1
|
Kumar Y, Xu B. New Insights into Chemical Profiles and Health-Promoting Effects of Edible Mushroom Dictyophora indusiate (Vent ex. Pers.) Fischer: A Review. J Fungi (Basel) 2025; 11:75. [PMID: 39852494 PMCID: PMC11767163 DOI: 10.3390/jof11010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Mushrooms are valued for their culinary and medicinal benefits, containing bioactive compounds like polysaccharides, terpenoids, phenolics, lectins, and ergosterols. This review aims to encourage research on D. indusiata by summarizing its chemistry, health benefits, pharmacology, and potential therapeutic applications. Molecules from D. indusiata offer anti-diabetic, antioxidant, anti-tumor, hepatoprotective, and anti-bacterial effects. In particular, polysaccharides from Dictyophora indusiata (DIP) enhance immune function, reduce oxidative stress, and promote gut health as prebiotics. DIP shows neuroprotective effects by reducing oxidative damage, improving mitochondrial function, and regulating apoptosis, making them beneficial for neurodegenerative diseases. They also activate immune responses through TLR4 and NF-κB pathways. Additionally, compounds like dictyophorines and quinazoline from D. indusiata support nerve growth and protection. Mushrooms help regulate metabolism and improve lipid profiles, with potential applications in managing metabolic disorders, cancer, cardiovascular diseases, diabetes, and neurodegenerative conditions. Their wide range of bioactive compounds makes D. indusiata mushrooms functional foods with significant therapeutic potential.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Biotechnology, Mehsana Urban Institute of Sciences, Ganpat University, Mehsana 384012, Gujrat, India;
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
2
|
He Y, Gao W, Zhang Y, Sun M, Kuang H, Sun Y. Progress in the preparation, structure and bio-functionality of Dictyophora indusiata polysaccharides: A review. Int J Biol Macromol 2024; 283:137519. [PMID: 39577539 DOI: 10.1016/j.ijbiomac.2024.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
Dictyophora indusiata (D. indusiata) is an elegant fungus known as the "mushroom queen" because of its rich nutritional value and resemblance to dancers wearing clean white dresses. Due to the harsh growth environment, the yield of D. indusiata is relatively low. Polysaccharides are the most abundant component among them and it is valued for its unique physiological function. Multiple extraction and purification methods have been used to separate and purify polysaccharides from D. indusiata. These polysaccharides have demonstrated strong biological activities in vitro and in vivo, including anti-inflammatory, anti-tumour, immunomodulatory, antioxidant and anti-hyperlipidemic effects. In addition, D. indusiata polysaccharides have shown promising potential for development and application in the areas of food, healthcare products, pharmaceuticals, and cosmetics. Recent advances in the extraction, purification, structural characterization, biological activities and application prospects of D. indusiata polysaccharides were summarized. This review may enrich the knowledge about bioactive polysaccharides from D. indusiata and provide a theoretical basis. Due to diverse potential health-promoting properties of D. indusiata polysaccharides, further development for their application in functional foods and pharmaceuticals is expected.
Collapse
Affiliation(s)
- Yujia He
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Wuyou Gao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuping Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Minghao Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
3
|
Wang J, Pan J, Zou J, Shi Y, Guo D, Zhai B, Zhao C, Luan F, Zhang X, Sun J. Isolation, structures, bioactivities, and utilizations of polysaccharides from Dictyophora species: A review. Int J Biol Macromol 2024; 278:134566. [PMID: 39116988 DOI: 10.1016/j.ijbiomac.2024.134566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Dictyophora species is an edible and medicinal fungus belonging to the Basidiomycotina, Gasteromycetes, Phallales, family Phallaceae, and genus Dictyophora, which is popular with consumers in China and across various Asian regions. Polysaccharides from Dictyophora species (DPs) are important bioactive macromolecules with multiple health benefits, according to published studies, including anti-tumor, antioxidative, anti-obesity, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory, regulation of gut microbiota, antibacterial, renoprotective, and other pharmacological effects. Based on their rich pharmacological activities, the preparation techniques, structural characteristics and pharmacological activities of DPs have been extensively studied. However, to the best of our knowledge, there is no dedicated review to shed light on recent advances in DPs. Therefore, in order to fill this gap, this review provides a comprehensive overview of the research on DPs, including the latest advances in extraction, isolation and purification, structural characteristics, pharmacological properties, safety assessment and potential utilizations, which will provide a theoretical basis for the research and development of subsequent DPs-related products.
Collapse
Affiliation(s)
- Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Bingtao Zhai
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Chongbo Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| |
Collapse
|
4
|
Thomas L, Mago P. Unearthing the therapeutic benefits of culinary-medicinal mushrooms for humans: Emerging sustainable bioresources of 21st century. J Basic Microbiol 2024; 64:e2400127. [PMID: 38774954 DOI: 10.1002/jobm.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 08/06/2024]
Abstract
Global interest in mushroom farming techniques has grown in the last few years. Despite not making up a large amount of the human diet at the moment, the nutritional worth of mushrooms has prompted their usage. The three main segments of the global mushroom industry are wild, culinary (edible), and medicinal mushrooms. The quality food that mushrooms provide can be utilized to build agricultural ecosystems that are more sustainable for increasing productivity and enhancing the effectiveness of resource usage. This is mostly because mushrooms can be utilized for the recycling of biomass and remains from crop production. Culinary-medicinal mushrooms are becoming more and more important because of their nutrient density, dietary value, and health advantages. Given its many bioactive components, which include polysaccharides, proteins, vitamins, minerals, dietary fiber, and secondary metabolites, mushrooms have been utilized extensively as health foods. These mushrooms exhibit pharmacological activities and possess prebiotic and antibacterial capabilities. This review provides information on the latest advancements in the sustainable cultivation of mushrooms, particularly with nontraditional substrates, and their potential therapeutic uses. Furthermore, some of the newest developments and difficulties in the production of mushrooms are explored.
Collapse
Affiliation(s)
- Lebin Thomas
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | - Payal Mago
- Department of Botany, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
5
|
Yan X, Chen X, Zhang X, Qureshi A, Wang Y, Tang X, Hu T, Zhuang H, Ran X, Ma G, Luo P, Shen L. Proteomic analysis of the effects of Dictyophora polysaccharide on arsenic-induced hepatotoxicity in rats. Exp Mol Pathol 2024; 138:104910. [PMID: 38876078 DOI: 10.1016/j.yexmp.2024.104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Arsenic (As) is a highly toxic environmental toxicant and a known human carcinogen. Long-term exposure to As can cause liver injury. Dictyophora polysaccharide (DIP) is a biologically active natural compound found in the Dictyophora with excellent antioxidation, anti-inflammation, and immune protection properties. In this study, the Sprague-Dawley (SD) rat model of As toxicity was established using a feeding method, followed by DIP treatment in rats with As-induced liver injury. The molecular mechanisms of As toxicity to the rat liver and the protective effect of DIP were investigated by proteomic studies. The results showed that 172, 328 and 191 differentially expressed proteins (DEPs) were identified between the As-exposed rats versus control rats (As/Ctrl), DIP treated rats versus As-exposed rats (DIP+As/As), and DIP treated rats versus control rats (DIP+As /Ctrl), respectively. Among them, the expression of 90 DEPs in the As/Ctrl groups was reversed by DIP treatment. As exposure caused dysregulation of metabolic pathways, mitochondria, oxidative stress, and apoptosis-related proteins in the rat liver. However, DIP treatment changed or restored the levels of these proteins, which attenuated the damage to the livers of rats caused by As exposure. The results provide new insights into the mechanisms of liver injury induced by As exposure and the treatment of DIP in As poisoning.
Collapse
Affiliation(s)
- Xi Yan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaolu Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ayesha Qureshi
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Ting Hu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoqian Ran
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China.
| | - Liming Shen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
6
|
Li X, Han H, Ma Y, Wang X, Lü X. Identification of phenolic compounds from fermented Moringa oleifera Lam. leaf supplemented with Fuzhuan brick tea and their volatile composition and anti-obesity activity. J Food Sci 2024; 89:3094-3109. [PMID: 38634238 DOI: 10.1111/1750-3841.17060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
As a nutritious plant with valuable potential, the Moringa oleifera Lam. (MOL) leaf addition on Fuzhuan brick tea (FBT) for the co-fermentation (MOL-FBT) was an industry innovation and a new route to make full use of MOL leaf. After optimization of the extraction conditions, the best conditions for the polyphenols extraction method from MOL-FBT (MFP) were 60°C for 40 min (1:80, V/W) using response surface methodology. A total of 30 phenolics were identified and quantified. Most of the polyphenols were increased after adding MOL leaf for co-fermentation compared to FBT polyphenols. In particular, caffeic acids were found only in MFP. Moreover, the MFP received high value in taste, aroma, and color. In total, 62 volatile flavor compounds, consisting of 3 acids, 5 alcohols, 15 aldehydes, 4 esters, 20 hydrocarbons, 10 ketones, and 5 others, were identified in MFP. In addition, MFP inhibited 3T3-L1 preadipocyte differentiation in a dose-dependent manner and decreased lipid accumulation via the peroxisome proliferator-activated receptor gamma (PPARγ)/CCAAT/enhancer binding protein alpha (CEBPα)/cluster of differentiation 36 (CD36) axis and induced a brown adipocyte-like phenotype. In vivo experiments were further conducted to confirm the in vitro results. MFP regulated lipid accumulation, glucose/insulin tolerance, improved liver and kidney function, and inhibited the secretion of pro-inflammatory factors by the PPARγ/CEBPα/CD36 axis and alleviated inflammation in high fat and high fructose diet-induced obese mice. In summary, MFP possesses high-quality properties and anti-obesity effects, as well as the great potential to be used as a novel functional food product.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoyue Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Chen M, Li D, Meng X, Sun Y, Liu R, Sun T. Review of isolation, purification, structural characteristics and bioactivities of polysaccharides from Portulaca oleracea L. Int J Biol Macromol 2024; 257:128565. [PMID: 38061516 DOI: 10.1016/j.ijbiomac.2023.128565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Portulaca oleracea L., also known as purslane, affiliates to the Portulacaceae family. It is an herbaceous succulent annual plant distributed worldwide. P. oleracea L. is renowned for its nutritional value and medicinal value, which has been utilized for thousands of years as Traditional Chinese Medicine (TCM). The extract derived from P. oleracea L. has shown efficacy in treating various diseases, including intestinal dysfunction and inflammation. Polysaccharides from P. oleracea L. (POP) are the primary constituents of the crude extract which have been found to have various biological activities, including antioxidant, antitumor, immune-stimulating, and intestinal protective effects. While many publications have highlighted on the structural identification and bioactivity evaluation of POP, the underlying structure-activity relationship of POP still remains unclear. In view of this, this review aims to focus on the extraction, purification, structural features and bioactivities of POP. In addition, the potential structure-activity relationship and the developmental perspective for future research of POP were also explored and discussed. The current review would provide a valuable research foundation and the up-to-date information for the future development and application of POP in the field of the functional foods and medicine.
Collapse
Affiliation(s)
- Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
8
|
Tesvichian S, Sangtanoo P, Srimongkol P, Saisavoey T, Buakeaw A, Puthong S, Thitiprasert S, Mekboonsonglarp W, Liangsakul J, Sopon A, Prawatborisut M, Reamtong O, Karnchanatat A. Sulfated polysaccharides from Caulerpa lentillifera: Optimizing the process of extraction, structural characteristics, antioxidant capabilities, and anti-glycation properties. Heliyon 2024; 10:e24444. [PMID: 38293411 PMCID: PMC10826829 DOI: 10.1016/j.heliyon.2024.e24444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The polysaccharides found in Caulerpa lentillifera (sea grape algae) are potentially an important bioactive resource. This study makes use of RSM (response surface methodology) to determine the optimal conditions for the extraction of valuable SGP (sea grape polysaccharides). The findings indicated that a water/raw material ratio of 10:1 mL/g, temperature of 90 °C, and extraction time of 45 min would maximize the yield, with experimentation achieving a yield of 21.576 %. After undergoing purification through DEAE-52 cellulose and Sephacryl S-100 column chromatography, three distinct fractions were obtained, namely SGP11, SGP21, and SGP31, each possessing average molecular weights of 38.24 kDa, 30.13 kDa, and 30.65 kDa, respectively. Following characterization, the fractions were shown to comprise glucose, galacturonic acid, xylose, and mannose, while the sulfate content was in the range of 12.2-21.8 %. Using Fourier transform infrared spectroscopy (FT-IR) it was possible to confirm with absolute certainty the sulfate polysaccharide attributes of SGP11, SGP21, and SGP31. NMR (nuclear magnetic resonance) findings made it clear that SGP11 exhibited α-glycosidic configurations, while the configurations of SGP21 and SGP31 were instead β-glycosidic. The in vitro antioxidant assays which were conducted revealed that each of the fractions was able to demonstrate detectable scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cations. All fractions were also found to exhibit the capacity to scavenge NO radicals in a dose-dependent manner. SGP11, SGP21, and SGP31 were also able to display cellular antioxidant activity (CAA) against the human adenocarcinoma colon (Caco-2) cell line when oxidative damage was induced. The concentration levels were found to govern the extent of such activity. Moreover, purified SGP were found to exert strong inhibitory effects upon glycation, with the responses dependent upon dosage, thus confirming the potential for SGP to find a role as a natural resource for the production of polysaccharide-based antioxidant drugs, or products to promote improved health.
Collapse
Affiliation(s)
- Suphaporn Tesvichian
- Program in Biotechnology, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Papassara Sangtanoo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Tanatorn Saisavoey
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Sitanan Thitiprasert
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Centre, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jatupol Liangsakul
- Scientific and Technological Research Equipment Centre, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Anek Sopon
- Aquatic Resources Research Institute, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Mongkhol Prawatborisut
- Bruker Switzerland AG, 175, South Sathorn Road, 10th Floor, Sathorn City Tower, Thungmahamek, Sathorn, Bangkok, 10120, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
9
|
Yu X, Mu N, Liu X, Shang Y, Wang D, Li F. A green method for decolorization of polysaccharides from alfalfa by S-8 macroporous resin and their characterization and antioxidant activity. RSC Adv 2023; 13:9642-9653. [PMID: 36968038 PMCID: PMC10037299 DOI: 10.1039/d3ra00756a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
In this study, the decolorization conditions of polysaccharides extracted from alfalfa by S-8 macroporous adsorption resin were optimized through the response surface method, and the physicochemical properties and antioxidant activity of decolorized polysaccharides were investigated. The optimal decolorization conditions were determined to be as follows: the amount of S-8 macroporous adsorption resin was 1.4 g, the adsorption time was 2 h, and the adsorption temperature was 58 °C. Under these optimal conditions, a decolorization ratio of 71.43 ± 0.23% was achieved, which was consistent with the model hypothesis. The adsorption curve showed that S-8 macroporous adsorption resin adsorption of pigment molecules in alfalfa polysaccharides (APS) agreed with the Freundlich and pseudo-second-order equations, and the adsorption was a spontaneous endothermic process. High-performance liquid chromatography (HPLC) analysis of monosaccharide composition showed that APS was composed of mannose, glucose, galactose, arabinose and glucuronic acid in a molar ratio of 1.18 : 8.04 : 1.22 : 0.92 : 1. The results of antioxidant activity studies showed that APS had strong scavenging activity against ABTS, DPPH and hydroxyl radicals. This study will help to further understand the adsorption mechanism of macroporous resin on polysaccharide pigment molecules and lay a basis for evaluating their physiological activity.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Na Mu
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Xiaochen Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| |
Collapse
|
10
|
Duan M, Long S, Wu X, Feng B, Qin S, Li Y, Li X, Li C, Zhao C, Wang L, Yan Y, Wu J, Zhao F, Chen Z, Wang Z. Genome, transcriptome, and metabolome analyses provide new insights into the resource development in an edible fungus Dictyophora indusiata. Front Microbiol 2023; 14:1137159. [PMID: 36846778 PMCID: PMC9948255 DOI: 10.3389/fmicb.2023.1137159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Dictyophora indusiata (Vent. Ex Pers.) Fisch. (DI) is an edible and medicinal fungus widely used in East Asian countries. However, during DI cultivation, the formation of fruiting bodies cannot be regulated, which leads to yield and quality losses. The present study performed a combined genome, transcriptome, and metabolome analysis of DI. Using Nanopore and Illumina sequencing approaches, we created the DI reference genome, which was 67.32 Mb long with 323 contigs. We identified 19,909 coding genes on this genome, of which 46 gene clusters were related to terpenoid synthesis. Subsequent transcriptome sequencing using five DI tissues (cap, indusia, mycelia, stipe, and volva) showed high expression levels of genes in the cap, indicating the tissue's importance in regulating the fruiting body formation. Meanwhile, the metabolome analysis identified 728 metabolites from the five tissues. Mycelium was rich in choline, while volva was rich in dendronobilin; stipe had monosaccharides as the primary component, and the cap was the main source of indole acetic acid (IAA) synthesis. We confirmed the importance of tryptophan metabolism for DI fruiting body differentiation based on KEGG pathway analysis. Finally, the combined multiomics analysis identified three new genes related to IAA synthesis of the tryptophan metabolic pathway in the cap, which may regulate DI fruiting body synthesis and improve DI quality. Thus, the study's findings expand our understanding of resource development and the molecular mechanisms underlying DI development and differentiation. However, the current genome is still a rough draft that needs to be strengthened.
Collapse
Affiliation(s)
- Mingzheng Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China,Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Shengfeng Long
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaojian Wu
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Bin Feng
- Laibin Branch of Guangxi Academy of Agricultural Sciences, Laihua Center, Laibin, China
| | - Sunqian Qin
- Laibin Branch of Guangxi Academy of Agricultural Sciences, Laihua Center, Laibin, China
| | - Yijie Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Xiang Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Changning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Chenggang Zhao
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Lingqiang Wang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yong Yan
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jianming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Falin Zhao
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Zhendong Chen
- Guangxi Academy of Agricultural Sciences, Nanning, China,*Correspondence: Zhendong Chen, ✉
| | - Zeping Wang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China,Zeping Wang, ✉
| |
Collapse
|
11
|
Extraction, Characterization, and Antioxidant Activity of Polysaccharides from Ajwa Seed and Flesh. SEPARATIONS 2023. [DOI: 10.3390/separations10020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The date palm has been cultivated in dry and hot areas of the planet for much of human history. In the Kingdom of Saudi Arabia, dates are the main crop used as a source of food. Among several species of date fruits, the Ajwa AL-Madinah date is unique, growing only in Al-Madinah geographical region. The Ajwa date is used in traditional medicine due to its abundant active components and therapeutic properties. This study investigates the structural properties and the antioxidant effects of water-soluble polysaccharides extracted from Ajwa flesh and seed. The polysaccharides were isolated by two techniques including hot water and ultrasonic extraction. After isolation and partial purification, the physicochemical properties of four samples of polysaccharides extracted from flesh and seed were studied by several techniques including FTIR, solid-state NMR, elemental analysis, and mass spectrometry. Several radical scavenging experiments were combined to study the antioxidant activity of the polysaccharide compounds. FTIR and NMR results showed a structure typical of heterogeneous polysaccharides. Mass spectrometry revealed that the polysaccharide samples were composed mainly of mannose, glucose, galactose, xylose, arabinose, galacturonic acid, and fucose. In addition, the physicochemical properties and composition of polysaccharides extracted from flesh and seed were compared. The extracted polysaccharides showed antioxidant activity, with 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, Fe chelating ability, hydroxyl free radical scavenging ability, and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging. These results highlight their potential to be a useful nutritional element or supplemental medication.
Collapse
|
12
|
Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective. Microb Cell Fact 2023; 22:11. [PMID: 36647087 PMCID: PMC9841694 DOI: 10.1186/s12934-022-02013-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Macroscopic fungi, mainly higher basidiomycetes and some ascomycetes, are considered medicinal mushrooms and have long been used in different areas due to their pharmaceutically/nutritionally valuable bioactive compounds. However, the low production of these bioactive metabolites considerably limits the utilization of medicinal mushrooms both in commerce and clinical trials. As a result, many attempts, ranging from conventional methods to novel approaches, have been made to improve their production. The novel strategies include conducting omics investigations, constructing genome-scale metabolic models, and metabolic engineering. So far, genomics and the combined use of different omics studies are the most utilized omics analyses in medicinal mushroom research (both with 31% contribution), while metabolomics (with 4% contribution) is the least. This article is the first attempt for reviewing omics investigations in medicinal mushrooms with the ultimate aim of bioactive compound overproduction. In this regard, the role of these studies and systems biology in elucidating biosynthetic pathways of bioactive compounds and their contribution to metabolic engineering will be highlighted. Also, limitations of omics investigations and strategies for overcoming them will be provided in order to facilitate the overproduction of valuable bioactive metabolites in these valuable organisms.
Collapse
|
13
|
Zhang XX, Ni ZJ, Zhang F, Thakur K, Zhang JG, Khan MR, Busquets R, Wei ZJ. Physicochemical and antioxidant properties of Lycium barbarum seed dreg polysaccharides prepared by continuous extraction. Food Chem X 2022; 14:100282. [PMID: 35299725 PMCID: PMC8921337 DOI: 10.1016/j.fochx.2022.100282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Lycium barbarum seed dreg polysaccharides (LBSDPs) were continuously extracted with four different solvents [hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS), and concentrated alkaline (CASS)]. The present study characterized the physicochemical and anti-oxidant based functional properties of different LBSDPs. The monosaccharide analysis revealed xylose (64.63%, 70.00%, 44.71%, and 66.67%) as the main sugar with the molecular weights of 5985, 7062, 5962, and 8762 Da in HBSS, CHSS, DASS, and CASS, respectively. Among the four polysaccharides, CASS had the strongest DPPH radical scavenging ability and reducing power; while, CHSS had the strongest ferrous ions chelating ability and HBSS showed the strongest OH radical scavenging ability. In terms of functional properties, HBSS and CASS had better solubility and oil holding capacity, while, CASS and CHSS had higher foam capacity and foam stability. Altogether, the polysaccharides extracted from L. barbarum seed dreg exhibit a potential application prospect in functional food and cosmetics industries.
Collapse
Affiliation(s)
- Xiu-Xiu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, KT1 2EE Surrey, England, United Kingdom
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
14
|
Liu Y, Zhang H, Yu H, Li J, Brennan MA, Brennan CS, Qin Y. Wheat Bread Fortified with
Dictyophora Indusiata
Powder
: Evaluation of Quality Attributes, Antioxidant Characteristics and Bread Staling. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yudi Liu
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Heng Zhang
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Hongda Yu
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Jiang Li
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Margaret A Brennan
- School of ScienceRoyal Melbourne Institute of Technology UniversityMelbourne3000Australia
| | - Charles S Brennan
- School of ScienceRoyal Melbourne Institute of Technology UniversityMelbourne3000Australia
| | - Yuyue Qin
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| |
Collapse
|
15
|
Mutailifu P, Nuerxiati R, Lu C, Huojiaaihemaiti H, Abuduwaili A, Yili A. Extraction, purification, and characterization of polysaccharides from Alhagi pseudoalhagi with antioxidant and hypoglycemic activities. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
16
|
Hu T, Lu J, Wu C, Duan T, Luo P. Dictyophora Polysaccharide Attenuates As-Mediated PINK1/Parkin Pathway-Induced Mitophagy in L-02 Cell through Scavenging ROS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092806. [PMID: 35566158 PMCID: PMC9099742 DOI: 10.3390/molecules27092806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Arsenic (As) is common in the human living environment and a certain amount of exposure to As can lead to liver damage; this toxic effect has been proved to be closely related to intracellular PINK1/Parkin pathway-mediated mitophagy. Dictyophora is an edible fungus that extracts polysaccharides with antioxidant and hepatoprotective effects. In the present study, we demonstrated that As induced the onset of mitophagy in hepatocytes by stimulating cellular production of ROS to activate PINK1/Parkin, and the extent of damage increased with increased As-induced toxicity. Dictyophora polysaccharide (DIP) has the ability to scavenge intracellular ROS, which can inhibit oxidative stress injury and inhibit the PINK/Parkin pathway through its receptors or efficacious proteins, thus preventing mitochondrial autophagy and alleviating the hepatotoxicity of As. In conclusion, our results indicate that DIP can reduce As-induced PINK1/Parkin pathway-mediated hepatic mitophagy through scavenging ROS and exert hepatoprotective effects, providing experimental data and theoretical basis for the development of medicinal value of Dictyophora as a dual-use food and medicinal fungus.
Collapse
Affiliation(s)
- Ting Hu
- School of Public Health, Guizhou Medical University, Guiyang 550025, China; (T.H.); (J.L.); (C.W.); (T.D.)
- Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- Guizhou Engineering Research Center of Food Nutrition and Health, Guiyang 550025, China
| | - Ju Lu
- School of Public Health, Guizhou Medical University, Guiyang 550025, China; (T.H.); (J.L.); (C.W.); (T.D.)
| | - Changyan Wu
- School of Public Health, Guizhou Medical University, Guiyang 550025, China; (T.H.); (J.L.); (C.W.); (T.D.)
| | - Tianxiao Duan
- School of Public Health, Guizhou Medical University, Guiyang 550025, China; (T.H.); (J.L.); (C.W.); (T.D.)
| | - Peng Luo
- School of Public Health, Guizhou Medical University, Guiyang 550025, China; (T.H.); (J.L.); (C.W.); (T.D.)
- Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- Guizhou Engineering Research Center of Food Nutrition and Health, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Correspondence:
| |
Collapse
|
17
|
Mwangi RW, Macharia JM, Wagara IN, Bence RL. The antioxidant potential of different edible and medicinal mushrooms. Pharmacotherapy 2022; 147:112621. [PMID: 35026489 DOI: 10.1016/j.biopha.2022.112621] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Mushroom consumption has grown extraordinarily owing to their high nutritional value, desirable taste, and aroma. Mushrooms continue generating lots of interest chiefly in their consumption as food, as a cure for different ailments, as well as important goods for commerce throughout the globe owing to their dietary, antioxidant, and therapeutic values. Higher Ascomycetes and Basidiomycetes mushrooms have different properties with anticancer and immunological potential. They as well provide vital health benefits and display a wide-ranging continuum of pharmacological effects. The antioxidant activity of different mushrooms was reviewed for different radicals including DPPH, ABTS, OH, Nitrite, metals, and lipid peroxidation. The present review presents pharmacological activities of different species of edible and medicinal mushrooms. This review provides tangible evidence that these mushrooms are an excellent source of natural constituents and antioxidants with potential application in pharmaceuticals and in treating and managing different diseases.
Collapse
Affiliation(s)
- Ruth W Mwangi
- Department of Biological Sciences, Egerton University, Nakuru, Kenya
| | - John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Hungary.
| | - Isabel N Wagara
- Department of Biological Sciences, Egerton University, Nakuru, Kenya
| | - Raposa L Bence
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Hungary
| |
Collapse
|
18
|
Promotion of the Hypocrellin Yield by a Co-Culture of Shiraia bambusicola (GDMCC 60438) with Arthrinium sp. AF-5 Fungus. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypocrellin is a natural 3,10-xylene-4,9-anthracene derivative compound that originates from the stroma of Shiraia bambusicola (S. bambusicola) and Hypocrella bambusae with excellent photobiological activities. Submerged fermentation with the mycelia of S. bambusicola is generally regarded as an ideal technology for hypocrellin production. This study developed a co-cultivation strategy for an obvious promotion of the hypocrellin yield by incubating S. bambusicola (GDMCC 60438) with the endophyte fungus Arthrinium sp. AF-5 isolated from the bamboo tissue. The results indicated that the yield of hypocrellin A (HA) reached a 66.75 mg/g carbon source after an 84-h co-cultivation of the two strains, which was a four-time increase of that by the fermentation only with the S. bambusicola. The microscope observation found that the mycelia of the two strains were intertwined with each other to form the mycelium pellets during the co-cultivation. Moreover, the mycelium pellets of the co-culture showed a contracted and slightly damaged morphology. The addition of H2O2 in the fermentation media could further increase the HA production by 18.31%.
Collapse
|
19
|
Wang K, Guo J, Cheng J, Zhao X, Ma B, Yang X, Shao H. Ultrasound-assisted extraction of polysaccharide from spent Lentinus edodes substrate: Process optimization, precipitation, structural characterization and antioxidant activity. Int J Biol Macromol 2021; 191:1038-1045. [PMID: 34599988 DOI: 10.1016/j.ijbiomac.2021.09.174] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 11/29/2022]
Abstract
Lentinus edodes is the second-most popular and cultivated mushroom worldwide due to its nutritional and health-promoting benefit. However, the mushroom production generates vast amounts of spent L. edodes substrate (SLS) that is generally discharged into the environment, posing a great challenge within mushroom by-product valorization. In this work, SLS polysaccharide (SP) was ultrasonically extracted by optimizing the process conditions with response surface methodology. Using gradient ethanol precipitation, SP was separated into SP40, SP60 and SP80, and their monosaccharide composition, structural properties, and antioxidant potential were further characterized and compared. The results showed the total polysaccharide content reached up to 37.05 ± 0.31 mg/g under the optimal conditions including an extraction temperature of 50 °C, a liquid-solid ratio of 30 mL/g and an ultrasonic power of 120 W. SP and its fractional precipitations were heteropolysaccharides sharing a similar monosaccharide composition including L-rhamnose, D-glucuronic acid, D-galacturonic acid, d-glucose and D-xylose, and a typical infrared spectrum for polysaccharide. These fractions also varied in the surface morphology, where SP80 was looser and more porous than SP40 and SP60. Furthermore, SP and SP80 displayed the strongest antioxidant activities in vitro. This study identified a novel and practical strategy to valorize SLS for valuable polysaccharide.
Collapse
Affiliation(s)
- Kaijie Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Juntong Guo
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Junxia Cheng
- Shaanxi Environmental Monitoring Centre, Xi'an 710043, China
| | - Xinghua Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Bohan Ma
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
20
|
Li X, Wang X, Guo X, Li D, Huo J, Yu Z. Structural and Biochemical Characterization of a Polysaccharide Isolated From
Vaccinium uliginosum
L. STARCH-STARKE 2021. [DOI: 10.1002/star.202100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xingguo Li
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
- National‐Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions Harbin 150030 China
| | - Xiaotian Wang
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
- Heilongjiang Bayi Agricultural University Daqing 163316 China
| | - Xue Guo
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
| | - Dalong Li
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
| | - Junwei Huo
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
- National‐Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions Harbin 150030 China
| | - Zeyuan Yu
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
21
|
Zheng Q, Chen J, Yuan Y, Wan L, Li L, Zhang X, Li B. Effects of different extraction methods on the structure, antioxidant activity, α‐amylase, and α‐glucosidase inhibitory activity of polysaccharides from
Potentilla discolor
Bunge. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| | - Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| | - Yi Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| | - Liting Wan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
- School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing South China University of Technology Guangzhou China
| |
Collapse
|
22
|
Antioxidant activity of a polysaccharide from Dictyophora indusiata volva and MECC analysis of its monosaccharide composition. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Physicochemical and Biological Properties of Polysaccharides from Dictyophora indusiata Prepared by Different Extraction Techniques. Polymers (Basel) 2021; 13:polym13142357. [PMID: 34301113 PMCID: PMC8309502 DOI: 10.3390/polym13142357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, different extraction techniques, including traditional hot water extraction (HWE), microwave-assisted extraction (MAE), pressurized assisted extraction (PAE), and ultrasonic-assisted extraction (UAE), were used to extract Dictyophora indusiata polysaccharides (DFPs), and their physicochemical and biological properties were compared. Results revealed that extraction yields of D. indusiata polysaccharides prepared by different extraction techniques ranged from 5.62% to 6.48%. D. indusiata polysaccharides prepared by different extraction techniques possessed similar chemical compositions and monosaccharide compositions, while exhibited different molecular weights (Mw), apparent viscosities, and molar ratios of constituent monosaccharides. In particularly, D. indusiata polysaccharides prepared by HWE (DFP-H) had the highest Mw and apparent viscosity among all DFPs, while D. indusiata polysaccharides extracted by UAE (DFP-U) possessed the lowest Mw and apparent viscosity. In addition, the in vitro antioxidant effects of D. indusiata polysaccharides prepared by PAE (DFP-P) and DFP-U were significantly higher than that of others. Indeed, both DFP-P and DFP-H exhibited much higher in vitro binding properties, including fat, cholesterol, and bile acid binding properties, and lipase inhibitory effects than that of D. indusiata polysaccharides prepared by MAE (DFP-M) and DFP-U. These findings suggest that the PAE technique has good potential for the preparation of D. indusiata polysaccharides with desirable bioactivities for the application in the functional food industry.
Collapse
|
24
|
Ma X, Yu J, Jing J, Zhao Q, Ren L, Hu Z. Optimization of sunflower head pectin extraction by ammonium oxalate and the effect of drying conditions on properties. Sci Rep 2021; 11:10616. [PMID: 34012041 PMCID: PMC8134464 DOI: 10.1038/s41598-021-89886-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023] Open
Abstract
Pectin is a kind of natural and complex carbohydrates which is extensively used in food, chemical, cosmetic, and pharmaceutical industries. Fresh sunflower (Helianthus annuus L.) heads were utilized as a novel source of pectin extracted by ammonium oxalate. The conditions of the extraction process were optimized implementing the response surface methodology. Under optimal extraction parameters (extraction time 1.34 h, liquid-solid ratio 15:1 mL/g, ammonium oxalate concentration 0.76% (w/v)), the maximum experimental yield was 7.36%. The effect of spray-drying and freeze-drying on the physiochemical properties, structural characteristics, and antioxidant activities was investigated by FT-IR spectroscopy, high performance size exclusion chromatography, and X-ray diffraction. The results showed freeze-drying lead to decrease in galacturonic acid (GalA) content (76.2%), molecular weight (Mw 316 kDa), and crystallinity. The antioxidant activities of pectin were investigated utilizing the in-vitro DPPH and ABTS radical-scavenging systems. This study provided a novel and efficient extraction method of sunflower pectin, and confirmed that different drying processes had an effect on the structure and properties of pectin.
Collapse
Affiliation(s)
- Xuemei Ma
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
| | - Jiayi Yu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Jing Jing
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Qian Zhao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Liyong Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Zhiyong Hu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| |
Collapse
|
25
|
Srisuk N, Nopharatana M, Jirasatid S. Co-encapsulation of Dictyophora indusiata to improve Lactobacillus acidophilus survival and its effect on quality of sweet fermented rice (Khoa-Mak) sap beverage. Journal of Food Science and Technology 2021; 58:3598-3610. [PMID: 34366477 DOI: 10.1007/s13197-021-05101-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022]
Abstract
Egg and fruiting body of bamboo mushroom at the concentrations of 0, 0.8, 1 and 3% (w/v) were added during encapsulation of Lactobacillus acidophilus TISTR 2365 in alginate beads. The influence of addition of co-encapsulated, encapsulated and free probiotic cells on the microbiological, physico-chemical, antioxidant and sensory properties of Khoa-Mak sap beverages during storage at 4 °C for 35 days were investigated. All encapsulation formulations indicated high encapsulation yields of 95.72-98.86% and also influenced positively several characteristics such as ethanol, titratable acidity, reducing sugar, probiotic survival and sensory properties. High viability of L. acidophilus (> 8 log CFU/g) in all bead formulations was maintained above the recommended minimum therapeutic throughout storage of Khoa-Mak sap beverages. Moreover, the incorporation of bamboo mushroom, particularly 3% egg stage in beads (AEB3) increased the survival of L. acidophilus in Khoa-Mak saps during storage. The addition of either egg or fruiting body of bamboo mushroom from 0.8 to 3% in beads resulted in the significant increasing of total phenolic contents and their DPPH radical scavenging activities, and also without negative impact sensory attributes. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05101-9.
Collapse
Affiliation(s)
- Narakorn Srisuk
- Program of Biological Science, Faculty of Science, Burapha University, Chonburi, 20130 Thailand
| | - Montira Nopharatana
- Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Thungkru, Bangkok, 10140 Thailand
| | - Sani Jirasatid
- Department of Food Science, Faculty of Science, Burapha University, Chonburi, 20130 Thailand
| |
Collapse
|
26
|
Yang M, Li R, Wang X, Liu X, Zhang B, Wang Y. Preparation, characterization and wound healing effect of alginate/chitosan microcapsules loaded with polysaccharides from Nostoc Commune Vaucher. Biomed Mater 2021; 16:025015. [PMID: 33605229 DOI: 10.1088/1748-605x/abd051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biologically active coating materials could promote the growth of granulation tissue as auxiliary materials, while natural polysaccharides could promote vascular regeneration and wound healing. Therefore, in this study, ultrasound-assisted extract of Nostoc commune Vaucher polysaccharides (UAP) yield after the process optimization was 12.89 ± 0.24%, which was used to prepare microcapsules by emulsification and cross-linking. The effect of alginate/chitosan-UAP composite materials on wound healing in an experimental rat model for 14 d and its physical properties were evaluated. In vitro experiments indicated that the UAP microcapsule material had a porous and loose three-dimensional network structure, and had good biocompatibility and swelling properties as a wound healing material. Animal experiments indicated that UAP microcapsules could extremely significantly promote wound healing (P < 0.01), and wound closure rate reached 79.16 ± 3.91% on 14th day. Meanwhile UAP microcapsules might promote angiogenesis and granulation growth by enhancing immunity and increasing the expression of VEGF and miR-21. Therefore, the composites of UAP microcapsules have shown encouraging results as a potential dressing for wound healing.
Collapse
Affiliation(s)
- Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Run Li
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Xinjian Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Baigang Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| |
Collapse
|
27
|
Srisuk N, Jirasatid S. Characteristics Co-Encapsulation of Lactobacillus Acidophilus with Dictyophora Indusiata. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2020. [DOI: 10.12944/crnfsj.8.3.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dictyophora indusiate (bamboo mushroom) contains bioactive compounds, particularly fiber (13.30-15.17%). Therefore, Lactobacillus acidophilus was encapsulated in alginate beads and alginate-bamboo mushroom beads, with the objective to improve the survival of probiotic after exposure to gastrointestinal fluids. Either egg or fruit body of bamboo mushroom powder at concentrations of 0, 0.8, 1 and 3% (w/v) were added to encapsulate L. acidophilus by extrusion technique. The addition of bamboo mushroom did not influence the size (3.0 mm) and shape of the moist beads as well as encapsulation yield (94-97%), but they resulted in less interconnected network, causing larger pores when compared to alginate bead without bamboo mushroom. However, the beads in combination with bamboo mushroom (survival rate of 63-68%) and without bamboo mushroom (survival rate of 67%) provided greater protection of cells, enhancing their survival in gastrointestinal condition as compared to cells without encapsulation (survival rate of 34%). This study indicated that bamboo mushroom has the capability to be used as a matrix for co-encapsulation of probiotic cells against simulated gastrointestinal condition.
Collapse
Affiliation(s)
- Narakorn Srisuk
- Program of Biological Science, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Sani Jirasatid
- Department of Food Science, Faculty of Science, Burapha University, Chonburi, Thailand
| |
Collapse
|
28
|
Physicochemical properties and surface activity characterization of water-soluble polysaccharide isolated from Balangu seed (Lallemantia royleana) gum. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Kanwal S, Aliya S, Xin Y. Anti-Obesity Effect of Dictyophora indusiata Mushroom Polysaccharide (DIP) in High Fat Diet-Induced Obesity via Regulating Inflammatory Cascades and Intestinal Microbiome. Front Endocrinol (Lausanne) 2020; 11:558874. [PMID: 33329380 PMCID: PMC7717937 DOI: 10.3389/fendo.2020.558874] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity is a multifactorial metabolic disorder characterized by low-grade chronic inflammation, hyper-permeability of the gut epithelium, and perturbation of the intestinal microbiome. Despite the numerous therapeutic efficacies of Dictyophora indusiata mushroom, its biological activity in alleviating obesity through regulation of the gut microbiota and inflammatory cascades remain obscure. Henceforth, we determined the modulatory impact of D. indusiata polysaccharide (DIP) in the high-fat diet (HFD)-induced obesity mice model. The experimental subjects (BALB/C mice) were supplemented with chow diet (Control group), high-fat diet (HFD group), or HFD along with DIP at a low dose [HFD + DIP(L)] and high dose [HFD + DIP(H)]. Obesity-related parameters, including body weight gain, epididymal adipocyte size, fat accumulation, adipogenic markers, lipogenic markers, inflammatory associated markers, intestinal integrity, and intestinal microbiome, were elucidated. Our findings demonstrated that the oral administration of DIP at low dose partially and at high dose significantly reversed HFD-induced obesity parameters. Furthermore, the body weight, fat accumulation, adipocyte size, adipogenic and liver associated markers, glucose levels, inflammatory cytokines, and endotoxin (Lipopolysaccharide, LPS) levels were reduced considerably. Moreover, the study revealed that DIP treatment reversed the dynamic alterations of the gut microbiome community by decreasing the Firmicutes to Bacteroidetes ratio. These findings led us to infer the therapeutic potential of DIP in alleviating HFD-induced obesity via regulating inflammatory cascades, modulating intestinal integrity and intestinal microbiome community.
Collapse
Affiliation(s)
- Sadia Kanwal
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shams Aliya
- Faculty of Life Sciences, Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
30
|
Li W, Yun L, Rifky M, Liu R, Wu T, Sui W, Zhang M. Carboxymethylation of (1 → 6)-α-dextran from Leuconostoc spp.: Effects on microstructural, thermal and antioxidant properties. Int J Biol Macromol 2020; 166:1-8. [PMID: 33220380 DOI: 10.1016/j.ijbiomac.2020.11.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022]
Abstract
The carboxymethylated (1 → 6)-α-dextran (CM-dex) was synthesized by introducing carboxymethyl groups at different degrees of substitution (DS). The resulting dex1-1, dex2-1, dex3-1, and dex4-1 products had degrees of substitution of 0.57, 0.78, 1.13, and 1.25, respectively. The dex3-1 showed the highest glass transition temperature (Tg) of 215.96 °C, whereas Tg of pure dextran was 149.83 °C. TGA results indicated that the residual loss was reduced along with the increase of DS in the high-temperature region (450-600 °C). Besides, the CM-dex had stronger scavenging capacity against OH radicals but lower scavenging capacity for DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals compared to that of pure dextran. The carboxymethylation of (1 → 6)-α-dextran will extend the applications for modified dextran.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liyuan Yun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mohamed Rifky
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
31
|
Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104985] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Teng MJ, Wei YS, Hu TG, Zhang Y, Feng K, Zong MH, Wu H. Citric acid cross-linked zein microcapsule as an efficient intestine-specific oral delivery system for lipophilic bioactive compound. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109993] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Wang J, Wen X, Zhang Y, Zou P, Cheng L, Gan R, Li X, Liu D, Geng F. Quantitative proteomic and metabolomic analysis of Dictyophora indusiata fruiting bodies during post-harvest morphological development. Food Chem 2020; 339:127884. [PMID: 32858387 DOI: 10.1016/j.foodchem.2020.127884] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/29/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
The differences in Dictyophora indusiata fruiting bodies between peach-shaped and mature stage during the postharvest were systematically investigated through quantitative proteomic and metabolomic analyses. A total of 951 differentially expressed proteins were identified, 571 upregulated and 380 downregulated in the mature fruiting body; additionally, 173 upregulated and 165 downregulated differential abundance metabolites were screened. Integrated proteome and metabolome analyses showed that, during the maturation of D. indusiata fruiting bodies, glycerophospholipids were hydrolyzed and drastically decreased, the degradation of glucan was upregulated, the degradation and synthesis of chitin were simultaneously enhanced, and proteins were dominated via catabolism. Along with vigorous material metabolism, energy production was enhanced through the upregulated TCA-cycles and oxidative phosphorylation. In addition, the synthesis of antioxidant substances and the decomposition of peroxides were enhanced in mature fruiting bodies. These omics analyses of D. indusiata provide high-throughput data and reveal the changes in the post-harvest morphological development.
Collapse
Affiliation(s)
- Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuefei Wen
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yayu Zhang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Pingping Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Renyou Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Xiang Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
34
|
Optimizing the Extraction of Polysaccharides from Bletilla ochracea Schltr. Using Response Surface Methodology (RSM) and Evaluating their Antioxidant Activity. Processes (Basel) 2020. [DOI: 10.3390/pr8030341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bletilla ochracea Schltr. polysaccharides (BOP) have a similar structure to Bletilla striata (Thunb.) Reichb.f. (Orchidaceae) polysaccharides (BSP). Therefore, BOP can be considered as a substitute for BSP in the food, pharmaceuticals and cosmetics fields. To the best of our knowledge, little information is available regarding the optimization of extraction and antioxidant activity of BOP. In this study, response surface methodology (RSM) was firstly used for optimizing the extraction parameters of BOP. The results suggested that the optimal conditions included a temperature of 82 °C, a duration of 85 min and a liquid/material ratio of 30 mL/g. In these conditions, we received 26.45% ± 0.18% as the experimental yield. In addition, BOP exhibited strong concentration-dependent antioxidant abilities in vitro. The half-maximal effective concentration (EC50) values of BOP against 1,1-diphenyl-2-picrylhydrazyl (DPPH·), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonate) (ABTS+·), hydroxyl (·OH) and superoxide anion (·O2−) radicals and ferrous ions (Fe2+) were determined as 692.16, 224.09, 542.22, 600.53 and 515.70 µg/mL, respectively. In conclusion, our results indicate that BOP can be a potential natural antioxidant, deserving further investigation.
Collapse
|
35
|
Effects of sulfated, phosphorylated and carboxymethylated modifications on the antioxidant activities in-vitro of polysaccharides sequentially extracted from Amana edulis. Int J Biol Macromol 2020; 146:887-896. [DOI: 10.1016/j.ijbiomac.2019.09.211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/29/2019] [Accepted: 09/22/2019] [Indexed: 11/20/2022]
|
36
|
Ahmad M, Gani A, Hassan I, Huang Q, Shabbir H. Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Sci Rep 2020; 10:3533. [PMID: 32103076 PMCID: PMC7044286 DOI: 10.1038/s41598-020-60380-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
In this report, synthesis of the starch nanoparticles from underutilized and cheap sources viz: Horse chestnut (HS), Water chestnut (WS) and Lotus stem (LS) by using mild alkali hydrolysis and ultra-sonication process has been presented. The particles were characterized by Differential scanning colorimeter (DSC), X-Ray Diffraction (XRD), Rheology, Scanning electron microscopy (SEM) and Fourier transform infra-spectroscopy (ATR-FTIR). The particle size measurements, functional properties and antioxidant potential of starch nanoparticles were also analyzed. The experimental results revealed that the average particle size diameter of Horse chestnut starch nanoparticles (HSP), Water chestnut starch nanoparticles (WSP) and Lotus stem starch nanoparticles (LSP) was found to be 420, 606 and 535 nm, respectively. We observed a notable increase in the water absorption capacity but decreased capacity for oil absorption in the starch nano-particles. SEM images revealed damaged starch granules after size reduction. Additionally, loss of crystallinity and molecular order was observed from XRD and ATR-FTIR spectra. It was concluded that the starch nanoparticles have better thermal stability, increased viscosity and antioxidant properties.
Collapse
Affiliation(s)
- Mudasir Ahmad
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190006, India.
- Department of Food Science, Rutgers University, 65 Dudly Road, New Jersey, NJ, 08901, USA.
| | - Ifra Hassan
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudly Road, New Jersey, NJ, 08901, USA
| | - Hassan Shabbir
- Department of Food Science, Rutgers University, 65 Dudly Road, New Jersey, NJ, 08901, USA
| |
Collapse
|
37
|
Wei Q, Zhan Y, Chen B, Xie B, Fang T, Ravishankar S, Jiang Y. Assessment of antioxidant and antidiabetic properties of Agaricus blazei Murill extracts. Food Sci Nutr 2020; 8:332-339. [PMID: 31993159 PMCID: PMC6977522 DOI: 10.1002/fsn3.1310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
Agaricus blazei Murill (ABM), a medicinal mushroom, has beneficial effects on various human metabolic diseases. The objective of this research was to evaluate the antioxidant and antidiabetic properties of ABM extracts (ethanol extract and ethyl acetate extract). The antioxidant activities of ABM ethanol extract (EE) and ethyl acetate extract (EA) were analyzed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl radical scavenging assays and the reducing power using K3Fe(CN)6 in vitro. Moreover, the effects of EE and EA on α-glucosidase inhibitory activity and improving glucose uptake by HepG2 cells were investigated in vitro. The EA showed stronger antioxidant activity, as well as inhibition of α-glucosidase, compared to EE. The analysis of glucose uptake by HepG2 cells showed that EA had significant glucose-lowering activity and exhibited no difference compared to metformin. The results suggest that ABM extracts could improve the glucose uptake by HepG2 cells and thereby alleviate postprandial hyperglycemia. This investigation provides a strong rationale for further studies on the application of ABM to control type 2 diabetes.
Collapse
Affiliation(s)
- Qi Wei
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yishu Zhan
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Bingzhi Chen
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Baogui Xie
- Mycological Research CenterFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ting Fang
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonAZUSA
| | - Yuji Jiang
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
38
|
Habtemariam S. The Chemistry, Pharmacology and Therapeutic Potential of the Edible Mushroom Dictyophora indusiata ( Vent ex. Pers.) Fischer (Synn. Phallus indusiatus). Biomedicines 2019; 7:E98. [PMID: 31842442 PMCID: PMC6966625 DOI: 10.3390/biomedicines7040098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Dictyophora indusiata (Vent. Ex. Pers.) Fischer or Phallus indusiatus is an edible member of the higher mushroom phylum of Basidiomycetes. Known for its morphological elegance that gave it the names bridal veil fungus, veiled lady or queen of the mushrooms, it has numerous medicinal values that are beginning to be acknowledged through pharmacological efficacy studies. In an attempt to promote research on this valuable natural resource, the present communication aims to provide a comprehensive review of the chemistry, pharmacology and potential therapeutic applications of extracts and compounds isolated from D. indusiata. Of the bioactive compounds, the chemistry of the polysaccharides as major bioactive components primarily the β-(1 → 3)-D-glucan with side branches of β-(1 → 6)-glucosyl units are discussed, while small molecular weight compounds include terpenoids and alkaloids. Biochemical and cellular mechanisms of action from general antioxidant and anti-inflammatory to more specific signaling mechanisms are outlined along with potential applications in cancer and immunotherapy, neurodegenerative and chronic inflammatory diseases, etc. Further research areas and limitations of the current scientific data are also highlighted.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
39
|
Nuerxiati R, Abuduwaili A, Mutailifu P, Wubulikasimu A, Rustamova N, Jingxue C, Aisa HA, Yili A. Optimization of ultrasonic-assisted extraction, characterization and biological activities of polysaccharides from Orchis chusua D. Don (Salep). Int J Biol Macromol 2019; 141:431-443. [DOI: 10.1016/j.ijbiomac.2019.08.112] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 01/24/2023]
|
40
|
Luo J, Sun Q, Ma Z, Song J, Wu C, Li X. Ultrasonic extraction, structural characterization, and bioactivities of nonstarch polysaccharides from red yeast rice. Biotechnol Appl Biochem 2019; 67:273-286. [PMID: 31652012 DOI: 10.1002/bab.1844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/19/2019] [Indexed: 12/16/2022]
Abstract
Red yeast rice (RYRP) has been utilized for coloring food, brewing wine, and preserving meat, which is also used as a folk medicine for centuries. In this study, a water-soluble nonstarch polysaccharide from RYRP was extracted by using ultrasonic-assisted extraction method. By using the Box-Behnken design to optimize the parameters for extracting the RYRP, the maximum extraction yield (3.37 ± 0.78%) was obtained under the optimal extraction conditions as follows: ratio of water to raw material (40 mL/g), extraction temperature (62 °C), extraction time (75 Min), and ultrasonic power (200 W). Moreover, monosaccharide composition analysis showed that RYRP was consisted of mannose, glucosamine, glucose, and galactose with a molar ratio of 0.152:0.015:1:0.149. The molecular weight distribution analysis showed that the average molecular weight of the RYRP fraction was about 3.49 × 103 Da. Furthermore, RYRP exhibited significant antioxidant activities in vitro and the gastrointestinal-protective effect in vivo using gastrointestinal disorders model mice. RYRP could be explored as a potential source in the pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Jia Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zubing Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
41
|
Chai Y, Kan L, Zhao M. Enzymatic extraction optimization, anti-HBV and antioxidant activities of polysaccharides from Viscum coloratum (Kom.) Nakai. Int J Biol Macromol 2019; 134:588-594. [DOI: 10.1016/j.ijbiomac.2019.04.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
42
|
Chen X, Qi Y, Zhu C, Wang Q. Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin. Int J Biol Macromol 2019; 131:273-281. [DOI: 10.1016/j.ijbiomac.2019.03.077] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/02/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
|
43
|
Ji YH, Liao AM, Huang JH, Thakur K, Li XL, Wei ZJ. Physicochemical and antioxidant potential of polysaccharides sequentially extracted from Amana edulis. Int J Biol Macromol 2019; 131:453-460. [DOI: 10.1016/j.ijbiomac.2019.03.089] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
|
44
|
Fu Y, Lin S, Lu M, Wei SY, Zhou J, Zhao L, Zhang Q, Lin DR, Liu YT, Chen H, Qin W, Wu DT. Quantitative Evaluation of Ultrasound-Assisted Extraction of 1,3-β-glucans from Dictyophora indusiata Using an Improved Fluorometric Assay. Polymers (Basel) 2019; 11:E864. [PMID: 31086008 PMCID: PMC6572555 DOI: 10.3390/polym11050864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 11/17/2022] Open
Abstract
In the present study, an improved fluorometric assay based on aniline blue dye for the specific, accurate, and rapid quantification of 1,3-β-glucans in edible mushrooms was developed and fully validated. Furthermore, the improved method was successfully applied for the quantitative evaluation of water soluble 1,3-β-glucans extracted from Dictyophora indusiata by ultrasound-assisted extraction (UAE) with response surface methodology. Results showed that the improved method exhibited high specificity, accuracy, precision, repeatability, and stability, as well as a wide calibration range of 10-600 µg/mL (R2 > 99.9%). The maximum extraction yields of water soluble 1,3-β-glucans (1.20%) and total polysaccharides (5.41%) were achieved at the optimized extraction parameters as follows: ultrasound amplitude (56%), ultrasound extraction time (15 min), and ratio of liquid to raw material (22 mL/g). The results suggest that the improved fluorometric assay has great potential to be used as a routine method for the quantitative evaluation of 1,3-β-glucans in edible mushrooms and that the UAE method is effective for the extraction of 1,3-β-glucans from edible mushrooms.
Collapse
Affiliation(s)
- Yuan Fu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Shang Lin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Min Lu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Si-Yu Wei
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Jia Zhou
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Li Zhao
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qing Zhang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - De-Rong Lin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Yun-Tao Liu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Hong Chen
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Wen Qin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
45
|
Wang W, Song X, Zhang J, Li H, Liu M, Gao Z, Wang X, Jia L. Antioxidation, hepatic- and renal-protection of water-extractable polysaccharides by Dictyophora indusiata on obese mice. Int J Biol Macromol 2019; 134:290-301. [PMID: 31071398 DOI: 10.1016/j.ijbiomac.2019.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
The present work aimed to investigate the antioxidation, hepatic- and renal-protection of water-extractable polysaccharides (WPS) by Dictyophora indusiata fruiting body on high-fat emulsion-induced obese mice. The structural analysis indicated that WPS was the α-configurational heteropolysaccharide with the major monosaccharides of mannose and glucose, and the polydispersity of 1.77. The in vivo results showed that WPS administration could improve obesity-associated hepatic and renal metabolic impairment, reduce body weight and ameliorate oxidative stress of liver and kidney by down-regulating serum enzyme activities and hepatic lipid levels, stabilizing serum lipid status, enhancing antioxidant abilities and decreasing insulin and leptin resistance. The in vitro experiments showed that WPS had potential abilities to scavenge free radicals. The conclusions demonstrated that WPS might be used as a salutary food and natural medicine for preventing obesity-associated damage and its complications.
Collapse
Affiliation(s)
- Wenshuai Wang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Xinling Song
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Huaping Li
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Min Liu
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Zheng Gao
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Xiuxiu Wang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
46
|
Sardarodiyan M, Arianfar A, Sani AM, Naji-Tabasi S. Antioxidant and antimicrobial activities of water-soluble polysaccharide isolated from Balangu seed (Lallemantia royleana) gum. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0174-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Pan X, Wu S, Yan Y, Chen X, Guan J, Bao Y, Xiong X, Liu L. Rice bran polysaccharide-metal complexes showed safe antioxidant activity in vitro. Int J Biol Macromol 2019; 126:934-940. [DOI: 10.1016/j.ijbiomac.2018.12.265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 01/14/2023]
|
48
|
Alboofetileh M, Rezaei M, Tabarsa M, Rittà M, Donalisio M, Mariatti F, You S, Lembo D, Cravotto G. Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int J Biol Macromol 2019; 124:131-137. [PMID: 30471396 DOI: 10.1016/j.ijbiomac.2018.11.201] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 11/26/2022]
Abstract
In the current study, fucoidans from brown alga Nizamuddinia zanardinii were isolated with conventional and non-conventional extraction procedures to evaluate the effects of recently introduced technologies on biochemical characteristics and saccharide composition of the extracts, along with their antibacterial, antiviral and cytotoxic properties. The results demonstrated that subcritical water extraction showed the highest fucoidans yield (13.15%), while the lowest yield was obtained using ultrasound extraction method (3.6%). The polysaccharide chains consisted of fucose, galactose, glucose, mannose and xylose, whose molar percentages differed according to the extraction method used. The weight mean average molecular weight of fucoidans varied between 444 and 1184 kDa. The FT-IR spectroscopy confirmed the presence of sulfate esters by bending vibration of COS and stretching vibration of SO peaks at 818 and 1250 cm-1, respectively. Antibacterial assays showed that microwave- and subcritical water-extracted fucoidans inhibited the growth of E.coli and that enzyme-ultrasound, ultrasound-microwave and subcritical water extracted fucoidans exhibited inhibitory effects against P. aeruginosa at 2 mg/mL. Antiviral studies revealed that all the extracted fucoidans exerted strong antiviral activity against HSV-2 infection, with EC50 values in the 0.027-0.123 μg/mL range; indeed the viscozyme-extracted macromolecules displayed the best selectivity index.
Collapse
Affiliation(s)
- Mehdi Alboofetileh
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran.
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy
| | - Francesco Mariatti
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy.
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| |
Collapse
|
49
|
Getachew AT, Lee HJ, Cho YJ, Chae SJ, Chun BS. Optimization of polysaccharides extraction from Pacific oyster (Crassostrea gigas) using subcritical water: Structural characterization and biological activities. Int J Biol Macromol 2019; 121:852-861. [DOI: 10.1016/j.ijbiomac.2018.10.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
50
|
Effects of intrinsic metal ions of lentinan with different molecular weights from Lentinus edodes on the antioxidant capacity and activity against proliferation of cancer cells. Int J Biol Macromol 2018; 120:73-81. [DOI: 10.1016/j.ijbiomac.2018.06.203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/21/2018] [Accepted: 06/30/2018] [Indexed: 02/07/2023]
|