1
|
Wang L, Li Y, Li X. Microbe-aided thermophilic composting accelerates manure fermentation. Front Microbiol 2024; 15:1472922. [PMID: 39526136 PMCID: PMC11544323 DOI: 10.3389/fmicb.2024.1472922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Aerobic composting is a key strategy to the sustainable use of livestock manure, which is however constrained by the slow kinetics. Microbe-aided thermophilic composting provides an attractive solution to this problem. In this study, we identified key thermophilic bacteria capable of accelerating manure composting based on the deciphering of manure bacterial community evolution in a thermophilic system. High-throughput sequencing showed a significant evolution of manure bacterial community structure with the increasing heating temperature. Firmicutes were substantially enriched by the heating, particularly some known thermotolerant bacterial species, such as Novibacillus thermophiles, Bacillus thermolactis, and Ammoniibacillus agariperforans. Correspondingly, through function prediction, we found bacterial taxa with cellulolytic and xylanolytic activities were significantly higher in the thermophilic process relative to the initial stage. Subsequently, a total of 47 bacteria were isolated in situ and their phylogenetic affiliation and degradation capacity were determined. Three isolates were back inoculated to the manure, resulting in shortened composting process from 5 to 3 days with Germination Index increased up to 134%, and improved compost quality particularly in wheat growth promoting. Comparing to the mesophilic and thermophilic Bacillus, the genomes of the three isolates manifested some features similar to the thermophiles, including smaller genome size and mutation of specific genes that enhance heat tolerance. This study provide robust evidence that microbe-aided thermophilic composting is capable to accelerate manure composting and improve the quality of compost, which represents a new hope to the sustainable use of manure from the meat industry.
Collapse
Affiliation(s)
- Likun Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Yancheng Institute of Soil Ecology, Yancheng, China
| | - Yan Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
2
|
Wang X, Lu T, Yang B, Cao J, Li M. Exposure to resorcinol bis (diphenyl phosphate) induces colonization of alien microorganisms with potential impacts on the gut microbiota and metabolic disruption in male zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172892. [PMID: 38719053 DOI: 10.1016/j.scitotenv.2024.172892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Organophosphate esters (OPEs) have been demonstrated to induce various forms of toxicity in aquatic organisms. However, a scarcity of evidence impedes the conclusive determination of whether OPEs manifest sex-dependent toxic effects. Here, we investigated the effects of tris (1-chloro-2-propyl) phosphate (TCPP) and resorcinol bis (diphenyl phosphate) (RDP) on the intestines of both female and male zebrafish. The results indicated that, in comparison to TCPP, RDP induced more pronounced intestinal microstructural damage and oxidative stress, particularly in male zebrafish. 16S rRNA sequencing and metabolomics revealed significant alterations in the species richness and oxidative stress-related metabolites in the intestinal microbiota of zebrafish under exposure to both TCPP and RDP, manifesting gender-specific effects. Based on differential species analysis, we defined invasive species and applied invasion theory to analyze the reasons for changes in the male fish intestinal community. Correlation analysis demonstrated that alien species may have potential effects on metabolism. Overall, this study reveals a pronounced gender-dependent impact on both the intestinal microbiota and metabolic disruptions of zebrafish due to OPEs exposure and offers a novel perspective on the influence of pollutants on intestinal microbial communities and metabolism.
Collapse
Affiliation(s)
- Xinwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ting Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Environmental Engineering Technology Co. Ltd, Nanjing, Jiangsu 210019, China
| | - Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Qi Y, Qin Q, Liao G, Tong L, Jin C, Wang B, Fang W. Unveiling the super tolerance of Candida nivariensis to oxidative stress: insights into the involvement of a catalase. Microbiol Spectr 2024; 12:e0316923. [PMID: 38206032 PMCID: PMC10846165 DOI: 10.1128/spectrum.03169-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Yeast cells involved in fermentation processes face various stressors that disrupt redox homeostasis and cause cellular damage, making the study of oxidative stress mechanisms crucial. In this investigation, we isolated a resilient yeast strain, Candida nivariensis GXAS-CN, capable of thriving in the presence of high concentrations of H2O2. Transcriptomic analysis revealed the up-regulation of multiple antioxidant genes in response to oxidative stress. Deletion of the catalase gene Cncat significantly impacted H2O2-induced oxidative stress. Enzymatic analysis of recombinant CnCat highlighted its highly efficient catalase activity and its essential role in mitigating H2O2. Furthermore, over-expression of CnCat in Saccharomyces cerevisiae improved oxidative resistance by reducing intracellular ROS accumulation. The presence of multiple stress-responsive transcription factor binding sites at the promoters of antioxidative genes indicates their regulation by different transcription factors. These findings demonstrate the potential of utilizing the remarkably tolerant C. nivariensis GXAS-CN or enhancing the resistance of S. cerevisiae to improve the efficiency and cost-effectiveness of industrial fermentation processes.IMPORTANCEEnduring oxidative stress is a crucial trait for fermentation strains. The importance of this research is its capacity to advance industrial fermentation processes. Through an in-depth examination of the mechanisms behind the remarkable H2O2 resistance in Candida nivariensis GXAS-CN and the successful genetic manipulation of this strain, we open the door to harnessing the potential of the catalase CnCat for enhancing the oxidative stress resistance and performance of yeast strains. This pioneering achievement creates avenues for fine-tuning yeast strains for precise industrial applications, ultimately leading to more efficient and cost-effective biotechnological processes.
Collapse
Affiliation(s)
- Yanhua Qi
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Qijian Qin
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Guiyan Liao
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Lige Tong
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Wenxia Fang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
4
|
Li H, Xia X, Zang J, Cheng S, Xu X, Wang Z, Du M. Construction of Manganese-Based Oyster ( Crassostrea gigas) Ferritin Nanozyme with Catalase-like Enzyme Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:810-818. [PMID: 38134328 DOI: 10.1021/acs.jafc.3c07661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
MnO2 is a nanozyme that inhibits the decomposition of hydrogen peroxide (H2O2) into a hydroxyl radical (OH•), thus preventing its conversion into reactive oxygen species (ROS). Oyster ferritin (GF1) is a macromolecular protein that provides uniform size and high stability and serves as an excellent template for the biomineralization of nanozyme. This study presents a unique method in which MnO2 is grown in situ in the GF1 cavity, yielding a structurally stable ferritin-based nanozyme (GF1@Mn). GF1@Mn is demonstrated to be stable at 80 °C and pH 4-8, exhibiting a higher affinity with H2O2 than many other catalases (CAT) with a Michaelis constant (Km) of 25.45 mmol/L. In vitro experiments have demonstrated the potential of GF1@Mn to enhance cell survival by reducing nitric oxide (NO) production while mitigating macrophage damage from ROS. The findings are essential to developing ferritin-based nanozymes and hold great potential for applications in functional food development.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Mushtaq I, Mushtaq I, Akhlaq A, Usman S, Ishtiaq A, Khan M, Mustafa G, Khan MS, Urooj I, Bibi S, Liaqat F, Akhtar Z, Murtaza I. Cardioprotective effect of tetra(aniline) containing terpolymers through miR-15a-5p and MFN-2 regulation against hypertrophic responses. Arch Biochem Biophys 2023; 747:109763. [PMID: 37739116 DOI: 10.1016/j.abb.2023.109763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE Cardiac hypertrophy is a condition of abnormal cardiomyocyte enlargement accompanied by ventricular wall thickening. The study aims to investigate the role of miR-15a-5p in the regulation of mitofusin-2 (MFN-2) and to explore the cardioprotective effect of terpolymers ES-37 and L-37. METHODS In this study, the Sprague Dawley rats' cardiac hypertrophic model was established by administering 5 mg/kg Isoproterenol subcutaneously every other day for 14 days. As treatment rats received NAC (50 mg/kg), NAC treatment (50 mg/kg NAC + 5 mg/kg ISO), ES-37 (1 mg/kg) and ES-37 treatment (1 mg/kg ES-37+5 mg/kg ISO), L-37 (1 mg/kg) and L-37 treatment (1 mg/kg L-37+5 mg/kg ISO). subcutaneously every other day for 14 days. NAC, ES 37 and L-37 were given after 1 h of Isoproterenol administration in treatment groups. Cardiac hypertrophy was confirmed through morphological and histological analysis. For estimation of oxidative stress profiling, ROS and TBARS and antioxidative profiling superoxide dismutase (SOD), Catalase, and Glutathione (GSH) levels were checked. Triglyceride, cholesterol, alanine transaminase (ALT), and aspartate transaminase (AST) were performed to evaluate levels of lipid profiling and liver profiling. Molecular expression analysis was checked through real-time PCR, and western blotting both at the transcriptional and translational levels. Molecular docking studies were performed to study the interactions and modes of binding between the synthetic polymers with three proteins (Mitofusin-2, DRP-1 and PUMA). All the studies were carried out using the AutoDock Vina software and the protein-ligand complexes were visualized in Biovia Discovery Studio. Cardiac hypertrophy was confirmed by the relative changes in the cellular structure of the heart by histopathological examination and physiological changes by estimating organ weights. Biochemical profiling results depict elevated oxidative and lipid profiles signify myocardial damage. N-acetyl cysteine (NAC), ES-37, and L-37 overcome the cardiac hypertrophic responses through attenuating oxidative stress and enhancing the antioxidative signaling mechanism. miR-15a-5p was identified as hypertrophic microRNA directly regulating the expression of Mitofusin-2 (MFN-2). Significantly increased expression of miR-15a-5p, Dynamin related protein 1 (Drp1), and P53 upregulated modulator of apoptosis (PUMA), was observed in the disease group, whereas MFN-2 expression was observed downregulated. N-acetyl cysteine (NAC), ES-37, and L-37 showed increased expression of antiapoptotic maker MFN-2 and decreased expression of miR-15a-5p, Drp1, and PUMA in treatment groups suggesting their cardioprotective role in attenuation of cardiac hypertrophy. An analysis of the docking results shows that ES-37 has greater binding affinity with the target proteins compared to L-37, with the highest binding values reported for MFN-2. CONCLUSION The physiochemical properties of ES-37 and L-37 predicted it as a good drug-like molecule and its mechanism of action is predictably through inhibition of ROS. Molecular docking results shows that the polymer ES-37 has greater binding affinity with the target proteins compared to L-37, with the highest binding values reported for MFN-2. Thus, the study validates the role and targeting of miR-15a-5p and MFN-2 in cardiac hypertrophy as well as the therapeutic potential of NAC, ES-37, and L-37 in overcoming oxidative stress and myocardial damage.
Collapse
Affiliation(s)
- Iram Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Irrum Mushtaq
- Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Asia Akhlaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Sumaira Usman
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Ayesha Ishtiaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Mehmand Khan
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Iqra Urooj
- Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, Yunnan, China; International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091, Yunnan, China; Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Faroha Liaqat
- Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Zareen Akhtar
- Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Iram Murtaza
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
6
|
Huo XJ, Chen MJ, Zhou JL, Zheng CL. Potassium-rich mining waste addition can shorten the composting period by increasing the abundance of thermophilic bacteria during high-temperature periods. Sci Rep 2023; 13:6027. [PMID: 37055422 PMCID: PMC10101976 DOI: 10.1038/s41598-023-31689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Conventional compost sludge has a long fermentation period and is not nutrient rich. Potassium-rich mining waste was used as an additive for aerobic composting of activated sludge to make a new sludge product. The effects of different feeding ratios of potassium-rich mining waste and activated sludge on the physicochemical properties and thermophilic bacterial community structure during aerobic composting were investigated. The results showed that potassium-rich waste minerals contribute to the increase in mineral element contents; although the addition of potassium-rich waste minerals affected the peak temperature and duration of composting, the more sufficient oxygen content promoted the growth of thermophilic bacteria and thus shortened the overall composting period. Considering the requirements of composting temperature, it is recommended that the addition of potassium-rich waste minerals is less than or equal to 20%.
Collapse
Affiliation(s)
- Xiao-Jun Huo
- Inner Mongolia Research Academy of Eco-Environmental Sciences, Hohhot, 010000, Inner Mongolia, China
| | - Min-Jie Chen
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
- Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Inner Mongolia University of Science and& Technology, Baotou, 014010, Inner Mongolia, China
| | - Jian-Lin Zhou
- Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Inner Mongolia University of Science and& Technology, Baotou, 014010, Inner Mongolia, China
| | - Chun-Li Zheng
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, Shang Hai, China.
- Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Inner Mongolia University of Science and& Technology, Baotou, 014010, Inner Mongolia, China.
| |
Collapse
|
7
|
Yu J, Gu J, Wang X, Lei L, Guo H, Song Z, Sun W. Exploring the mechanism associated with methane emissions during composting: Inoculation with lignocellulose-degrading microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116421. [PMID: 36308953 DOI: 10.1016/j.jenvman.2022.116421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Inoculation with microorganisms is an effective strategy for improving traditional composting processes. This study explored the effects of inoculation with lignocellulose-degrading microorganisms (LDM) on the degradation of organic matter (OM), methane (CH4) emissions, and the microbial community (bacteria and methanogens) during composting. The results showed that LDM accelerated the degradation of OM (including the lignocellulose fraction) and increased the CH4 releases in the later thermophilic and cooling stages during composting. At the ending of composting, LDM increased the CH4 emissions by 38.6% compared with the control. Moreover, LDM significantly increased the abundances of members of the bacterial and methanogenic community during the later thermophilic period (P < 0.05). In addition, LDM promoted the growth and activity of major bacterial genera (e.g., Ureibacillus) with the ability to degrade macromolecular OM, as well as affecting key methanogens (e.g., Methanocorpusculum) in the composting system. Network analysis and variance partitioning analysis indicated that OM and temperature were the main factors that affected the bacterial and methanogen community structures. Structural equation modeling demonstrated that the higher CH4 emissions under LDM were related to the growth of methanogens, which was facilitated by the anaerobic environment produced by large amounts of CO2. Thus, aerobic conditions should be improved during the end of the thermophilic and cooling composting period when inoculating with lignocellulose-degrading microorganisms in order to reduce CH4 emissions.
Collapse
Affiliation(s)
- Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
8
|
Chafik A, Essamadi A, Çelik SY, Mavi A. Purification and biochemical characterization of catalase that confers protection against hydrogen peroxide induced by stressful desert environment: the Camelus Dromedarius kidney catalase. Prep Biochem Biotechnol 2022:1-12. [PMID: 36074915 DOI: 10.1080/10826068.2022.2119576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Camel is continually exposed to stressful desert environment that enhances generation of reactive oxygen species, including hydrogen peroxide (H2O2). Catalase plays an important role in detoxification of H2O2. A highly active catalase from camel kidney was purified to homogeneity, with a specific activity of 1,774,392 U/mg protein, using ion exchange and metal chelate affinity chromatography. The molecular weight of the enzyme was 268 kDa consisting of four identical subunits of 63 kDa. The enzyme showed higher optimum temperature (45 °C) and higher activation energy (4.37 kJ mol-1). The thermodynamic parameters, ΔH, ΔG and ΔS, were determined. The effect of various metal ions and chemicals on enzyme activity was investigated. Km, Vmax, kcat and kcat/Km values for H2O2 were found to be 46 mM, 10,715,045 U/mg, 48,265,968 s-1 and 2,966,562 s-1 mM-1, respectively. Camel kidney catalase displayed higher affinity efficiency for H2O2 and can protect reduced glutathione (GSH) from oxidation by H2O2. Sodium azide was found to be a noncompetitive inhibitor of enzyme with Ki and IC50 of 17.88 µM and 20.94 µM, respectively. Camel catalase showed unique biochemical properties. Interestingly, camel catalase can protect molecules (GSH) and organ functions (kidney) from the toxic effects of H2O2 induced by stressful desert environment.
Collapse
Affiliation(s)
- Abdelbasset Chafik
- Ecole Supérieure de Technologie d'El Kelâa des Sraghna, Université Cadi Ayyad, El Kelâa des Sraghna, Morocco.,Faculté des Sciences et Techniques, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Université Cadi Ayyad, Marrakech, Morocco
| | - Abdelkhalid Essamadi
- Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Hassan First University, Settat, Morocco
| | - Safinur Yildirim Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science, Atatürk University, Erzurum, Turkey.,Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Yuan F, Yin S, Xu Y, Xiang L, Wang H, Li Z, Fan K, Pan G. The Richness and Diversity of Catalases in Bacteria. Front Microbiol 2021; 12:645477. [PMID: 33815333 PMCID: PMC8017148 DOI: 10.3389/fmicb.2021.645477] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Catalases play a key role in the defense against oxidative stress in bacteria by catalyzing the decomposition of H2O2. In addition, catalases are also involved in multiple cellular processes, such as cell development and differentiation, as well as metabolite production. However, little is known about the abundance, diversity, and distribution of catalases in bacteria. In this study, we systematically surveyed and classified the homologs of three catalase families from 2,634 bacterial genomes. It was found that both of the typical catalase and Mn-catalase families could be divided into distinct groups, while the catalase-peroxidase homologs formed a tight family. The typical catalases are rich in all the analyzed bacterial phyla except Chlorobi, in which the catalase-peroxidases are dominant. Catalase-peroxidases are rich in many phyla, but lacking in Deinococcus-Thermus, Spirochetes, and Firmicutes. Mn-catalases are found mainly in Firmicutes and Deinococcus-Thermus, but are rare in many other phyla. Given the fact that catalases were reported to be involved in secondary metabolite biosynthesis in several Streptomyces strains, the distribution of catalases in the genus Streptomyces was given more attention herein. On average, there are 2.99 typical catalases and 0.99 catalase-peroxidases in each Streptomyces genome, while no Mn-catalases were identified. To understand detailed properties of catalases in Streptomyces, we characterized all the five typical catalases from S. rimosus ATCC 10970, the oxytetracycline-producing strain. The five catalases showed typical catalase activity, but possessed different catalytic properties. Our findings contribute to the more detailed classification of catalases and facilitate further studies about their physiological roles in secondary metabolite biosynthesis and other cellular processes, which might facilitate the yield improvement of valuable secondary metabolites in engineered bacteria.
Collapse
Affiliation(s)
- Fang Yuan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shouliang Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Yang Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lijun Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiyan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Li G, Lian J, Xue H, Jiang Y, Ju S, Wu M, Lin J, Yang L. Biocascade Synthesis of L-Tyrosine Derivatives by Coupling a Thermophilic Tyrosine Phenol-Lyase and L-Lactate Oxidase. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guosi Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Hailong Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Yiqi Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Shuyun Ju
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| |
Collapse
|
11
|
Matilda C, Mannully S, Viditha R, Shanthi C. Protein profiling of metal‐resistantBacillus cereusVITSH1. J Appl Microbiol 2019; 127:121-133. [DOI: 10.1111/jam.14293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/04/2023]
Affiliation(s)
- C.S. Matilda
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - S.T. Mannully
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - R.P. Viditha
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - C. Shanthi
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| |
Collapse
|
12
|
Fang Y, Vadlamudi M, Huang Y, Guo X. Lipid-Coated, pH-Sensitive Magnesium Phosphate Particles for Intracellular Protein Delivery. Pharm Res 2019; 36:81. [DOI: 10.1007/s11095-019-2607-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/10/2019] [Indexed: 12/13/2022]
|
13
|
Liu ZQ, Lu MM, Zhang XH, Cheng F, Xu JM, Xue YP, Jin LQ, Wang YS, Zheng YG. Significant improvement of the nitrilase activity by semi-rational protein engineering and its application in the production of iminodiacetic acid. Int J Biol Macromol 2018; 116:563-571. [PMID: 29753012 DOI: 10.1016/j.ijbiomac.2018.05.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
Abstract
Iminodiacetic acid (IDA) is widely used as an intermediate in the manufacturing of chelating agents, glyphosate herbicides and surfactants. To improve activity and tolerance to the substrate for IDA production, Acidovorax facilis nitrilase was selected for further modification by the gene site saturation mutagenesis method. After screened by a two-step screening method, the best mutant (Mut-F168V/T201N/S192F/M191T/F192S) was selected. Compared to the wild-type nitrilase, Mut-F168V/T201N/S192F/M191T/F192S showed 136% improvement in specific activity. Co2+ stimulated nitrilase activity, whereas Cu2+, Zn2+ and Tween 80 showed a strong inhibitory effect. The Vmax and kcat of Mut-F168V/T201N/S192F/M191T/F192S were enhanced 1.23 and 1.23-fold, while the Km was decreased 1.53-fold. The yield of Mut-F168V/T201N/S192F/M191T/F192S with 453.2 mM of IDA reached 71.9% in 5 h when 630 mM iminodiacetonitrile was used as substrate. This study indicated that mutant nitrilase obtained in this study is promising in applications for the upscale production of IDAN.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming-Ming Lu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin-Hong Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Miao Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
14
|
Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacu. Int J Biol Macromol 2018; 109:1270-1279. [DOI: 10.1016/j.ijbiomac.2017.11.130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 01/24/2023]
|
15
|
Jia X, Lin X, Lin C, Lin L, Chen J. Enhanced alkaline catalase production by Serratia marcescens FZSF01: Enzyme purification, characterization, and recombinant expression. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Ping LF, Chen XY, Yuan XL, Zhang M, Chai YJ, Shan SD. Application and comparison in biosynthesis and biodegradation by Fusarium solani and Aspergillus fumigatus cutinases. Int J Biol Macromol 2017; 104:1238-1245. [DOI: 10.1016/j.ijbiomac.2017.06.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
|
17
|
Complete Genome Sequence of Ureibacillus thermosphaericus A1, a Thermophilic Bacillus Isolated from Compost. GENOME ANNOUNCEMENTS 2017; 5:5/38/e00910-17. [PMID: 28935726 PMCID: PMC5609405 DOI: 10.1128/genomea.00910-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Ureibacillus thermosphaericus A1 was isolated from compost collected in Munakata City, Fukuoka Prefecture, Japan. Here, we report the first complete genome sequence of U. thermosphaericus. The complete genome of this strain consists of 3,488,104 bp with a GC content of 36.3% and comprises 3,362 predicted coding sequences.
Collapse
|
18
|
Improvement of extracellular lipase production by a newly isolated Yarrowia lipolytica mutant and its application in the biosynthesis of L-ascorbyl palmitate. Int J Biol Macromol 2017; 106:302-311. [PMID: 28827135 DOI: 10.1016/j.ijbiomac.2017.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023]
Abstract
Yarrowia lipolytica Wt-11 producing an extracellular lipase was isolated and identified. To improve the lipase production, Y. lipolytica Wt-11 was subjected to low-energy ion implantation mutation breeding, and a best mutant, Y. lipolytica Mut-96, was obtained after screening. Under the optimal cultivation conditions, the scaled-up production of lipases were performed, and the lipase activity of Y. lipolytica Mut-96 was enhanced nearly 5.5-fold compared with that of Y. lipolytica Wt-11. After fermentation, the lipases were purified, and the characteristics of the purified lipases were studied. The optimum temperatures and pHs for lipases from Wt-11and Mut-96 were 30°C and 8.0, respectively. The purified lipases were stable between pH 7.0 and 8.5 and unstable at temperatures above 40°C. The lipase activities were enhanced by Ca2+, Ba2+, Mn2+, Fe2+ and SDS. The synthesis of L-ascorbyl palmitate via esterification with L-ascorbic acid and palmitic acid by immobilized lipases from Wt-11 and Mut-96 in organic media was investigated, and the L-ascorbyl palmitate can be respectively produced at levels of 14.8 and 27.5g/L.
Collapse
|