguilar-Uscanga MG. Production and biochemical characterization of α-glucosidase from Aspergillus niger ITV-01 isolated from sugar cane bagasse. 3 Biotech 2018; 8:7. [PMID: 29259882 DOI: 10.1007/s13205-017-1029-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/04/2017] [Indexed: 12/01/2022] Open
Abstract
Aspergillus niger ITV-01 presents amylolytic activity, identified as α-glucosidase, an enzyme that only produces α-d-glucose from soluble starch and that presents transglucosylase activity on α-d-glucopyranosyl-(1-4)-α-d-glucopyranose (maltose) (200 gL-1). Biochemical characterization was performed on A. niger ITV-01 α-glucosidase; its optimum parameters were pH 4.3, temperature 80 °C but stable at 40 °C, with an energy of activation (Ea) 176.25 kJ mol-1. Using soluble starch as the substrate, Km and Vmax were 5 mg mL-1 and 1000 U mg-1, respectively. As α-glucosidase is not a metalloenzyme, calcium and EDTA did not have any effect on its activity. The molecular weight was estimated by SDS-PAGE to be about 75 kDa. It was also active in methanol and ethanol. When ammonium sulfate (AS) and yeast extract (YE) nitrogen sources and calcium effect were evaluated, the greatest activity occurred using YE and calcium, as opposed to AS media where no activity was detected. The results obtained showed that this enzyme has industrial application potential in the processes to produce either ethanol or malto-oligosaccharides from α-d-glucopyranosyl-(1-4)-α-d-glucopyranose (maltose).
Collapse
Affiliation(s)
- S Del Moral
- Instituto de Biotecnología. Universidad del Papaloapan, Circuito Central 200. Tuxtepec, 68400 Oaxaca, Mexico
- Unidad de Desarrollo en Alimentos (UNIDA), Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Av. Miguel Ángel de Quevedo, 2779, Col. Formando Hogar, 91850 H. Veracruz, Veracruz Mexico
| | - D M Barradas-Dermitz
- Área Química-Biológica, Tecnológico Nacional de México-Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo, 91850 H. Veracruz, Veracruz Mexico
| | - M G Aguilar-Uscanga
- Unidad de Desarrollo en Alimentos (UNIDA), Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Av. Miguel Ángel de Quevedo, 2779, Col. Formando Hogar, 91850 H. Veracruz, Veracruz Mexico
| |
Collapse
|
13
|
Li Z, Ji K, Zhou J, Ye X, Wang T, Luo X, Huang Y, Cao H, Cui Z, Kong Y. A debranching enzyme IsoM of Corallococcus sp. strain EGB with potential in starch processing. Int J Biol Macromol 2017; 105:1300-1309. [DOI: 10.1016/j.ijbiomac.2017.07.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/30/2023]
|